

Copyright © 2024 Frederick John Milens III. All rights reserved.

Photography by Frederick John Milens III and Ashanna Biliter.

Written in HTML5 and converted to PDF using Weasyprint.
Typefaces used are Orkney, Anka Coder Narrow, and CMU
Typewriter.

Artwork created with Inkscape and KiCad. Photographs for the
book content were taken on a Nikon 1 S1.

For more information and sources/designs please visit
www.codycomputer.org.

THIS IS A DRAFT COPY.

https://www.codycomputer.org

Table of Contents

1. Introduction ... 9
Introduction ... 10
What's a Home Computer? .. 13
Commodore as Inspiration ... 16
The Cody Computer Design .. 21
Comparisons and Context ... 26

2. Hardware and Firmware Design .. 31
Introduction .. 32
Mechanical Design ... 36
Electronic Design ... 44
Propeller Firmware .. 62

3. Software Design .. 104
Introduction ... 105
Startup and Initialization ... 106
Tokenization and Interpretation ... 121
Numeric and String Expressions .. 138
Control and Data Statements .. 146
Input and Output Statements ... 160
Loading and Saving Programs ... 167
Serial Routines .. 175
Screen Output ... 179

4. Assembly Instructions .. 184
Introduction .. 185
Notes on 3D Printing .. 185
Keyboard Assembly ... 189
Printed Circuit Board Assembly ... 197

Case Assembly ... 221
Initial Setup .. 239

5. Using Cody BASIC ... 243
Introduction ... 244
Using the Keyboard ... 244
The Read-Eval-Print Loop ... 246
Typing and Editing Programs ... 247
Input and Output ... 250
Variables, Numbers, and Strings ... 251
Control Statements .. 254
Loading and Saving Programs ... 259
Understanding Error Messages .. 264

6. Advanced Cody BASIC .. 268
Introduction .. 269
Working With Numbers .. 269
Text Manipulation and Strings .. 276
Print Formatting .. 283
File Input and Output .. 293
Including Data in Programs ... 298
Timekeeping .. 300
Reading and Writing Memory .. 301
Using Machine Code .. 304
Programming Hints ... 308

7. Graphics Programming ... 313
Introduction .. 314
Changing the Border Color .. 315
Working With Screen Memory .. 316
Working With Color Memory ... 319
Characters and Character Memory 322

Waiting for Blanking .. 329
Scrolling the Screen ... 330
Moving Graphics With Sprites ... 334
Disabling Video Output ... 342
Row Effects ... 343
Bitmapped Graphics ... 354

8. Sound and Music Programming 358
Introduction .. 359
Making a Sound ... 360
Creating Sounds With Numbers ... 365
Playing a Simple Song .. 373
Sound Effects ... 377
A Practical Sound Program ... 385
Ring Modulation .. 389

9. Input and Output Programming 391
Introduction .. 392
Keyboard and Joystick Input ... 393
Serial Input and Output ... 397
General-Purpose Input and Output 406
Special Pins and Shift Registers .. 410
SPI Communication and Cartridges 415

10. Assembly Language Programming 417
Introduction .. 418
The CodySID Music Player ... 419
The "Cody Bros." Demo ... 446

11. Cartridges and SPI ... 474
Introduction ... 475
Cartridge Design .. 476
Cartridge Programmer Assembly 478

SPI Programming in BASIC .. 485
A Program for Programming .. 495
Cartridge Case Assembly ... 519

Afterword ... 524
One Good Little Dude ... 525

Appendices .. 535
Appendix A: Memory Map ... 536
Appendix B: Color Codes ... 551
Appendix C: Cody BASIC Reference 552
Appendix D: CODSCII Table ... 560

INTRODUCTION

Welcome to The Cody Computer Book, a guide to building
and programming your own 8-bit computer. The computer
you'll build is inspired by the popular home computers of the
1980s—particularly the Commodore series—though it is not a
direct clone of or compatible with any of them. Rather, it tries
to be a somewhat-faithful modern take on a computer from
that era, with many of the same limitations that inspired
ingenuity and creativity in an earlier time. Some aspects have
been updated and others simplified for ease of use, but in all
cases we've tried to preserve the aesthetic of the era. Most of
all, we've tried to make it approachable and fun.

If you follow the book, you'll build a computer with a
period-appropriate 65C02 processor running at 1 megahertz
and accessing 64 kilobytes of memory. You'll get an analog
NTSC video output with blocky character graphics and sprites,
synthesized audio, and serial ports for loading and saving
programs—all through a Parallax Propeller microcontroller
that replaces the features of half a dozen legacy chips. You'll
even build a fully-mechanical keyboard and a toylike 3D-
printed case inspired by the keyboard wedges of the 1980s,
complete with joystick ports for games and an expansion port
for your own peripherals or cartridges. Once it's up and
running, you'll start to program in Cody BASIC and move on to
65C02 assembly.

While the computer itself belongs in the 1980s, the spirit is
that of the 1970s—open hardware and open software that is

10

readily accessible to the end user. Unlike most modern
reinventions of the classic home computer, the entire design is
intended to be constructable by a single person, at home,
using techniques and tools available to today's maker
community. All the parts are hobbyist-friendly, and even the
more obscure ones are currently in production from
historically reliable companies. All the design files, including
its own custom BASIC dialect, are released under copyleft
licenses. And should the worst ever come to pass,
synthesizable implementations of all the core components
already exist in the wild.

Building the Cody Computer isn't an incredibly difficult
project, but you'll need some basic skills and access to a few
things. You'll need to solder a couple of circuit boards, one for
the computer and one for the keyboard, and you'll also need
to be able to assemble them into a 3D-printed case. All the
design files you'll need are provided so that you can order
your own boards or make your own tweaks when 3D printing.
A large section of this book is devoted to build instructions to
help you, but it assumes that you already know the basics.

We've tried to make it easy to source the parts without a lot
of hassle. The electronics should all be available through a
single order from Mouser, including the keyboard switches,
but you may find it more cost-effective to order cheaper
keyswitches through another reseller instead. If you've built
any projects like this at home, you'll know that sometimes it
helps to shop around. We're also assuming that you have
access to items such as PLA filament through the same means
you'll use to print the case. The remainder of the items you'll

11

need are things that can be sourced wherever you can find a
hardware or craft store.

You'll have to install some software to finish programming
the Cody Computer once it's built. One of the key components
in the project, the Parallax Propeller, has software that you'll
need to use when programming the Propeller's firmware.
You'll also need to install a terminal program so that the Cody
Computer can exchange data with another device. Lastly, if you
want to get into assembly language programming, you'll need
to have a 65C02 assembler that you're familiar with. The Cody
Computer standardizes on the 64tass cross-assembler which
is also used to assemble the built-in Cody BASIC.

For the best chance of success you should already have
some significant experience with electronics, programming,
soldering, and 3D printing, or have people around who can
help you with the topics you don't know. You'll especially need
that knowledge when something doesn't go well and you need
to solve a problem. If you've done any programming of any
kind, built an intermediate electronics kit, downloaded
software to an Arduino, or set up some command-line
programs on your computer, you'll already have a lot of the
technical background you'll need. If you've screwed up all of
those but were able to fix it yourself, you're ready.

In terms of tooling, a good workspace, a good soldering iron,
and a reliable if standard fused-filament 3D printer are the
most important items to have around. You'll also need to have
a means of obtaining some double-sided circuit boards from
the design files, one for the keyboard and one for the main
board. You may have to order them from an offshore supply

12

house and expect to have some spares, or perhaps go in with a
friend who also wants to build a copy.

Here's an anecdote to give you an idea of what to expect: All
the 3D printing was done on a more-or-less stock Creality
Ender 3 Pro, mostly with Hatchbox or Inland PLA filaments, and
we went through a lot as we tried different designs. For
electronics, a standard multimeter was used for most
measurements, with a Siglent SDS1104X-E oscilloscope only
being used a few times to diagnose problems during
prototyping. We ordered our boards from Aisler throughout
the project because of their out-of-the-box support for KiCad,
but they should be manufacturable by other board houses.

We didn't need anything especially fancy to build the
Cody Computer, nor did we get paid to write any of this.
When it came time to get some of the tools we didn't have
on hand, we intentionally picked the options that would be
most accessible to people financially. In many respects it's
kind of amazing it actually works!

WHAT'S A HOME COMPUTER?

What constitutes a home computer varies a lot depending
on the era. Because the Cody Computer is channeling the early
1980s, it's worth revisiting the 1970s and 1980s to discuss
exactly what computers were like at the time. As with other
new technologies being introduced to the marketplace for the
first time, there were many new systems being released from a

13

variety of manufacturers large and small, much of it forgotten
or otherwise lost outside of collectors' circles. It wasn't just a
couple of famous companies and their famous products. There
were literally too many to list here.

The earliest home computers resembled a tiny version of
the 1960s Batcomputer more than anything else. The Kenbak-1
of the 1970s was made without any microprocessors at all,
instead built with what looked like a small city of individual
logic chips and programmed via a front panel of buttons and
switches. Professional computers of the era were also built
from collections of chips like this, though those used more
powerful chips with a higher level of integration.

Machines with microprocessors, such as the MITS Altair and
the IMSAI 8080 (famously used in WarGames), became
available by the mid-1970s. These also sported a blinking-
lights-and-switches appearance, with programs generally
loaded manually or by paper tape readers. Finding an external
terminal to talk to your computer became an adventure in
itself. Projects like the TV Typewriter were popular and led to
experimentation with input terminals and cheap video output
hardware.

A large number of the systems of that era came in kit form,
often described in magazine articles that functioned as build
instructions or user guides. Single board computers or
modular systems became quite popular. Among those would
be systems important in the history of the 6502
microprocessor, such as the Jolt and MOS Technology's KIM-1;
that latter device was in many respects the first of the
Commodore computers.

14

Taken as a whole, however, these machines were often more
like a minicomputer for the home rather than a home
computer. Yet even in this era, much of the home computer
culture was being established. Microsoft got its start by selling
BASIC interpreters for these systems, while the People's
Computer Company created the first of many versions of the
open Tiny BASIC instead. Standards for saving and loading
programs emerged, such as the Kansas City Standard for
storing data on the audio cassettes of the era. Commercial
operating systems such as CP/M became available for many
systems. And users began sharing programs via magazines,
mail, and computer clubs.

The concept of the home computer began to change with
systems like the Sol-20 and Apple 1, including the keyboard
and video output within the computer itself. By 1977, the
Commodore PET, Apple II, and Tandy TRS-80 were all launched
to the public as complete systems. Graphics capabilities were
limited and the game-system-inspired Atari 800 wasn't
released until two years later. At this point, the outlines of the
stereotypical home computer became apparent: A wedge-
shaped computer, a built-in keyboard, support for cartridges
and cassettes for data storage, joystick or controller ports, and
output to a dedicated monitor or home television.

By the 1980s, the line between home computer and game
system became blurry. Existing game systems received add-
on keyboards and BASIC interpreters to resemble a home
computer. The Nintendo was sold in its native Japan as the
Famicom, with keyboards, BASIC cartridges, and disk drives
made available. Computer manufacturers began including

15

more advanced graphics and sound features in their products.
By 1982, the color-video ZX Spectrum was released in the UK,
and in the US, the Commodore 64 was released with game-
like graphics and sound capabilities. Storage devices improved
as floppy drives became more common than cassettes,
particularly in the US market.

As the 1980s continued, more advanced computers eclipsed
the earlier 8-bit systems. The Amiga, Atari ST, Macintosh, and
the IBM PC represented the next generation of computer
technology. Yet companies persisted in the 8-bit market.
Amstrad released its CPC family with impressive bitmap
graphics for its day. Handhelds like the Atari Lynx and
Nintendo Game Boy utilized 8-bit 6502 and Z80
microprocessors. The 65816, a 16-bit variant of the 6502, was
used in the Apple IIGS (with capabilities often surpassing the
Macintosh itself) and Super Nintendo. Despite those successes,
by the middle of the 1990s, the 8-bit world was all but gone,
save for third-party companies and aftermarket add-ons that
gave existing systems a new lease on life.

COMMODORE AS INSPIRATION

While not compatible with the Commodore series of 8-bit
computers, much of the inspiration for the Cody Computer
comes from that lineage. Commodore produced one of the
most influential series of 8-bit computers. Many of their
systems were known for providing an exceptional feature set
at a low price, while much of the company's design and

16

marketing had been directed at producing capable systems for
the general public rather than computing nerds or enthusiasts.

Along with their significance to the early history of home
computing, you'll find that much of the Cody Computer's
functionality was inspired by how Commodore did things. Not
everyone has firsthand experience with one of these systems,
so to provide some historical context, we'll briefly review some
of the better-known entries in the Commodore 8-bit family.

Commodore actually began as a typewriter company,
moving by necessity into the new markets of electronic adding
machines and calculators in the 1960s and 1970s. Competition
in the market was brutal, and Commodore began acquiring
electronics companies as part of its business strategy. One of
the acquisitions was MOS Technology, the company
responsible for the 6502 microprocessor. As part of the
purchase, Commodore also gained access to the engineering
talent behind the company.

Realizing the potential in the home computer market,
Commodore began manufacturing computers using its own
chips starting in the late 1970s. Future designs would continue
to leverage their in-house electronics expertise instead of
relying on off-the-shelf components. Commodore's sales pitch
marketed their systems as friendly computers that provided
amazing features for the price. Despite their successes,
changing markets, cutbacks on engineering, and problematic
business practices proved too much to bear; Commodore went
bankrupt in 1994.

17

KIM-1

The KIM-1 was a single board computer produced by MOS
Technology in the mid-1970s. Its primary purpose was to serve
as a reference system for their 6502 processor. Out of the box
it had a keypad and numeric display for interaction and
programming, while mass storage was available by connecting
to cassettes or paper tape. Clones were made by other
companies and aftermarket enhancements included video
output. Many of the starter 65C02 projects you'll find on the
Internet are, in some sense, the spiritual successors of these
early single board computers.

COMMODORE PET

The PET was Commodore's first real entry into the computer
market. Many of the characteristics associated with
Commodore's computers began with this model. Featuring a
6502 processor, a built-in keyboard, cassette, monochrome
monitor, and a copy of Microsoft BASIC, the machine was
intended as a more practical computer at its release in 1977.
The machine also supported the IEEE-488 bus, providing use of
a variety of peripherals and storage devices.

Because of the computer's text-only display, a graphical
character set called PETSCII was invented to make games and
entertainment applications more feasible. The characters were
prominently featured on Commodore keyboards throughout
the 8-bit era. PETSCII graphics remain one of the most
uniquely-identifiable aspects of a Commodore computer

18

system, often finding their way into hobbyist graphics and
compact homebrew games.

VIC-20

After other research and development attempts at a color
PET successor, Commodore released the VIC-20 as a “friendly
computer” that could be plugged into your television set. The
computer had expansion and cartridge slots, both of which
were heavily used because of the computer's minimal standard
memory. Commodore replaced the PET's IEEE-488 bus with
their own serial version, the IEC bus. The VIC-20 had an
optional floppy drive but datasettes were most popular at this
point. BASIC was still standard and a joystick was added for
gaming.

The VIC-20 also set a precedent for powerful peripheral
chips made custom by Commodore. The VIC-20 used the VIC
chip for handling video, sound, and other system functions. It
produced two-color character graphics at a moderate
resolution and four-color character graphics by halving the
horizontal resolution, which became the standard approach in
Commodore systems. Games and images were displayed by
changing the colors and characters themselves. For sound, it
produced three programmable square wave channels and a
single noise channel.

COMMODORE 64

The best-known of Commodore's computers, the
Commodore 64 contained the famous VIC-II and SID chips that

19

made it a compelling video game system. Expansion and user
ports existed for cartridges and add-ons, and a stripped-down
C64 variant was later released as a console-like game system.
Early models of the C64 bore a strong resemblance to the
prior VIC-20. Datasettes were still very common but floppy
drives became standard for the machine in the United States.

Much of the C64's unique character came from its custom
support chips. The VIC-II supported character and bitmap
graphics modes at higher resolution than the VIC-20, but
continued with the VIC's tradition of a low-color high-res
mode and a multicolor low-res mode. It also supported up to
eight sprites at a time, including extra functions like collision
detection. Raster interrupts allowed programmers to change
graphics content while the screen was actually being drawn.

The SID was also a breakthrough for its era, at least within
the home computing market. It was a sound chip built around
digital synthesis principles rather than being a mere tone
generator. It supported a total of three different sound
generators called voices, each of which could produce at least
four different types of sounds. Based on current music
synthesizers principles, different waveforms, envelopes, and
filters were available to craft audio output.

COMMODORE PLUS/4

The Plus/4 began as a cheap computer to compete with the
ZX Spectrum and similar systems. Much like the VIC-20,
video, sound, and other functions were combined into the
single TED chip, which could produce more colors but lacked

20

many VIC-II and SID features. The computer also shipped with
a faster 6502 processor and a more advanced version of
Commodore's BASIC.

Management changes at Commodore led to the technology
being repurposed into an entire suite of business computers
with built-in productivity software, marketed as the successor
to the Commodore 64 and priced to match. As a result of these
miscalculations, the entire line failed in the American market.
In recent years developers have shown the system's full
potential, porting existing titles from the C64 and creating new
ones—including the well-known Pets Rescue platformer in
2019.

THE CODY COMPUTER DESIGN

Having reviewed the systems that inspired it, it's time to
learn more about the Cody Computer's own design. The Cody
Computer's overall design is quite simple, based around a
handful of computer chips and some discrete components. It
has a built-in keyboard just like its 1980s predecessors.
Instead of using FPGAs and programmable logic, the design is
limited to modern equivalents of the chips that would have
been available in the era. When a modern option is
unavailable, a close substitute was chosen instead. The Cody
Computer was never intended as a product to be sold. It's
really a DIY project that can be the jumping-off point for your
own designs even if you don't build one as-is.

Like many retrocomputers, the Cody Computer is built
around the 65C02 microprocessor. It's a modern variant of the

21

traditional 6502 originally produced by MOS Technology,
then Commodore, and finally the Western Design Center. It can
run at speeds over 14 megahertz, but the Cody Computer runs
it at a mere 1 megahertz for reasons of both simplicity and
period authenticity. It shares the same 6502 instruction set as
its 1970s and 1980s predecessors, but replaces many of the
original 6502's illegal instructions with new ones for bit
setting, bit testing, and storing registers on the stack. Some
bug fixes are also present. Otherwise it shares the same simple
but powerful 6502 design, with a single accumulator register,
X and Y indexing registers, 64 kilobytes of addressable
memory space, and a variety of powerful but easily
comprehensible addressing modes.

The Cody Computer also relies on the Propeller, a very
powerful and completely custom microcontroller created by
Parallax, a small company with a long commitment to
education, hobbyists, and bespoke engineering. It dates to the
early 2000s and has a total of eight separate processors,
called cogs, that can run up to 20 million instructions per
second. Its hub memory region contains 32 kilobytes of RAM
and 32 kilobytes of ROM, including an interpreter for
Parallax's SPIN programming language. All of this is available
in a 40-pin DIP package that fits with the overall aesthetic of
the Cody Computer.

The Propeller is the Cody Computer's equivalent of the VIC,
TED, and other custom chips. Out of the eight cogs, we devote
five to video generation, one to sound generation, one to serial
communication, and one to managing the data and address
bus for the 65C02. For performance reasons the Propeller is

22

programmed directly in PASM, the Propeller's low-level RISC
instruction set, rather than SPIN. From the 65C02's perspective
it doesn't matter, as the Propeller presents itself as memory-
mapped hardware.

MEMORY

The Cody Computer can address a total of 64 kilobytes of
memory. The lower 40 kilobytes of memory are all handled by
a single AS6C1008 static RAM chip. A single page of memory
is mapped to a 65C22 Versatile Interface Adapter for input
and output. The remaining 24 kilobytes of memory are all
handled by the Propeller chip itself. 16 kilobytes are used as
shared RAM for video and simulated peripherals.

Instead of a separate ROM chip, the Cody Computer's ROM
is actually included inside the firmware used by the Propeller,
and when memory accesses hit the appropriate region, the
ROM contents are returned. The top 8 kilobytes of RAM store
the Cody BASIC ROM and a copy of the character set. In reality
these are kept as 8 kilobytes in the Propeller immediately
after the shared RAM section.

INPUT AND OUTPUT

Most of the Cody Computer's I/O is controlled by a single
65C22 Versatile Interface Adapter (VIA). The 65C22 contains
two bidirectional 8-bit I/O ports, a shift register, some
additional handshaking pins, and internal timers.

One of the two I/O ports is used to scan the keyboard and
joysticks, all of which are wired together into the same matrix.

23

Three pins are used to select one of eight rows (six keyboard
rows and two joysticks) with the help of a CD4051 1-of-8
switch, with the remaining five pins used to read in the keys or
joystick buttons for that row.

The other I/O port and the shift register are both wired to a
general-purpose expansion port where they can be used to
interface with other devices. The 65C22's handshaking lines
are instead used to detect whether a cartridge containing an
SPI EEPROM is present.

SERIAL PORTS

The Cody Computer has two serial ports, both of which can
operate at speeds of up to 19200 baud. They're actually
implemented as a dual UART peripheral running in a single
cog on the Propeller. Both UARTs are hardcoded to support
only an 8-N-1 protocol (one start bit, eight data bits, no parity
bit, and 1 stop bit). Each UART is polling-based but utilizes ring
buffers to reduce the need for 65C02 intervention.

It's assumed that the serial channels being used are unlikely
to be prone to errors, particularly at the relatively low rates
supported by the emulated peripherals. Some checks for
simple errors are performed at the UART level, and data sent
using the standard serial protocol contains no checksums or
similar measures.

One of the serial ports is actually the same port as the Prop
Plug connection for programming the board. This is intended
to connect to another system (such as a terminal application)
to load and save data and programs. It would even be possible

24

to build a Datasette-like device that could be interfaced via
this connection. The other serial port is routed to the expansion
slot alongside the pins connected to the 65C22 VIA.

VIDEO

Video output is handled by the Cody Video Interface Device
(VID) peripheral implemented in the Propeller. It supports a
character graphics mode where the screen is divided into 40
columns and 25 rows of characters. Each character has four
horizontal pixels and eight vertical pixels, similar to the
Commodore 64's multicolor character mode. Each pixel can be
one of four colors, two of which are unique to the individual
screen location and two of which are shared by the entire
screen.

The VID has many game-focused features. Up to 8
multicolor sprites can also appear on each line. Smooth
scrolling is supported. Additional features allow changing
some of the data dynamically to allow more colors, characters,
or sprites to appear on the screen. These allow raster-
interrupt-like effects through the use of built-in video chip
features.

Video generation is very complex. In the Cody Computer,
most of the Propeller's internal resources are devoted to the
video system. One of the Propeller's cogs is devoted to
generating the actual NTSC video signal while four other cogs
run in the background to generate video data. These cogs take
the screen memory, color memory, character memory, and

25

sprite memory contents and generate pixel colors that are
included in the NTSC signal.

SOUND

Audio is produced by the Cody Sound Interface Device (SID),
a simplified version of the famous SID from the Commodore
64. This peripheral is also implemented using the Propeller
and contains a rough emulation of the SID in a single cog. The
peripheral supports three voices with Attack-Decay-Sustain-
Release (ADSR) envelopes. The SID's sawtooth, triangle, pulse,
and white noise waves are supported, and it also has a
rudimentary attempt at features such as ring modulation.

However, the Cody SID is not a full SID emulation. Decay
constants are linear instead of exponential and filters are not
implemented. Many other differences also exist, and it's best
to view the Cody SID as a SID-like device with its own unique
characteristics.

COMPARISONS AND CONTEXT

The Cody Computer is not compatible with any of the
Commodore lineage (though, to be fair, they were rarely very
compatible with each other). In terms of inspiration and design
decisions, however, there is a significant debt. Much of the
overall philosophy and even some specific details are very
similar. During development I sometimes considered it a
“Commodore Junior”, a simplified system that was also an
homage to the Commodore 64 in particular. I also took

26

inspiration from how much the Plus/4 engineers were able to
preserve a Commodore feeling despite stripping so much of
the C64 away.

For example, the Cody Computer has two video modes
inspired by the C64 and Plus/4. The Cody Computer's Its
character-based graphics mode is influened by those
machines' multicolor character mode. Similarly, the sprite
graphics are very similar to the VIC-II's multicolor sprites, even
though they don't support features like collision detection and
scale-doubling. Built-in support for additional sprite banks is
likewise influenced by sprite multiplexing routines from the
C64. Its bitmap mode is also very similar to those on the C64
and Plus/4, falling somewhere between the VIC-II and TED in
terms of its limitations.

Audio functionality is largely copied from the Commodore
SID design. The Propeller uses a port of a SID emulation
library from the Arduino to mimic basic synthesis functions,
providing waveforms and ADSR functionality very similar in
nature to the SID chip. Many other features including
combined waveforms and filters were intentionally not
implemented. The SID registers are mapped to the same
locations as on the C64, and there is at least a minimal level of
C64 compatibility.

Two side-mounted joystick ports are available as on later
Commodore machines, but they're wired into the keyboard
matrix as rows. The keyboard itself is far from a standard
Commodore layout and actively avoids the multi-labelled
PETSCII hieroglyphics of times past. A dedicated expansion
port exposes many of the 65C22 VIA's I/O pins and a second

27

UART from the Propeller, but it does not expose the 6502 bus
as on Commodore machines. No dedicated “user port” exists,
but the same serial port used to exchange programs is
intended for something similar.

For loading and saving files, standard serial communication
is used like a very simple datasette. For the Cody Computer, a
dedicated mass storage device is not only excessive but ruins
the retro spirit. Instead, the intended target is a terminal or file
application running on another computer or phone. However, it
wouldn't be difficult to build a Datasette-like device that could
interface with the Cody Computer over this serial port.

The Cody BASIC provided with the computer is closer to a
tokenized Tiny Basic from the 1970s than to a 1980s Microsoft
BASIC. It supports 16-bit integer math rather than floating
point, has a limited set of commands, and has a limited feature
set. However, the Cody Computer's extensions, including
arrays and strings, were largely inspired by Microsoft BASIC
from the Commodore. Cody BASIC is also tokenized, though it
stores the programs as plain ASCII to make it easier to load
and save BASIC programs from modern computers.
Tokenization happens when loading, requiring some input
delays by the sender so that the tokenizer can keep up.

For compatibility reasons the software uses what is
essentially an extended ASCII, but the PETSCII graphics
characters are available. Cody BASIC does not allow directly
entering the characters into the input, but the character codes
can be specified in CHR$ commands. Cody BASIC also
understands a reserved set of character codes that work as
control codes, including clearing the screen, changing

28

foreground and background colors, and implementing a
reverse-field effect. So in most respects, Commodore-style
PETSCII graphics are still possible even in a BASIC program,
just done differently.

The Plus/4 approach of packing a huge amount of
functionality into the TED chip was a major inspiration for
using the Parallax Propeller as a similar device. The Propeller's
advanced capabilities then opened the door to creating a more
C64-like set of features. The low-resolution PETSCII graphics
in the Cody Computer's font were inspired by various 40-
column extensions written for the VIC-20. Having grown up
with a Commodore 64, the source of the inspiration was never
far away.

In fairness, many of the major decisions were taken on the
basis of what elicited the best response from one small dog. I
wouldn't have done it like this. My original thought was to add
a microcontroller or two and create a modernized PET. Instead
the real Cody preferred SID and TED music, YouTube videos
and emulations of Commodore games, Propeller demos on the
TV, and so many other things I attempted to find some way to
work in.

In many respects, he reminded me of myself as a very
young child working on computers, electronics, or rockets with
my father or uncle. My brain liked what it saw and had a
glimpse of the big picture, yet I found myself overwhelmed by
all the strange details and held back by tiny hands. And Cody
was, in so many ways, a small dog with the heart and mind of a
very young boy.

29

In any event, thanks to my four-legged management, what
you see here is what we got. Yet Cody demonstrated better
acumen, wisdom, and aesthetics through his smiles, gestures,
and tail wags than I ever encountered in my working career. I'll
always have doubts about certain design choices or
implementation details on my part, but I think Cody was right
about the big picture. His apparent interest (or lack thereof)
determined so much of what did and didn't make the cut.
While he was there for so much of this work, he's no longer
here for one last final inspection, big smile, or wag of the tail.
But I do hope he would have been proud.

30

INTRODUCTION

In finished form the Cody Computer is small by computer
standards, fitting into a rectangle about the size of a large
laptop trackpad and a couple of inches thick. Much of the
industrial design is inspired by the Commodore 64 and similar
1980s computers with additional influence from the collected
works of Tomy, Playskool, or Fisher-Price. The overall intent
was to produce something that would be identifable as an old-
school computer yet come across to a bystander as
unintimidating, fun, and approachable.

From the top view you'll notice a prominent case badge
(complete with an inlaid rainbow-colored badge in the finished
product), a large 10mm power LED (blue according to the
design, but you can replace it), and a 30-key keyboard. The
keycaps are custom but compatible with Cherry MX keystems,
though the Cody Computer uses a nonstandard spacing to fit
everything into such a small package. Standard keycaps won't
work unless you decided to saw them down.

32

Top of Cody Computer showing case badge, power LED, and
keyboard.

While you'll spend most of your time from this position,
looking down at the machine and using the keyboard, much of
its most important functionality is elsewhere. In particular, a
variety of ports on the back and right side of the computer are
used to interface with the outside world.

33

Back of Cody Computer showing expansion port, video, audio,
and Propeller port.

Most of the Cody Computer's ports appear on the
computer's lower back panel. The largest is an expansion port
that can be used to interface external devices or boot from
cartridges. We'll discuss the electrical characteristics of the
expansion port later. For now, it's enough to know it's here.

Next to the expansion port are RCA jacks for NTSC
composite video and mono audio output. The video output can
be connected to any device that supports NTSC video input
(unless, in rare circumstances, the display or converter is
incompatible with the software-generated video from the Cody
Computer). The audio output is generally connected to a
splitter and then to the left and right channels of the display.

The last connector on the back is a four-pin DuPont
connector compatible with Parallax's specifications for their

34

Prop Plug. Initially used to download the firmware to a finished
Cody Computer, it later doubles as a serial communications
port to other computers, mobile phones, or compatible devices
using the same mechanism.

The remaining ports are on the computer's right side (as
viewed from the top).

Right side of Cody Computer showing joystick ports and DC
power connector.

Two of the ports are standard Atari-style joystick ports used
by many of the best 1980s computers. Purely digital, they lack
support for the analog paddles of the Atari and Commodore
systems, but otherwise are nearly identical. Each presents as a
male DB9 connector suitable for use with any standard Atari-
compatible joystick.

35

The other port is the DC barrel jack responsible for
delivering power to the Cody Computer. Input is typically
around 5 volts delivered from a wall-wart or other transformer
plugged into a mains outlet. Because no switch is built into the
Cody Computer, I suggest connecting an external inline switch
between the DC jack and wall-wart.

MECHANICAL DESIGN

We'll explain how to build the Cody Computer in the
chapter on assembly, but first it's good to have some idea of
what you're actually building. Aside from a few core
components, switches, and fasteners, the Cody Computer is
designed to be printed on any reasonable fused-filament 3D
printer.

The case itself is held together with some semi-permanent
screws on the lower half that also secure the main printed
circuit board. The screws also hold some slotted brackets for
the keyboard module, and some rare earth magnets hold a
removable top section to finish the enclosure.

In addition to being easy to assemble, the Cody Computer is
designed to be easy to take apart. The magnets allow the top
of the case to be easily removed for a closer inspection of the
keyboard and case interior. The keyboard itself can be easily
slid out of its brackets to expose the main printed circuit board
for the entire system. If you do this a lot, you may find
yourself in need of some additional glue, but the idea is for
the system to be open for inquiry in every possible way.

36

CASE BOTTOM

The bottom subassembly, built around the case bottom
itself, is essentially a stack. The printed circuit board containing
the circuitry for the computer rests on standoffs at the base of
the case. Above the PCB are two brackets used to provide some
support for the top of the case, as well as a mounting location
for the keyboard.

Cutaway view of the bottom section of the Cody Computer.

The entire stack is held together by four screws that are
inserted from the bottom of the case through holes in the PCB
and into the mounting brackets at top. Pilot holes for the
screws are designed into the brackets, though they may need
to be adjusted for particular printers.

Holes in the back of the case expose the expansion port,
video and audio connectors, and serial port on the back of the
printed circuit board.

37

The mounting brackets contain slots to slide the keyboard
assembly into. The right bracket also contains punchouts for
the joystick ports and DC power connector. Recessed holes at
the top of the brackets contain magnets that will anchor to the
case top. The keyboard itself is a separate piece.

KEYBOARD MODULE

The keyboard module consists of a keyboard plate, a printed
circuit board, and a set of Cherry MX compatible mechanical
keyswitches and their keycaps. The printed circuit board rests
along the bottom of the keyboard plate, with the keyswitches
pressed in from the top. The switches are soldered into the
PCB, along with a DuPont connector, and the keycaps pressed
on.

Cutaway view of the keyboard module.

The keyboard plate is sized to friction-fit into the slots on
the brackets mentioned earlier. One side of the keyboard is
slid into place, followed by the other. This allows the keyboard

38

to be removed and the underlying PCB for the Cody Computer
to be examined for educational purposes.

Bottom assembly with keyboard module slotted into place.

With the keyboard in place, all that remains is the top cover
for the Cody Computer.

CASE TOP

Similar to the bottom cover, the top cover has holes for the
keyboard, case badge, and the holder for the power LED. These
parts are glued or press-fit to the top of the case. Four bosses
for magnets also exist on the top of the case. In these locations
magnets are glued into place, matching those inserted into the
brackets attached to the lower half of the computer.

39

Cutaway view of the top section of the Cody Computer.

With the magnets correctly affixed to the brackets and the
case top, the top cover can be easily popped on and off the
remainder of the assembly.

Cutaway view of the assembled Cody Computer.

40

OPENSCAD FILES

All mechanical designs for the Cody Computer were created
using OpenSCAD and released under an open-source license.
This means that the original design files are available to review
and even change if you need to. The generated STL files for
each component are available and should be the primary
source for printing Cody Computer parts under normal
circumstances. The OpenSCAD files were only there to produce
the canonical set of STLs for the Cody Computer using a
standard open source tool.

However, the OpenSCAD files are available if you need to
adjust them for your own 3D printer or parts. They're direct
translations from pencil-and-paper sketches so they aren't
particularly pleasant to work with. The files aren't done in a
parametric CAD style, magic numbers are everywhere, and
changes to one measurement will often necessitate other
changes. To the extent that changes are possible, it's wise to
limit them to adding or subtracting fudge factors for specific
3D printer setups or part substitutions.

module CaseBottom() {

 difference() {

 union() {

 // bottom with cavity
 difference () {

 // main shape
 hull() {

 translate([0, 2, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

 translate([0, 103, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

 translate([0, 0, 25]) cube([165, 105, 1]);

41

Example from Case.scad showing heavy use of magic numbers.

The Case.scad file contains the designs for the case top, case
bottom, LED holder, badge, and badge inlays. Each portion of
the design resides in its own SCAD module (CaseTop,
CaseBottom, LEDHolder, LEDHolder, CaseBadge, and

 }

 // interior
 translate([2, 2, 2]) cube([161, 101, 25]);

 }

 // PCB mounting standoffs
 translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
 }

 // screw heads
 translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);

 // screw holes (gives a couple of layers to punch out rather than using supports)
 translate([2.5 + 5, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
 translate([2.5 + 5, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
 translate([2.5 + 5 + 150, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);

 // vent holes
 for(count = [0 : 6]) {
 translate([15 + count * 8, 15, 0]) VentHole();
 translate([15 + count * 8, 105 - 15 - 30, 0]) VentHole();
 translate([165 - 15 - 4 - count * 8, 15, 0]) VentHole();
 translate([165 - 15 - 4 - count * 8, 105 - 15 - 30, 0]) VentHole();
 }

 // expansion port
 translate([2.5 + 34.2, 0, 4]) cube([58, 10, 17 + 10]);

 // video port
 translate([2.5 + 95.7, 0, 11.23]) cube([12, 10, 17]);

 // audio port
 translate([2.5 + 114.9, 0, 11.23]) cube([12, 10, 17]);

 // prop plug port
 translate([2.5 + 134.1, 0, 11.23]) cube([12, 10, 17]);

 // side panel
 translate([0, 10 + 2.5, 11.23]) cube([5, 80, 15]);
 }
}

42

BadgeInlay). In some cases these modules rely on other
modules within the same file.

The Keyboard.scad file contains the designs for the
keyboard plate (as the KeyboardPlate module) and keyboard
brackets. The two keyboard brackets are somewhat different as
one contains punchouts for the DB9 Atari joystick ports
(KeyboardBracketWithHoles), while the other does not
(KeyboardBracket). A helper module, DB9Hole, contains the
shape of the hole.

The Keycap.scad file contains the keycap designs. The
Keycap module has the design for a normal keycap, with the
legend specified as a parameter. The designs for the keycap
legends exist as SVG files in a subdirectory, with the
appropriate SVG legend being subtracted from the keycap's
face based on the parameter.

The spacebar is a special keycap and has its own module,
Spacebar. Supporting modules are KeySlice, which generates
a two-dimensional keycap shape used for extrusion, and
KeyStem, which creates a Cherry MX-compatible keystem. The
tolerances for a suitable keystem are quite small, and if you
need to modify any of the SCAD files directly, it will likely be
this one.

The Keychain.scad file is unused for the actual Cody
Computer build, but I've included it anyway. It's a design for a
simple keychain based on the Cody Computer's case badge
and has similar assembly requirements. During the Cody
Computer's development, one of these was used to test the
longevity of air-dried clay for keycap legends.

43

ELECTRONIC DESIGN

We've discussed the overall concept behind the Cody
Computer and how it fits together mechanically, so now we'll
talk about how the actual electronics work. In many respects
this is a guided tour through the schematics, starting with the
power supply and going on to the microprocessor, RAM, and
other major components.

While excerpts of the schematics are available here, the full
schematics are also available as original files or PDF exports.
It's recommended to follow along with those if you're
particularly interested in any of the electrical details. The Cody
Computer was designed using KiCad 5 and later KiCad 6, so
even the software used to design it is available as free and
open source software.

POWER SUPPLY

The Cody Computer's power supply circuit is simple but
very important. Almost all of the glitches and transient faults
encountered when developing the computer were actually the
result of glitches in the power supply, either from third-party
power supply boards or from loose connections in the wires
supplying power to the breadboards.

44

Schematic of the Cody Computer's power supply.

For the power supply circuit, a standard DC barrel jack (J1)
supplies power from a wall-wart transformer or other device.
The external device typically supplies power at a level around
5 or 6 volts. This is regulated by a LM2937ET-3.3 voltage
regulator (U2) that produces 3.3 volts from the input. There's
also a rather large capacitor (C5) to take care of any minor
wobbles. A 1 kilohm resistor (R1) connects to a 2-pin plug (J2)
for the power LED, so that the LED turns on whenever power is
being supplied to the circuit as a whole.

The power supply circuit is a subset of the power supply
circuit featured in Andy Lindsay's Propeller Education Kit Labs:
Fundamentals. Aimed at students, that circuit was powered
from a 9 volt battery and had regulators for both 5 volts and
3.3 volts. Only a subset of that circuit is needed here for the
3.3 volt supply.

45

Andy Lindsay's text and the associated kit were my
introduction to the Propeller and were very useful in
getting started. I went through a few 9 volt batteries
during my own later experiments and ran into some
weirdness when the batteries started to go dead. For very
long-term projects use your bench power supply.

There are also individual 0.1 microfarad decoupling
capacitors scattered throughout the circuit, typically one per
integrated circuit and sometimes more. These are omitted from
the simplified schematics in this section but appear in the full
schematic. We place these capacitors very close to the positive
voltage and ground pins on each integrated circuit to ensure a
reliable and noise-free power supply.

Part of a Cody Computer schematic showing some decoupling
capacitors.

Note that as the Cody Computer doesn't have a built-in
power switch because of space constraints, it's beneficial to get
an inline switch. There are many power switches that accept a

46

DC jack connector, and similar switches have been used on
everything from the ZX81 to most of today's Raspberry Pi
models. Such items are available from Amazon, Sparkfun, and
a variety of other retailers, usually costing less than a few
dollars.

PROPELLER

Much of the circuit is offloaded to a single microcontroller,
the Parallax Propeller. It does most of the same jobs as
Commodore's old VIC or TED, and sometimes a lot more.
Fortunately, it's able to keep up as it's a rather unique (and
open-source) device that actually contains eight lightweight
processor "cogs" on a single chip. It's used to clock the 65C02
microprocessor, monitor and decode the 65C02 bus, perform
serial communications, and generate video and sound. The
complexity of the schematic sheet containing the Propeller
gives you an idea of just how important the chip is to the Cody
Computer's functioning.

47

Schematic of the Propeller and closely-related circuitry.

When the circuit powers up, the Propeller (U3) wakes up
using its own internal oscillator. It later switches to a a 5
megahertz crystal (Y1) which internally is multiplied by 16 to
give an actual clock frequency of 80 megahertz. Because each
Propeller instruction takes four cycles (with some exceptions),
there are 20 million instructions per second per cog. That's a
lot of CPU cycles, especially when you take into account the
Propeller's built-in support for video generation. On the other
hand, it has a lot to do!

On startup, it checks to see if a program is being uploaded
via the Prop Plug. If a program is being uploaded, the Prop
Plug (J3) generates a reset pulse and begins sending the

48

program. We need this feature to program the Propeller for
the first time, but after that, external devices shouldn't be able
to reset the computer. To inhibit this, a small jumper (JP1)
connects the Prop Plug reset pin to the Propeller's reset pin
and a pull-up resistor (R2). When removed, the Prop Plug's
reset pin is disconnected so the Propeller's reset pin cannot be
pulled low and trigger a reset. Other features are unaffected,
allowing it to work as a serial user port to communicate with
other devices.

Aside from the rare circumstance when the Propeller is
being programmed, it will load its firmware from a 32 kilobyte
I2C EEPROM (U4), a 24LC256 or similar. The Propeller has an
internal 64 kilobyte memory space of its own, half of which is
RAM and half of which is ROM. The content of the 32 kilobyte
I2C EEPROM is copied into the RAM portion and then run, first
using the Propeller's built-in SPIN interpreter, but soon
dropping directly into the Propeller's own assembly language.
Contained in that EEPROM is not only the program for the
Propeller but also the ROM for the 65C02.

Once the Propeller begins running its code, most of its I/O
pins are used for communicating with the 65C02's system bus
and other devices. Eight of the Propeller's I/O pins, P16
through P21, are used to generate the 65C02's PHI2 clock
signal and reset pulse, chip select signals for other devices on
the board, and monitor the read/write signal from the 65C02.
An additional two pins are used for a second UART that
interfaces with the Cody Computer's expansion port.

When running, one of the Propeller's many responsibilities
is to decode the 65C02's address bus. Along with the

49

mentioned read/write signal, it uses I/O pins P0 through P15
to interface with the 65C02's address and data buses. We're
even able to share some pins and minimize part count because
of a unique characteristic of the 65C02's bus. The 65C02 puts
the address on the address bus throughout a clock cycle, but it
only puts the data on the data bus during the latter half of the
cycle when PHI2 is high. During the first part, when PHI2 is low,
the data bus is essentially disconnected.

This means that we can actually share the same pins on the
Propeller (P0 through P7) for both. We just need a way to
control the lower eight bits of the address bus and shut them
off to avoid a collision when PHI2 is high. To solve that
problem, a 74HC541 buffer (U1) sends the lower eight address
bits to the Propeller when enabled. When disabled, its outputs
are also tristated, allowing the data lines access instead.

This technique can be used by any 6502-based system,
not just a Propeller-based one. In the Propeller
community it became popularized from Dennis Ferron's
PROP-6502 and Jac Goudsmit's Propeddle, both of which
used it to solve a similar problem of conserving I/O pins
on the Propeller.

The Propeller is also responsible for generating NTSC video.
The chip itself has built-in circuitry for generating NTSC or
PAL video output, generating a variety of colors. However, the
circuitry still needs to be programmed on the software side

50

and interfaced on the hardware side using a digital-to-analog
converter (DAC) made of resistors.

Schematic detail showing the video output pins, resistor DAC,
and RCA jack.

For the Cody Computer, I/O pins P24 through P26 are used
as the video output pins. These are summed into a single
analog signal through a DAC made of up of 1.1 kilohm (R6),
560 ohm (R5), and 270 ohm (R4) resistors connected to an
RCA composite video jack (J4). The Cody Computer uses 1%
tolerance resistors for this particular part of the circuit, but the
values aren't that finicky. Some resistor values in the same
ballpark should suffice for our purposes. The resistor values
themselves come from André Lamothe's Unleashing the
Propeller C3 about the eponymous credit card sized computer.

Audio output is handled by the Propeller as well. The
Propeller's internal counters and support for pulse width
modulation is used to output a pulse with a changing duty
cycle. The stronger the signal, the longer the pulse stays on

51

before turning off. This output, in turn, gets converted by
support circuitry into a normal audio signal.

Schematic detail of the audio circuit.

For the Cody Computer, Propeller I/O pin P27 is used for
the audio output. It connects to a 220 ohm resistor (R7) which
is itself connected to a 0.1 microfarad capacitor (C6). The
resistor and capacitor essentially smooth out the on-or-off
pulses generated by the Propeller. This output is further
filtered by a larger 10 microfarad capacitor (C7) that also
couples the output to the RCA output jack (J5).

The circuit itself comes from a September 2006 Propeller
forum posting by Parallax engineer Paul Baker, who noted that
the circuit was not necessarily “optimal” but would suffice. I've
been using it since I started prototyping with the Propeller on a
breadboard, and it's been a part of what became the Cody
Computer ever since. You'll find many variations of the same
circuit floating around with different component values for
different frequency cutoffs.

52

65C02

The Cody Computer's brain is the 65C02 microprocessor
(U5). The actual computing performed by the Cody Computer
happens entirely as a result of the 65C02's actions. It's also
responsible for directing what happens in the rest of the circuit,
though the Propeller assists greatly when it comes to decoding
the 65C02's address bus.

Schematic detail showing the 65C02 microprocessor and its
connections.

The Propeller's generated PHI2 signal is directed to the
65C02's input on pin 37; this pin has gone by various names
over the years, but in modern variants, it's essentially the PHI2

53

clock input. A Propeller-generated reset pulse is also applied
to its reset pin on startup. The 65C02's IRQ line is connected to
the corresponding pin on the 65C22 I/O chip so that timers
and output port events can signal the processor when needed.

The 65C02's other interrupt line, the non-maskable
interrupt (NMI), isn't used in the Cody Computer and is
connected to 3.3 volts. Several other 65C02 pins, such as those
for setting overflow or enabling the address bus, are also tied
high. Some unused pins are left unconnected and do not pose
a concern for our purposes.

One notable pin is the RDY pin, which is connected to a 3.3
kilohm pull-up resistor (R8) rather than directly tied high to
3.3 volts. This is because on the 65C02, a WAI (wait for
interrupt) instruction can actually make the RDY pin go low.
The 65C02 has no built-in pull-up resistor to deal with this
problem. Without a pullup resistor, the 65C02 would
essentially be connecting the positive voltage to a logic zero
when a WAI instruction runs. To avoid that problem, there
needs to be a pull-up resistor.

The 65C02's other connections are to the system bus. The
65C02's address pins (or a subset thereof) are wired to the
Propeller, SRAM, and 65C22. The data bus pins are similarly
connected. Lastly, the 65C02's RWB pin, a read-write strobe
indicating whether the current bus operation is a read or a
write, is connected to the same devices and completes the
necessary bus signals. The PHI2 clock generated by the
Propeller is used throughout the entire circuit instead of the
PHI2 output from the 65C02. The Propeller generates the
master clock, so the 65C02's PHI2 output is left unconnected.

54

RAM

Most of the Cody Computer's RAM is provided by a single
AS6C1008 static RAM chip (U6). The chip is actually a 128
kilobyte memory chip, but the Cody Computer uses less than
half of that—40 kilobytes reside in the static RAM and the top
24 kilobytes are inside the Propeller itself. Unfortunately,
while there are 32 kilobyte static RAM chips and 128 kilobyte
static RAM chips readily available, modern production of 64
kilobyte static RAM is nonexistent. As a result, designers just
use the next biggest size and ignore the extra space.

Schematic detail showing static RAM connections.

The static RAM itself is rather unremarkable. The address
and data pins come directly from the 65C02, as does the read/
write strobe indicating the type of memory operation in

55

progress. The PHI2 clock and chip select both come from the
Propeller, which is responsible for decoding addresses and
selecting the appropriate chip.

If you look closely at the address and data lines you'll
realize they don't match up with the exact same line on the
65C02. For example, the 65C02's address line A12 is
connected to the static RAM's address line A8. It may appear to
be an error, but it's a quite intentional choice. The static RAM is
really just a sequential bunch of byte-sized buckets, and it
doesn't care what 65C02 address maps to its own internal
address as long as the mapping is one-to-one.

You can't use this in all cases, but for static RAM chips and
similar, switching around the lines like this is a common trick
when you're trying to route your printed circuit board. That's
what happened to the Cody Computer; it was easier to route
the connections if some of the address lines were moved
around.

65C22 AND I/O

Aside from two serial ports provided by the Propeller, all
input and output from the Cody Computer is handled by a
single 65C22 Versatile Interface Adapter (U7). We use some
additional circuitry to assist in scanning the keyboard, thus
freeing up more of the 65C22's I/O pins for an expansion port.
In general, the Cody Computer's I/O is there to provide
mechanism, not policy. In other words, you have direct access
to I/O pins which you can program however you want, whether
that's to perform modern SPI or I2C communications or just

56

turn individual lines on and off. The only exception is when a
Cody Computer cartridge is inserted into the expansion port,
at which point certain pins read binary code from an external
SPI memory.

65C22 and associated I/O ports.

The 65C22 is connected to the system's data and address
buses, with the PHI2 clock and chip selects being provided by
the Propeller. The 65C22 also has an /IRQ pin that's connected
to the 65C02's own interrupt pin, thereby letting the 65C22
trigger interrupts based on timers or I/O events. The
remainder of the 65C02's pins are dedicated to two output
ports, port A and port B, both of which are 8-bit and have some

57

additional out-of-band pins used to handle handshaking or for
general I/O.

The Cody Computer uses the 65C22's port A to scan the
keyboard and joysticks. The keyboard and joystick ports are all
combined into the same matrix, consisting of five columns and
eight rows. The last two of the eight matrix rows are the two
joystick ports, with all other rows part of the keyboard itself.

To cut down on pin counts, the CD4051 one-of-eight analog
switch (U8) is used to assist in scanning rows. Three output
lines from the 65C22 are used to select one of eight outputs
on the CD4051. This specific use of the CD4051 goes back to
the Oric computer.

The use of the CD4051 as a keyboard scanning aid is
explained as part of Garth Wilson's Circuit Potpourri. His
entire Wilson Mines Company website is a vital resource
for those new to the 65C02, with his 6502 Primer required
reading for anyone embarking on their own 65C02
computer design.

Both the keyboard rows and keyboard columns are
connected to the actual keyboard by the keyboard connector
(J7). Each column is connected to a pull-up resistor (R9
through R13) so that, by default, a key that is not pressed will
register as a logic 1. When a row is scanned, the selected row is
pulled low by the CD4051, with all others left disconnected in a
high-impedance state. In this situation, when a key is pressed,

58

it completes the circuit to ground, resulting in a logic 0 for the
pressed key.

The joystick ports, which reside on the main board, work in a
similar fashion. Both joystick ports are male DB9 connectors
(J8 and J9) that support a subset of the Atari joystick pinout
common to the 8-bit era. Each port has the standard
connections for up, down, left, right, and fire button wired as
the keys for a keyboard row, while the ground pin for each port
is wired as one of the rows on the CD4051's outputs. To scan a
joystick, one selects the row just as for a keyboard, then reads
the joystick pins.

One minor difference is that the joystick pins have diodes
(D1 through D10) connected to them to avoid ghosting, a
phenomenon where simultaneous keypresses can result in
erroneous data. We don't worry about this for the keyboard
itself, as there are a very limited number of valid multiple-key
combinations and ghosting will not be a problem for those.
However, for the joysticks, where vigorous action and many
multiple presses can be expected, we need to directly deal with
the ghosting issue.

The remainder of the 65C22's I/O pins are connected to the
expansion port (J6). All eight I/O pins from 65C22 port B are
routed there and can be used as general-purpose pins in most
situations. The CB1 and CB2 pins can be used as handshake
pins for communication with compatible devices, but also
feature a shift-register mode that will likely be more useful
for most applications. While not connected to the 65C22, the
Propeller's second UART has its transmit and receive pins
routed to the expansion port as well.

59

The CA1 and CA2 handshake pins, not used with port A, are
used to check whether a Cody Computer cartridge has been
connected to the expansion slot. CA1 is tied high via a 10
kilohm resistor (R14), but will be pulled down during the
cartridge-check routine if CA1 and CA2 are actually tied
together by a cartridge in the slot. In all other cases, CA1 will
remain at a high logic level and not trigger anything.

In the event a cartridge is detected, the value of PB4 is
examined to determine whether the cartridge uses two-byte or
three-byte addressing. Following that, PB0 through PB3 are
used to read the contents of the cartridge into memory over a
lowest-common-denominator SPI protocol for memories.

KEYBOARD

The Cody Computer's keyboard exists as a separate
schematic and printed circuit board. It contains 29 keys and a
spacebar. The physical layout of the keys differs significantly
from the electrical layout, with the keyboard itself arranged in
a very compact QWERTY layout. The keyboard also uses a
nonstandard spacing to keep the size down.

Three of the keys—the Cody, Meta, and Arrow keys—are
special keys used to select other characters, change caps lock,
and delete or enter text. Two switches are actually combined
into the spacebar, one on each side of the spacebar' keycap.
This solution was actually easier than designing a nonstandard
spacebar stabilizer.

60

Schematic with keyboard matrix and connector.

The keyboard matrix consists of 31 Cherry MX or compatible
switches (SW1 through SW31) arranged into an electrical
matrix of five columns and six rows. The spacebar uses two
switches (SW4 and SW5) placed on either end of the
spacebar; from the standpoint of the keyboard matrix they're
more or less the same switch. The matrix is wired to the
keyboard connector (J1) and is connected to the main board via
a cable.

No diodes are added to the keyboard to prevent ghosting.
Instead the Cody Computer is designed so that no more than
two keys would need to be pressed simultaneously at any
time, thereby avoiding ghosting issues; at least three
simultaneous presses would be necessary to produce ghosting.

Note that this means the keyboard is a poor choice for
arcade games or similar. In those situations the joystick ports

61

are the more proper input device. As mentioned above, these
do have diodes to prevent ghosting and allow the joysticks to
be read without problems under heavy use.

PROPELLER FIRMWARE

As mentioned earlier, much of the Cody Computer's
functionality comes from the Propeller chip. That functionality
is specified within the Propeller's firmware. Mostly written in
the Propeller's own assembly language, PASM, with minor use
of SPIN, the Propeller's interpreted high-level language, it
should be at least somewhat understandable to anyone with
experience in low-level programming. The files are released
under the GPL and are available with the rest of the Cody
Computer's files.

The Propeller actually contains eight small processors, each
of which can run its own small program of up to 512
instructions. While this may not sound like a lot, it suffices for
most low-level programming, and larger programs can be
written in SPIN or executed using various low-level
workarounds.

For our purposes, we rely on the fast, deterministic
execution of Propeller assembly language code, so those don't
apply to us. Instead, we break up the necessary parts of the
Cody Computer's emulated hardware into small programs,
then start them up on individual cogs, letting them run until
the computer is shut off.

62

The firmware is split up into five files:

The cody_computer.spin file contains startup code and
drives the circuit.
The cody_uart.spin file contains code for two emulated
serial UARTs.
The cody_audio.spin file contains a rough emulation of
the SID sound chip.
The cody_video.spin file contains code for NTSC color
video generation.
The cody_line.spin file contains per-line rendering code
used for video.

Each file is heavily commented but we'll do a brief review of
each one here in the book. If you're new to the Propeller you
may want to find a reference for PASM and SPIN from the
Parallax website, especially if you're going to be following
through in the original source files.

CODY_COMPUTER.SPIN

The cody_computer.spin file contains the main startup code
for the entire Cody Computer, both Propeller and 65C02 code,
and acts as the overall driver for the rest of the system.
Everything else that happens in the Cody Computer directly or
indirectly happens because of the contents of this file.

In its DAT section it declares the memory regions that will be
visible to the 65C02 bus. One region is a 16-kilobyte area
containing zeroes, used for the emulated 16-kilobyte RAM.
Following that is an 8-kilobyte area that contains the contents

•

•

•

•

•

63

of the cody.bin file, the 65C02 firmware that contains the Cody
Computer's code and BASIC interpreter.

Declarations for shared memory mapped into the 65C02's
address space.

The actual startup code is written in SPIN, the Propeller's
interpreted language, and is contained in the start method.
The Propeller contains a copy of the SPIN interpreter, and once
it starts up, it calls this routine and starts interpreting the code.
From there, control is passed to us. Our code starts the audio,
UART, and video cogs of the code, then uses the Propeller's
coginit function to replace the code in the current cog with the
driver code under cogmain.

The Cody Computer's startup sequence as written in SPIN.

The rest of the file is written in PASM. When control is
passed to cogmain, the assembly language entry point, it sets
up some of the Propeller's I/O pins and does some quick
memory calculations to speed up the code later. After that, it

DAT

memory

 long 0[4096] ' 16K shared RAM starting at 65C02 address $A000
 long ' 8K ROM (BASIC, character set) starting at 65C02 address $E000
 FILE "cody.bin"

PUB start

 audio.start(@memory)
 uart.start(@memory)
 video.start(@memory)

 waitcnt(cnt + 10000)
 coginit(0, @cogmain, @memory)

64

emits a reset pulse to start the 65C02 by calling the
emit_reset routine.

The entry point in Propeller PASM.

The Propeller emit_reset routine that starts the 65C02.

Once done, the program enters the main loop, under cycle,
where it handles all the operations necessary to drive the

cogmain mov memory_ptr, PAR

 ' adjust ROM cutoff location with start address of memory
 add BOUNDARY_ROM, memory_ptr

 ' configure the IO pins used for 6502 and bus signals
 mov OUTA, INIT_OUTA
 mov DIRA, INIT_DIRA

 ' run 65C02 reset sequence of 10 clocks with reset high
 call #emit_reset

 ' dummy read to align our code with hub access windows
 ' before commencing the main loop driving the 6502
 rdbyte data, addr

emit_reset
 ' begin with reset high and emit 20 clock cycles
 or OUTA, MASK_RES
 mov count, #20
:loop
 ' clock low
 andn OUTA, MASK_PHI
 mov temp, cnt
 add temp, #40
 waitcnt temp, temp

 ' clock high
 or OUTA, MASK_PHI
 mov temp, cnt
 add temp, #40
 waitcnt temp, temp

 ' bring reset low after 10 cycles
 cmp count, #10 wz
if_z andn OUTA, MASK_RES

 ' next clock cycle
 djnz count, #:loop

 ' bring reset high when done
 or OUTA, MASK_RES

emit_reset_ret ret

65

circuit for a single cycle. It brings the PHI2 clock signal for the
65C02 low, reads the address on the bus to determine what
device to use, selects the appropriate device, and brings the
PHI2 clock signal high. Checks are also performed to
determine if the Propeller itself is the device being selected,
which will happen if the address is at the top 24 kilobytes of
memory.

Because this main loop also produces the main clock for the
rest of the circuit, it must be exact with its timing. In order to
achieve that, we perform what is called a hub operation,
syncing the code up with the rest of the Propeller, before
entering the main loop. After that, we go through and add up
the time required for each instruction, including other hub
operations, to ensure that a stable 1 megahertz clock results
from the code regardless of any path taken through it.

cycle
 ' Begin the main 6502 loop by bringing phi low to end
 ' the previous cycle, then reset the OUTA/DIRA config.
 '
 ' Once we've reset our state to begin the next cycle,
 ' read from the inputs and determine what we need to do.

 andn OUTA, MASK_PHI ' phi2 low at start (1)
 mov DIRA, INIT_DIRA ' reset IO direction (2)
 mov OUTA, INIT_OUTA ' reset output state (3)
 mov addr, INA ' read address (4)
 and addr, MASK_WORD ' mask address bits (5)
 cmp addr, BOUNDARY_RAM wc ' test address for prop memory (6)
if_nc jmp #internal ' prop internal memory path (7)
 cmp addr, BOUNDARY_VIA wc ' test address for sram or io (8)
if_nc andn OUTA, MASK_IOSEL ' io selected (9)
if_c andn OUTA, MASK_RAMSEL ' otherwise ram selected (10)
 or OUTA, MASK_ABE_PHI ' address bus off, phi2 high (11)
 nop ' wait (12)
 nop ' wait (13)
 nop ' wait (14)
 nop ' wait (15)
 nop ' wait (16)
 nop ' wait (17)
 nop ' wait (18)
 nop ' wait (19)

66

The main loop that drives the rest of the circuit, including the
65C02.

In this latter case, it also has to read data from the 65C02's
bus into the Propeller or write data from the Propeller onto the
65C02's bus. In these cases, control jumps to the internal
branch, and on to the labelled read or write sections
depending on the exact operation. It also performs a special
check to see if the 65C02 is attempting to write to the top 8
kilobytes, and if so, ignore it. This emulates a traditional ROM
at the top of the address space by making it unwritable.

 jmp #cycle ' next loop (20)

 ' Accessing hub memory so capture the address while the
 ' address bus is enabled, then process as read or write.

internal sub addr, BOUNDARY_RAM ' adjust address for prop (8)
 add addr, memory_ptr ' adjust with base pointer (9)
 test MASK_RWB, INA wz ' read or write op? (10)
 or OUTA, MASK_ABE_PHI ' address bus off, phi2 high (11)
if_z jmp #write ' write operation (12)

 ' Performing a read operation from the hub memory, so we
 ' have to read from memory during the hub window and put
 ' the data on the data bus (note that the pin direction
 ' also has to be changed to actually put the data on the
 ' 6502 bus).

read nop ' wait (13)
 nop ' wait (14)
 rdbyte data, addr ' read byte (15, 16)
 or OUTA, data ' set output data (17)
 or DIRA, MASK_LOBYTE ' enable outputs (18)
 nop ' wait (19)
 jmp #cycle ' next loop (20)

 ' Performing a write operation, so we need to get the
 ' data from the 6502 data bus and write it to hub ram
 ' during our hub window.

write mov data, INA ' get input data (13)
 cmp addr, BOUNDARY_ROM wc ' test for non-writeable ROM area (14)
if_c wrbyte data, addr ' write input data (15, 16)
 nop ' wait (17)
 nop ' wait (18)
 nop ' wait (19)

67

The paths taken when the Propeller's memory is accessed by
the 65C02.

CODY_UART.SPIN

The Cody Computer contains two UART devices used for
serial communication. However, both are implemented purely
in software inside the Propeller and are exposed to the 65C02
through shared memory in the Propeller. Each UART uses ring
buffers in memory for transmitted and received information, a
technique very common in serial communications.

Both are defined in the same file and run in the same cog,
with coroutines used to interleave the running code for both
UARTs. The Propeller has a special machine language
instruction, jmpret, that performs a jump while updating a
return address, making it well-suited for implementing
coroutines.

The cody_uart.spin file contains a start method that's called
by the main program to launch the UART cog. Passed along as
a parameter is the base of the shared memory area in the
Propeller. Because the UART will talk to the rest of the circuit
using addresses in shared memory it needs to know where the
shared memory begins within the Propeller. From there, the
start method, written in SPIN, eventually launches a new cog
with assembly code using cognew.

 jmp #cycle ' next loop (20)

PUB start(mem_ptr)

68

The UART start entry point written in SPIN.

The assembly code, starting under cogmain, begins by
adjusting a variety of memory pointers with the base address
of shared memory. This way the adjustment only occurs once
at the start of the program rather than each time it reads or
writes a value. After that, it configures the Propeller I/O pins
used for serial I/O and does initial setup for the coroutines.

Two variables, uart1_task and uart2_task, store the current
positions within the uart1 and uart2 routines (the names are
just a convention and could have been anything). The UARTs
are implemented within the uart1 and uart2 routines, which
are identical except that they use different local variables and
I/O pins.

The PASM cogmain that sets up the UARTs.

Control initially begins with uart1. On each loop it begins by
checking if the UART is enabled, and if so, reading the baud
rate from the UART's configuration settings. Once read the
baud rate is converted to a time value using the

 cognew(@cogmain, mem_ptr)

cogmain
 ' Adjust all pointers using hub memory base address
 mov temp, #18
:adjust add UART1_CONTROL, PAR
 add :adjust, INC_DEST
 djnz temp, #:adjust

 ' Initialize serial port pins
 or DIRA, UART1_TX_PIN
 or OUTA, UART1_TX_PIN

 or DIRA, UART2_TX_PIN
 or OUTA, UART2_TX_PIN

 ' Prepare to run as coroutines
 mov uart2_task, #uart2

69

BAUD_RATE_TABLE. If the UART is disabled then it does some
cleanup at the end and loops until the UART is reenabled.

The initial lines of the UART1 routine.

BAUD_RATE_TABLE lookup table that maps register values to
time delays.

When the UART is running, it checks to see if any bits
remain to be sent, and if so, whether enough time has elapsed

uart1
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Is the UART running?
 rdbyte temp, UART1_COMMAND
 test temp, #$01 wz
if_z jmp #:disabled

 ' Mark UART1 status bit as high
 or uart1_state, #$40
 wrbyte uart1_state, UART1_STATUS

 ' Get the baud rate for the UART
 rdbyte temp, UART1_CONTROL
 and temp, #$0F
 add temp, #BAUD_RATE_TABLE
 movs :baud, temp
 nop
:baud mov uart1_delta, 0-0

BAUD_RATE_TABLE long 0 ' 0x0
 long (80_000_000 / 50) ' 0x1
 long (80_000_000 / 75) ' 0x2
 long (80_000_000 / 110) ' 0x3

 long (80_000_000 / 135) ' 0x4
 long (80_000_000 / 150) ' 0x5
 long (80_000_000 / 300) ' 0x6
 long (80_000_000 / 600) ' 0x7

 long (80_000_000 / 1200) ' 0x8
 long (80_000_000 / 1800) ' 0x9
 long (80_000_000 / 2400) ' 0xA
 long (80_000_000 / 3600) ' 0xB

 long (80_000_000 / 4800) ' 0xC
 long (80_000_000 / 7200) ' 0xD
 long (80_000_000 / 9600) ' 0xE
 long (80_000_000 / 19200) ' 0xF

70

since the last bit to send another one. If there are no more bits
to send, it checks to see if there are more bytes to send in the
transmit ring buffer and brings in the next byte. Using that
byte, it constructs the entire frame for the byte, including a
start bit and a stop bit, and saves it so that the code can send it
out a bit at a time.

 ' Yield to other UART
:transmit jmpret uart1_task, uart2_task

 ' Do we have bits left to send?
 cmp uart1_tx_left, #0 wz
if_nz jmp #:send

 ' Get buffer head and tail positions
 rdbyte head, UART1_TXHEAD
 and head, #$07

 rdbyte tail, UART1_TXTAIL
 and tail, #$07

 ' Is the buffer empty? If so, move on
 cmp head, tail wz
if_z jmp #:receive

 ' Mark transmit bit as high
 or uart1_state, #$10
 wrbyte uart1_state, UART1_STATUS

 ' Read the next item from memory
 mov temp, UART1_TXBUF
 add temp, tail
 rdbyte uart1_tx_bits, temp

 ' Update the tail position
 add tail, #1
 and tail, #$07
 wrbyte tail, UART1_TXTAIL

 ' Construct frame for bits (start and stop bit)
 or uart1_tx_bits, #$100
 shl uart1_tx_bits, #2
 or uart1_tx_bits, #1

 ' Calculate first timestamp to send a bit
 mov uart1_tx_time, CNT
 add uart1_tx_time, uart1_delta

 ' Loop 11 times (high, start, data, stop)
 mov uart1_tx_left, #11

:send
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' See if it's time to send data
 mov temp, uart1_tx_time
 sub temp, CNT

71

Code path taken when transmitting bits.

The receive process is generally the same, checking to see if
a bit needs to be read, and if no receive operation is in
progress, whether a start bit has been encountered. As bytes
are read, they are added to the receive buffer similar to how
they're consumed from the transmit buffer. Throughout the
process, the code updates various local variables, status bits in
shared memory, and at key points jumps back to the other
UART so both run concurrently.

 cmps temp, #0 wc
if_nc jmp #:receive

 ' Shift out the next bit
 shr uart1_tx_bits, #1 wc
 muxc OUTA, UART1_TX_PIN
 add uart1_tx_time, uart1_delta

 ' Decrement bit count by one
 sub uart1_tx_left, #1 wz

 ' Clear transmit bit when done with the byte
if_z andn uart1_state, #$10
if_z wrbyte uart1_state, UART1_STATUS

:receive
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Are we already receiving a byte?
 cmp uart1_rx_left, #0 wz
if_nz jmp #:recv

 ' Do we have a start bit? (start bits are 0)
 test UART1_RX_PIN, INA wz
if_nz jmp #uart1

 ' Mark receive bit as high
 or uart1_state, #$08
 wrbyte uart1_state, UART1_STATUS

 ' Calculate first timestamp to receive a bit
 mov uart1_rx_time, uart1_delta
 shr uart1_rx_time, #1
 add uart1_rx_time, uart1_delta
 add uart1_rx_time, CNT

 ' Clear out bits
 mov uart1_rx_bits, #0

 ' Nine bits to receive (includes the stop bit)
 mov uart1_rx_left, #9

72

Code path taken when receiving bits.

Some special paths exist for when errors are detected or the
UART is disabled. During error conditions an appropriate bit is

:recv
 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' See if it's time to receive data
 mov temp, uart1_rx_time
 sub temp, CNT
 cmps temp, #0 wc
if_nc jmp #uart1

 ' Read the next bit
 test UART1_RX_PIN, INA wz
if_nz or uart1_rx_bits, BIT_9
 shr uart1_rx_bits, #1
 add uart1_rx_time, uart1_delta

 ' Decrement number of bits left to read
 sub uart1_rx_left, #1 wz
if_nz jmp #uart1

 ' Test stop bit was set (framing error?)
 test uart1_rx_bits, BIT_8 wz
if_z jmp #:frame

 ' Yield to other UART
 jmpret uart1_task, uart2_task

 ' Get buffer head and tail positions
 rdbyte head, UART1_RXHEAD
 and head, #$07

 rdbyte tail, UART1_RXTAIL
 and tail, #$07

 ' Check for overflow (can only store 7 items)
 mov temp, tail
 sub temp, head
 abs temp, temp
 cmp temp, #7 wc
if_nc jmp #:overflow

 ' Calculate address for next byte in buffer
 mov temp, UART1_RXBUF
 add temp, head

 ' Calculate new buffer head position
 add head, #1
 and head, #$07

 ' Update buffer and position
 wrbyte uart1_rx_bits, temp
 wrbyte head, UART1_RXHEAD

 ' Clear receive bit at end of byte
 andn uart1_state, #$08
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

73

set in the status register to indicate the nature of the problem.
When the UART is disabled, it is also an opportunity to reset
the UART for the next time it's used. Some of the internal
variables in particular need cleared out.

Special paths used when an error is found or the UART is
turned off.

The UART code, while not as complex as other portions of
the firmware, still contains a variety of concepts that may be
new. For a simple example of implementing a single UART on
the Propeller, one might start with the Full Duplex Serial
example by Propeller designer Chip Gracey posted on the
Propeller OBEX. The code uses coroutines to toggle between
the receive and transmit paths for a single software UART and
lacks many of the complicating factors in the Cody Computer
UART code. It is very useful as a learning aid or reference.

:frame
 ' Set frame bit (bit 1) on status register
 or uart1_state, #$02
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

:overflow
 ' Set overflow bit (bit 2) on status register
 or uart1_state, #$04
 wrbyte uart1_state, UART1_STATUS

 jmp #uart1

:disabled
 ' Clear any pending bits in the system
 mov uart1_rx_left, #0
 mov uart1_tx_left, #0
 mov uart1_state, #0

 ' Clear out any registers managed by the UART
 wrbyte ZERO, UART1_RXHEAD
 wrbyte ZERO, UART1_TXTAIL
 wrbyte ZERO, UART1_STATUS

 jmp #uart1

74

CODY_AUDIO.SPIN

The Cody Computer uses a simplified version of the
Commodore SID chip for its sound generation. Instead of a real
SID, one of the cogs in the Propeller is devoted to generating
audio output, and a portion of the shared memory is set aside
to mimic the SID's registers.

The Cody Computer's implementation is in most respects a
port of the GPL-licensed MOS6581 SID Emulator Arduino
Library by Christoph Haberer and Mario Patino. In addition to
rewriting the library in PASM from the original code, many
changes were made to support the Propeller's similar but not
identical output-pin hardware. Yet other changes had to be
made to integrate it into the Cody Computer as a whole.

SIDcog is a more complete emulation for the Propeller
created by Johannes Ahlebrand and later enhanced by
Ada Gottensträter. The emulator is excellent but some
timing and space requirements on top of our already busy
Propeller made it a challenge to integrate. Nonetheless,
the possibility exists for an interested reader.

As with the other portions of Propeller firmware, the
implementation is written using PASM. A small SPIN method,
start, launches the cog with PASM code starting at cogmain,
similar to the UART. The PASM code begins by adjusting some
internal memory pointers relative to the shared memory

75

region, sets up an output pin for the audio signal, and
initializes some variables used for the main loop.

One important step is setting the cog's ctra register to
enable what's known as the duty single-ended mode on the
pin we've selected for audio output. Each cog has an internal
counter that can be used for a variety of operations. In this case
we're using the counter to quickly generate an on-or-off
output with a varying duty cycle faster than we could possibly
do in software alone.

The external circuitry discussed in the previous section
smoothes this out into an analog waveform despite the actual
output being a digital on-or-off. Once enabled, we can put an
output value into the matching frqa register to control the duty
cycle, and by extension, control the sound that comes out of
the Propeller.

The cogmain entry point in PASM.

From there the code enters main_loop, which begins by
waiting until enough time has elapsed to run the main loop
again. The Cody Computer's SID has a sample rate of 16
kilohertz, which means that we want the main loop to run

cogmain
 ' Calculate actual position of registers
 add REGS_BASE, PAR
 add OSC3_PTR, PAR
 add ENV3_PTR, PAR

 ' Configure output for sound
 mov dira, INIT_DIRA
 mov ctra, INIT_CTRA

 ' Configure timing
 mov time, cnt
 add time, WAIT_TIME

 mov output, #0

76

16000 times per second. The Propeller's clock ticks 80 million
times per second, so after dividing the Propeller's clock by the
desired sampling rate, we realize we need to run the loop once
every 5000 ticks. And because each Propeller instruction takes
four of its clock cycles, we calculate that our loop has to run in
no more than 1250 instructions.

When the loop is ready to run again, it begins by updating
the white noise generator. White noise was one of the
waveform options for the real SID, so we also need a source for
it here. Our implementation follows the Arduino SID emulator
mentioned previously, so it uses a linear feedback shift
register implemented in software.

In a linear feedback shift register, a sequence of bits is
generated by storing a seed value, extracting certain bits,
shifting the original value, A portion of the result can be
extracted and used for other purposes (such as noise), with
other portions of the result fed back in to repeat the proces on
the next iteration.

Once the noise value is updated, the code runs the
:voice_loop three times, one for each voice. Subroutines for
processing the voice are called from within the loop. Once
done, the voices are combined and output by calling the
make_output routine.

main_loop

:loop
 ' Wait for next cycle
 waitcnt time, WAIT_TIME

 ' Update noise
 mov temp, noise
 and temp, #$1
 neg temp, temp
 and temp, NOISE_BITS

77

The Cody SID's main loop.

The voice_begin routine prepares everything for generating
a voice. Because the Propeller's assembly language has very
limited support for indirect addressing, the code has to copy
variables for each voice to temporary variables used within the
loop. When it's done processing the current voice, it copies
them back at the end.

Once that initial per-voice setup is completed, the code
performs special checks for the SID's sync and test bits. If the
sync bit is enabled the code syncs the current voice's phase
with another voice, but if the test bit is set, the code resets
most of the current voice's internal state.

 shr noise, #1
 xor noise, temp
 and noise, MASK_16

 ' Start at beginning of internal voice states on each main loop
 movs readvar, #state1
 movd savevar, #state1

 ' Start at beginning of registers on each main loop
 mov register_ptr, REGS_BASE

 ' Three voices to process
 mov voice_count, #3
:voice_loop
 call #voice_begin
 call #make_wave
 call #make_envelope
 call #make_waveform
 call #voice_end

 djnz voice_count, #:voice_loop

 ' Combine into a single output
 call #make_output

 ' Repeat the main loop
 jmp #:loop

voice_begin
 ' Read the registers for a single voice into COG memory
 movd :readreg, #voice_freq_l
 mov count, #7
:readreg rdbyte 0-0, register_ptr
 add :readreg, INC_DEST
 add register_ptr, #1

78

The voice_begin routine called at the start of each loop.

The next part of the loop is in make_wave, which generates
the wave portion of the current voice. The wave, which is the
raw triangle, sawtooth, pulse, or noise signal, is shaped by an
envelope in a later step. However, it comprises the base upon
which the rest of the sound is built.

To begin, it takes the frequency specified for the voice, using
that to update an internal phase counter. This counter is used
to determine what portion of a particular wave to generate
based on how much time has gone by. Different code paths,
:triangle, :sawtooth, :pulse, and :noise, exist for each
supported wave type.

 djnz count, #:readreg

 ' Copy the internal states for the current voice into temp vars
 movd readvar, #state
 mov count, #7
readvar mov 0-0, 0-0
 add readvar, INC_BOTH
 djnz count, #readvar

 ' Sync voice if the other voice indicates it's time to sync,
 ' test if sync bit is on AND it's time to sync (order is)
 ' reversed because we're counting down).
 cmp voice_count, #2 wc,wz
if_nc movd :testsync, #sync3 ' Voice 1 uses voice 3
if_z movd :testsync, #sync1 ' Voice 2 uses voice 1
if_c movd :testsync, #sync2 ' Voice 3 uses voice 2
 nop
:testsync test 0-0, voice_control wz
if_nz mov phase, #0

 ' Reset voice if the test bit is on
 test voice_control, #$08 wz
if_nz mov phase, #0
if_nz mov amplitude, #0
if_nz mov state, #0

voice_begin_ret ret

make_wave
 ' Combine frequency into 16 bit number
 ' Shift by 2 because frequency * 4000 / 16 KHz sample rate
 mov freq_coefficient, voice_freq_h
 shl freq_coefficient, #8
 or freq_coefficient, voice_freq_l
 shr freq_coefficient, #2

79

 ' Calculate next phase
 mov temp_phase, phase
 add temp_phase, freq_coefficient

 ' If we overflowed, set our internal sync bit to apply later
 testn temp_phase, MASK_16 wz
 muxnz sync, #$02

 ' Limit phase calculation to 16 bits internally
 and temp_phase, MASK_16

:triangle
 ' Triangle waveform?
 test voice_control, #$10 wz
if_z jmp #:sawtooth

 ' Time to invert? (Goes up half the time, then down half the time)
 ' Double the value to make sure it covers the full range
 mov wave, phase
 test wave, BIT_15 wz
 shl wave, #1
if_nz xor wave, MASK_16
 and wave, MASK_16
 jmp #:done

:sawtooth
 ' Sawtooth waveform?
 test voice_control, #$20 wz
if_z jmp #:pulse

 mov wave, phase
 jmp #:done

:pulse
 ' Pulse waveform?
 test voice_control, #$40 wz
if_z jmp #:noise

 mov temp, voice_pulse_h
 shl temp, #8
 or temp, voice_pulse_l
 shl temp, #4
 and temp, MASK_16

 cmp phase, temp wc
if_c mov wave, MASK_16
if_nc mov wave, #0

 jmp #:done

:noise
 ' Noise waveform?
 test voice_control, #$80 wz
if_z jmp #:done

 mov temp, phase
 xor temp, temp_phase
 test temp, PHASEBIT_NOISE wz
if_nz mov temp, noise
if_nz and temp, MASK_16
if_nz mov wave, temp

:done
 ' Update phase for the current voice (limited to unsigned 16 bits)
 mov phase, temp_phase

 ' Ensure wave only has 16 bits of resolution

80

The make_wave routine generates a voice's underlying sound.

After generating the wave, make_envelope runs to generate
the ADSR envelope. ADSR, short for Attack-Decay-Sustain-
Release, is a key concept in synthesis, specifying the
"envelope" for a sound. The attack specifies how long it takes
to reach a maximum volume once a sound is started, while the
decay specifies how long it takes for the sound to go back
down to its sustain level after peaking. The release specifies
how long the sound takes to fade out once the sound is shut
off.

For the Cody Computer's SID, a voice is turned on when its
gate bit is set, so the code checks it to see if the sound has
started. It also refers to an internal state variable to determine
where it is in the ADSR envelope. As part of the calculations,
precomputed tables ATTACK_RATES, DECAY_RATES, and
SUSTAIN_LEVELS are used to look up how much to add or
subtract during the attack and decay or what volume level to
hold at during sustain. At the end of the calculation, it has
generated the envelope that will be combined with the
previously-generated wave.

 and wave, MASK_16

make_wave_ret ret

make_envelope
 ' Is gate bit set? (playing a note?)
 test voice_control, #$01 wz
if_z jmp #:release

:attack
 ' Gate bit set, but are we on attack or decay state?
 tjnz state, #:decay

 ' Increment amplitude with attack value from table
 movs :addattack, #ATTACK_RATES
 mov temp, voice_attack_decay
 shr temp, #4

81

 add :addattack, temp
 nop
:addattack add amplitude, 0-0

 ' Did we reach the maximum value (end of attack portion?)
 cmp amplitude, MAXLEVEL wc
if_c jmp #:done

 ' Cap at maximum amplitude, enter decay phase
 mov amplitude, MAXLEVEL
 mov state, #1

 jmp #:done

:decay
 ' Look up the matching sustain value from the table
 mov temp, voice_sustain_release
 shr temp, #4
 add temp, #SUSTAIN_LEVELS
 movs :getsustain, temp
 nop
:getsustain mov level_sustain, 0-0

 ' Did we reach that sustain level?
 cmp level_sustain, amplitude wc
if_nc jmp #:done

 ' Subtract the current decay value from our amplitude,
 ' but don't let our amplitude fall below zero
 mov temp, voice_attack_decay
 and temp, #$0F
 add temp, #DECAY_RATES
 movs :subdecay, temp
 nop
:subdecay sub amplitude, 0-0 wc
if_c mov amplitude, #0

 ' Limit amplitude from falling below sustain level
 min amplitude, level_sustain

 jmp #:done

:release
 ' Gate bit is off so not in attack state
 mov state, #0

 ' Have we reached zero amplitude?
 tjz amplitude, #:done

 ' Subtract the current decay value from our amplitude,
 ' but don't let our amplitude fall below zero
 mov temp, voice_sustain_release
 and temp, #$0F
 add temp, #DECAY_RATES
 movs :subrelease, temp
 nop
:subrelease sub amplitude, 0-0 wc
if_c mov amplitude, #0

 ' Scale envelope from 24 to 16 bits resolution
:done mov envelope, amplitude
 shr envelope, #8

82

The make_envelope routine generates a voice's ADSR
envelope.

The make_waveform combines both of these values
together. It first checks if ring modulation is enabled and
applies it if so. Ring modulation is a technique where one voice
is combined with the output of another to generate unique
sounds, and the SID chip implemented a special case of ring
modulation that we attempt to mimic.

Once ring modulation has been applied, the wave value and
the envelope value are multiplied together to get the final
waveform value for this voice in the loop.

The make_waveform routine that combines the wave and
envelope.

make_envelope_ret ret

make_waveform
 ' We'll be multiplying the wave value by the envelope value
 mov x, wave

:ring
 ' Ring modulation bit?
 test voice_control, #$04 wz
if_z jmp #:done

 ' For "ring modulation" we invert the wave based on another's phase
 ' (Order is reversed because we're counting down)
 cmp voice_count, #2 wc,wz
if_nc movd :testphase, #phase3 ' Voice 1 uses voice 3
if_z movd :testphase, #phase1 ' Voice 2 uses voice 1
if_c movd :testphase, #phase2 ' Voice 3 uses voice 2
 nop
:testphase test 0-0, BIT_15 wz
if_nz xor x, MASK_16

:done
 ' Multiply the wave by the envelope
 mov y, envelope
 call #multiply

 ' Scale result down from 32 to 16 bits
 shr y, #16
 mov output, y

make_waveform_ret ret

83

After that, there are some bookkeeping tasks to perform,
such as copying the temporary variables back to their original
locations. At the end of each voice loop the voice_end routine
is called. This handles any final processing or cleanup at the
end of a voice. As a practical matter, it's responsible for
copying the temporary voice variables back to their permanent
locations. Just as voice_begin copied them in at the beginning
of the loop, this routine does the reverse when the voice has
come to an end. Once that's done, the voice_loop repeats for
each remaining voice.

The voice_end routine saves the values of temporary variables.

Once output values for all three voices have been generated,
make_output puts them together. All three voices are
combined together (with the possible exception of voice 3,
which can be shut off), multiplied by the current global
volume, and scaled to the range supported by the audio output
circuitry. Once the combined output value is written to the
Propeller's frqa register, the rest is handled by hardware, and
a pulse-width-modulated signal is output to the audio
circuitry on the board.

A few other operations are also performed, such as updating
a couple of shared memory locations with some internal
values from voice 3. The SID did this and the values were often

voice_end
 movs savevar, #state
 mov count, #7
savevar mov 0-0, 0-0
 add savevar, INC_BOTH
 djnz count, #savevar

voice_end_ret ret

84

used for random numbers or special audio effects, so here we
do something similar to keep the spirit alive. Other features
such as filters haven't been implemented.

The make_output routine merges all three voices into one
output.

Note that because the Propeller has no built-in
multiplication hardware, all multiplication is done in software.
While this sounds somewhat primitive, it also helps keep the
Propeller the simple and deterministic system it is from a

make_output
 ' Read the filter registers
 movd :readfilt, #filter_cutoff_l
 mov count, #4
:readfilt rdbyte 0-0, register_ptr
 add :readfilt, INC_DEST
 add register_ptr, #1
 djnz count, #:readfilt

 ' Combine outputs (voice 3 is a special case)
 mov x, output1
 add x, output2

 ' Voice 3 is skipped if bit is set
 test filter_mode_volume, #$80 wz
if_z add x, output3

 ' Apply volume setting
 mov y, filter_mode_volume
 and y, #$0F
 call #multiply
 shr y, #4

 ' Scale output value to Propeller PWM value
 mov output, y
 sub output, BIT_15
 shl output, #11
 add output, BIT_31
 mov frqa, output

 ' Write high byte of voice 3 oscillator waveform
 mov temp, wave3
 shr temp, #8
 wrbyte temp, OSC3_PTR

 ' Write high byte of voice 3 envelope
 mov temp, envelope3
 shr temp, #8
 wrbyte temp, ENV3_PTR

make_output_ret ret

85

hardware standpoint. We have a routine, multiply, that was
taken from Appendix B of the Propeller's reference manual
and multiplies two 16-bit numbers together. This suffices for
our purposes and doesn't take that many cycles.

The software multiply routine.

CODY_VIDEO.SPIN

A significant portion of the Propeller's capabilities are used
to implement the Cody Computer's Video Interface Device
(VID). Five of the chip's eight cogs are devoted to some aspect
of video generation, and the chip's custom video generation
hardware is utilized to generate an NTSC-compatible analog
video signal. The Propeller contains circuitry that can generate
all the relevant portions of a video signal, including blanking
and color sync pulses.

Using the circuitry involves configuring a counter to the
appropriate output rate for the video signal, then using the
waitvid instruction to pass color and pixel data to it. As a
special case, we can actually call waitvid with four colors and

multiply
 shl x, #16 ' Get multiplicand into x high bits
 mov t, #16 ' Ready for 16 multiplier bits
 shr y, #1 wc ' Get initial multiplier bit into c
:loop

if_c add y, x wc ' If carry set, add multiplicand into product
 rcr y, #1 wc ' Get next multiplier bit into c, shift product

 ' Loop until done
 djnz t, #:loop

multiply_ret ret

86

four pixels, making it possible to use any of the Propeller's
colors anywhere on the screen.

Software-based NTSC video generation from first principles
isn't something that can be easily summed up in a few
paragraphs. One level of detail would be to discuss the
characteristics of the signal itself, while another would be to
discuss in depth the Propeller's unique capacities for analog
video output. In this book it's assumed that all of that just
works, instead focusing on how these capabilities are used at a
high level to implement the Cody Computer's video interface
device.

For a more in-depth discussion of video generation without
all the extra complications caused by the Cody Computer, one
might start with Eric Ball's NTSC and PAL Driver Templates
available on the Propeller OBEX. Portions of that code were
foundational to the Cody Computer's own video code, and it's
an excellent walkthrough of analog video generation in the
context of the Propeller. I'd also recommend reading any of the
relevant Propeller forum postings.

Video generation on the Cody Computer begins in the
cody_video.spin file. Memory is reserved for four scanline
"mailboxes" in the scanlines variable, which will later be used
to communicate with the cogs responsible for rendering the
video lines. A lookup table, COLOR_TABLE, is also defined to
map Cody Computer color codes to their Propeller equivalents.
On startup, the start SPIN method sets up the scanline
mailboxes, then launches the video signal generation cog with
PASM code starting at cogmain.

87

SPIN portion of the video startup code.

The cogmain code first calls the load_params routine to
read in the locations of shared memory and the four mailboxes
for the scanline cogs. It also uses the shared memory base
address to calculate the positions of some of the video
registers used by the video signal generator.

The main loop for the NTSC video generation code.

After that, cogmain calls the init_video routine to set up
vcfg for the video mode and what bank of output pins to use,
ctra for the counter mode, and frqa for the video frequency.
The video output pins are also set as outputs in dira, as without
doing so, the video will not actually be emitted on the pins

PUB start(mem_ptr) | index

 ' Start up the scanline renderer cogs
 repeat index from 0 to 3

 ' Set up each mailbox
 mailboxes[index * 100 + 0] := index
 mailboxes[index * 100 + 1] := mem_ptr
 mailboxes[index * 100 + 2] := @COLOR_TABLE
 mailboxes[index * 100 + 3] := 0

 ' Launch the corresponding cog
 line_renderer.start(@mailboxes + index * 400)

 ' Launch the video cog itself once the scanline cogs are running
 launch_cog(mem_ptr, @COLOR_TABLE, @mailboxes+0, @mailboxes+400, @mailboxes+800, @mailboxes+1200)

PRI launch_cog(mem_ptr, ctable_ptr, scan1_ptr, scan2_ptr, scan3_ptr, scan4_ptr)

 cognew(@cogmain, @mem_ptr)

cogmain
 call #load_params
 call #init_video
:loop
 call #frame
 jmp #:loop

88

selected in vcfg. (For more detail on these Propeller registers,
refer to the Propeller reference manual in particular.)

Initialization of the Propeller's video registers and output pins.

After that the load_params routine is responsible for
retrieving the parameters passed from SPIN. The previously-
mentioned launch_cog routine in SPIN used the SPIN
interpreter's stack to hold multiple parameters, passing the
address of the first one to the newly-created cog running the
code. The PASM code sequentially reads parameters from the
SPIN stack beginning at that starting address. It also adjusts a
few addresses along the way.

init_video
 ' Sets up the parameters for video generation
 mov vcfg, ivcfg

 ' Internal PLL mode, PLLA = 16 * colorburst frequency
 mov ctra, ictra

 ' 2 * colorburst frequency
 mov frqa, ifrqa

 ' Configure selected video pins as outputs
 or dira, idira

init_video_ret ret

load_params
 mov params_ptr, PAR

 rdlong memory_ptr, params_ptr
 add params_ptr, #4

 rdlong lookup_ptr, params_ptr
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle1_ptr, temp
 add buffer1_ptr, temp
 add buffer5_ptr, temp
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle2_ptr, temp
 add buffer2_ptr, temp
 add buffer6_ptr, temp
 add params_ptr, #4

89

PASM for loading parameters from the SPIN launch_cog
routine.

From this point the video generator code enters an infinite
loop, outputting video signals for NTSC frames one after the
other. The scanline generators are set to the start of a new
frame, a vertical sync pulse is generated by calling
vertical_sync, the video control and border color registers are
read, blank lines are generated by calling ntsc_blank_lines,
and at last the scanline generators are turned on.

The top border is generated via top_border, the drawable
screen area via screen_area, and the bottom border via a call
to bottom_border. The vertical blanking register is also
updated during this process to indicate when the 65C02 can
generally update video memory or registers without fear of
collision.

 rdlong temp, params_ptr
 add toggle3_ptr, temp
 add buffer3_ptr, temp
 add buffer7_ptr, temp
 add params_ptr, #4

 rdlong temp, params_ptr
 add toggle4_ptr, temp
 add buffer4_ptr, temp
 add buffer8_ptr, temp
 add params_ptr, #4

 mov vblreg_ptr, memory_ptr
 add vblreg_ptr, VBLANK_REG_OFFSET

 mov ctlreg_ptr, memory_ptr
 add ctlreg_ptr, CONTROL_REG_OFFSET

 mov colreg_ptr, memory_ptr
 add colreg_ptr, COLOR_REG_OFFSET

load_params_ret ret

frame
 ' Generate NTSC vertical sync
 call #vertical_sync

 ' Generate NTSC blank lines after vertical sync

90

The frame routine generates a single TV frame.

Most of the work occurs in the screen_area routine where
the actual screen is drawn. A quick check is performed to see if
vertical scrolling is enabled, and if so, reduce the size of the
vertical area by one row. After that, it loops for each row on the
screen, toggling the scanline renderers and generating a video
signal for each rendered scanline by calling the scanline
routine.

The scanline renderers are called in order, giving each
renderer the equivalent of four scanlines to render the next

 call #ntsc_blank_lines

 ' Set vertical blanking indicator to zero (not safe to update)
 wrbyte ZERO, vblreg_ptr

 ' Read current video control register from memory
 rdbyte control, ctlreg_ptr

 ' Read current border color and convert to Propeller color
 rdbyte border, colreg_ptr
 shl border, #1
 add border, lookup_ptr
 rdword border, border

 ' Reset scanline generators back to beginning
 wrlong TOGGLE_FRAME, toggle1_ptr
 wrlong TOGGLE_FRAME, toggle2_ptr
 wrlong TOGGLE_FRAME, toggle3_ptr
 wrlong TOGGLE_FRAME, toggle4_ptr

 ' Draw part of the screen top border
 call #top_border

 ' Turn scanline generators on
 wrlong TOGGLE_LINE1, toggle1_ptr
 wrlong TOGGLE_LINE1, toggle2_ptr
 wrlong TOGGLE_LINE1, toggle3_ptr
 wrlong TOGGLE_LINE1, toggle4_ptr

 ' Draw the rest of the screen top border
 call #top_border

 ' Draw the screen (and horizontal borders)
 call #screen_area

 ' Set vertical blanking indicator to 1 (safe to update)
 wrbyte ONE, vblreg_ptr

 ' Draw screen bottom border
 call #bottom_border

frame_ret ret

91

line. To make this possible, each scanline renderer has two
buffers so that it can be rendering a new line while the
previous line is being sent out.

PASM routine for generating the drawable screen area.

screen_area
 ' Generate additional top border lines if vertical scroll enabled
 test control, #%00000010 wz
if_nz call #scroll_border

 ' 25 groups of lines to generate (assuming no vertical scrolling)
 mov numline, #25

 ' Adjust number of lines if vertical scrolling enabled
 test control, #%00000010 wz
if_nz sub numline, #1

 ' Render scanlines behind the scenes as we generate NTSC signals
:loop wrlong TOGGLE_LINE2, toggle1_ptr
 mov source, buffer1_ptr
 call #scanline

 wrlong TOGGLE_LINE2, toggle2_ptr
 mov source, buffer2_ptr
 call #scanline

 wrlong TOGGLE_LINE2, toggle3_ptr
 mov source, buffer3_ptr
 call #scanline

 wrlong TOGGLE_LINE2, toggle4_ptr
 mov source, buffer4_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle1_ptr
 mov source, buffer5_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle2_ptr
 mov source, buffer6_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle3_ptr
 mov source, buffer7_ptr
 call #scanline

 wrlong TOGGLE_LINE1, toggle4_ptr
 mov source, buffer8_ptr
 call #scanline

 ' Continue on to next group of 8 lines
 djnz numline, #:loop

 ' Generate additional bottom border lines if vertical scroll enabled
 test control, #%00000010 wz
if_nz call #scroll_border

screen_area_ret ret

92

The scanline routine actually generates the video signal for
a single line in the drawable screen area. It generates the
horizontal sync at the start of the line, followed by the NTSC
signal's back porch. Following that, a total of 40 waitvids are
performed in a loop, one for each batch of four pixels read
from a scanline renderer's inactive buffer.

Once all the pixels have been output, the NTSC signal's
front porch is generated to end the line. The horizontal_sync,
front_porch, and back_porch routines are used to help with
some of the above. When drawing the line, some checks are
also made for situations where the display is disabled or
horizontal scrolling is enabled. If these conditions exist,
adjustments are made to the output.

scanline
 call #horizontal_sync
 call #back_porch

 ' By default we have 40 waitvids (160 pixels / 4 pixels per waitvid)
 mov count, #40
 mov VSCL, vsclactv

 ' If horizontal scrolling, draw fewer pixels and a bigger border
 test control, #%00000100 wz
if_nz waitvid border, #0
if_nz sub count, #2

 ' Adjust pointer for offscreen scratch area in scanline buffer
 add source, #12

:loop
 ' Read the next four pixels from the scanline buffer
 rdlong colors, source

 ' If the display is enabled, draw the pixels from the buffer
 ' If the display is shut off, draw the border color instead
 test control, #%00000001 wz
if_z waitvid colors, pixels
if_nz waitvid border, #0

 ' Go on to the next four pixels
 add source, #4
 djnz count, #:loop

 ' If horizontal scrolling, draw a bigger border
 test control, #%00000100 wz
if_nz waitvid border, #0

 call #front_porch

93

PASM routine for generating a single NTSC scanline.

CODY_LINE.SPIN

The last component of the Cody Computer's video firmware
are the scanline renderers. Rendering the contents of a single
160 pixel line, both background tiles and sprites, takes quite a
bit of time (from the standpoint of a video signal). In fact, it
takes longer than a single scanline just to generate its
contents.

To work around this problem we set up other cogs as
renderers that store pixels to a buffer in memory. When it's
time to generate the signal containing the line, the video cog
reads the pre-rendered pixels and generates the
corresponding signal.

The video generator cog launches a total of four scanline
renderer cogs, each running the code from cody_line.spin. The
video generator calls a short SPIN method, start, passing the
pointer to the start of the mailbox used to communicate with
the renderer. The renderer, in turn, starts running PASM code
starting at cogmain. Some initial setup code runs to get data
from the mailbox and calculate some pointer addresses.

scanline_ret ret

cogmain
 ' Load parameters and calculate pointers from the scanline structure
 ' using the calculated offsets within the mailbox memory area
 add renderer_index, PAR
 add memory_ptr, PAR
 add lookup_ptr, PAR
 add toggle_ptr, PAR
 add buffer1_ptr, PAR
 add buffer2_ptr, PAR

94

The cogmain PASM code called when starting a scanline
renderer.

From there the scanline renderer enters the :frame_loop for
the start of a new frame. It waits until the mailbox shows a new
frame has started (because the video cog has toggled it), then
does some initial setup for the new frame. The video registers
are read from shared memory.

The code then waits for another toggle to render a line,
running the :line_loop for a total of 50 times. Because the
drawable screen has 200 lines and there are four cogs
rendering the screen contents, each cog is responsible for 50
lines.

For each line, any row effects are applied first via
apply_row_effects, followed by decoding the video register
values in decode_registers. Finally the scanline's contents are
rendered in render_chars and render_sprites. The :line_loop
repeats until no more lines remain on the current frame, each
time waiting for a toggle from the main video cog.

 rdlong renderer_index, renderer_index
 rdlong memory_ptr, memory_ptr
 rdlong lookup_ptr, lookup_ptr

 ' Adjust our offsets into shared memory now that we know where it is
 add VIDCTL_REGS_OFFSET, memory_ptr
 add SPRITE_REGS_OFFSET, memory_ptr

 add ROWEFF_CNTL_OFFSET, memory_ptr
 add ROWEFF_DATA_OFFSET, memory_ptr

:frame_loop
 ' Wait for the TOGGLE_FRAME value to begin the next frame
 rdlong toggle, toggle_ptr
 cmp toggle, TOGGLE_FRAME wz
if_nz jmp #:frame_loop
 wrlong TOGGLE_EMPTY, toggle_ptr

 ' Read in the video registers at the start of a new frame
 mov video_register_ptr, VIDCTL_REGS_OFFSET

 rdbyte blankreg, video_register_ptr

95

Code executed in the frame and line loops.

 add video_register_ptr, #1

 rdbyte controlreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte colorreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte basereg, video_register_ptr
 add video_register_ptr, #1

 rdbyte scrollreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte screenreg, video_register_ptr
 add video_register_ptr, #1

 rdbyte spritereg, video_register_ptr
 add video_register_ptr, #1

 ' Render each line
 mov lines_remaining, #50
 mov curr_scanline, renderer_index

:line_loop
 ' Wait for a TOGGLE_LINE1 or TOGGLE_LINE2 value to begin the next line
 rdlong toggle, toggle_ptr

 cmp toggle, TOGGLE_EMPTY wz
if_z jmp #:line_loop

 cmp toggle, TOGGLE_FRAME wz
if_z jmp #:frame_loop

 ' Clear toggle value once we begin a new line
 wrlong TOGGLE_EMPTY, toggle_ptr

 ' Select the destination buffer for this scanline
 cmp toggle, TOGGLE_LINE1 wz
if_z mov buffer_ptr, buffer1_ptr

 cmp toggle, TOGGLE_LINE2 wz
if_z mov buffer_ptr, buffer2_ptr

 ' Read any row effects that may be pending for this scanline
 call #apply_row_effects

 ' Decode the video registers (including any raster changes)
 call #decode_registers

 ' Render the scanline to the buffer
 call #render_chars
 call #render_sprites

 ' Go to the next line
 add curr_scanline, #4
 djnz lines_remaining, #:line_loop

 ' Begin a new frame
 jmp #:frame_loop

96

The render_chars routine is responsible for rendering the
characters on the screen. It begins by making some
adjustments for vertical and horizontal scrolling, if enabled,
and then proceeds to render the current scanline. Some
calculations are made using the SCREEN_OFFSET_TABLE to
determine the screen and color memory locations
corresponding to the current scanline.

Looping over each of the 40 columns in the scanline in the
:char_loop, the screen and color information are read from
shared memory. The colors for that screen location are
converted from Cody Computer color codes to Propeller NTSC
color codes using the previously-mentioned COLOR_TABLE
and merged with the current global colors for the screen. If in
character graphics mode, the matching character line for the
character in screen memory is also read and the byte pattern
returned. In bitmap graphics mode, the corresponding four-
pixel byte within screen memory is returned instead, but the
operation is very similar otherwise. From there the :pixel_loop
renders the actual pixels into the scanline buffer before
continuing on to the next character.

render_chars
 ' Set up the output pointer taking into account the left "margin" for sprites
 mov dest_ptr, buffer_ptr
 add dest_ptr, #12

 ' Update the output start position to account for horizontal scrolling
 test controlreg, #%00000100 wz
if_nz sub dest_ptr, scrollh

 ' Update the source line position to account for vertical scrolling
 mov adjustv, #0
 test controlreg, #%00000010 wz
if_nz mov adjustv, scrollv

 ' Precalculate the current offset for each character based on the scanline
 mov char_offset_y, curr_scanline
 add char_offset_y, adjustv
 and char_offset_y, #%0111

97

 ' Determine offset in the screen and color memory based on the current row
 mov screen_memory_offset, curr_scanline
 add screen_memory_offset, adjustv
 shr screen_memory_offset, #3
 add screen_memory_offset, #SCREEN_OFFSET_TABLE
 movs :load_offset, screen_memory_offset
 nop

:load_offset mov screen_memory_offset, 0_0

 ' Calculate the locations in color and screen memory using the offset above
 mov curr_colors_ptr, colmem_ptr
 add curr_colors_ptr, screen_memory_offset

 test controlreg, #%00010000 wz
if_z mov curr_screen_adv, #1
if_nz mov curr_screen_adv, #8
if_nz shl screen_memory_offset, #3

 mov curr_screen_ptr, scrmem_ptr
 add curr_screen_ptr, screen_memory_offset

 mov chars_remaining, #40

:char_loop rdbyte color_data, curr_colors_ptr

 shl color_data, #1
 add color_data, lookup_ptr

 rdword color_data, color_data
 or color_data, common_screen_colors

 add curr_colors_ptr, #1

 test controlreg, #%00010000 wz
if_nz mov source_ptr, curr_screen_ptr
if_z rdbyte source_ptr, curr_screen_ptr
if_z shl source_ptr, #3
if_z add source_ptr, chrset_ptr
 add source_ptr, char_offset_y
 add dest_ptr, #3
 rdbyte pixel_data, source_ptr

 mov pixels_remaining, #4

:pixel_loop mov temp, pixel_data
 and temp, #%11

 shl temp, #3
 ror color_data, temp

 wrbyte color_data, dest_ptr

 sub dest_ptr, #1
 rol color_data, temp

 shr pixel_data, #2
 djnz pixels_remaining, #:pixel_loop

 add dest_ptr, #5
 add curr_screen_ptr, curr_screen_adv

 djnz chars_remaining, #:char_loop

98

The render_chars routine renders a line's background
characters.

The render_sprites routine is largely the same, except that
it renders the sprites over the now-drawn background
characters. It begins by determining the sprite register bank to
read from based on the current value in a shared memory
register, positioning a pointer at the start of the appropriate
bank. The sprite bank registers have the needed coordinates,
color, and sprite pointer information, so it's important to start
in the right place.

Once prepared, it loops over each of the eight possible
sprites in the :sprite_loop, verifying that they're actually on
screen and adjusting for scrolling if necessary. It also looks up
the sprite's unique colors and finds their Propeller equivalents
in the same way used for the character colors. When it's ready
to draw the sprite, it goes into the :byte_loop to draw each of
the sprite's three data bytes, with the individual pixels being
drawn in the :pixel_loop.

Some key differences exist between these loops and the
corresponding loops for drawing character pixels, with one of
the main differences being that sprites can have transparent
pixels.

render_chars_ret ret

render_sprites

 ' Start sprite pointer at the beginning of the current bank
 mov curr_sprite_ptr, spritereg
 and curr_sprite_ptr, #$70
 shl curr_sprite_ptr, #1
 add curr_sprite_ptr, SPRITE_REGS_OFFSET

 ' Draw the 8 sprites we have in this bank
 mov sprites_remaining, #8

99

:sprite_loop
 ' Read in and check the sprite x coordinate is within bounds
 rdbyte sprite_x, curr_sprite_ptr
 add curr_sprite_ptr, #1

 cmp sprite_x, #0 wz
if_z jmp #:next_sprite

 cmp sprite_x, #172 wc
if_nc jmp #:next_sprite

 ' Read in and check the sprite y coordinate is within bounds
 rdbyte sprite_y, curr_sprite_ptr
 add curr_sprite_ptr, #1

 ' Adjust sprite y position by subtracting top margin amount
 sub sprite_y, #21
 sub sprite_y, curr_scanline
 neg sprite_y, sprite_y

 cmp sprite_y, #0 wc
if_c jmp #:next_sprite

 cmp sprite_y, #21 wc
if_nc jmp #:next_sprite

 ' Read in the sprite colors and combine them with the common sprite color
 rdbyte sprite_colors, curr_sprite_ptr
 shl sprite_colors, #1
 add sprite_colors, lookup_ptr
 rdword sprite_colors, sprite_colors
 shl sprite_colors, #8
 or sprite_colors, common_sprite_colors
 add curr_sprite_ptr, #1

 ' Read in the sprite pointer and adjust for the current scanline
 rdbyte sprite_ptr, curr_sprite_ptr
 add sprite_y, #SPRITE_OFFSET_TABLE
 movs :load_offset, sprite_y
 shl sprite_ptr, #6
:load_offset add sprite_ptr, 0_0
 add sprite_ptr, memory_ptr

 ' Set up our destination buffer
 mov dest_ptr, buffer_ptr
 add dest_ptr, sprite_x

 ' Draw each byte remaining in this scanline
 mov chars_remaining, #3
:byte_loop
 ' Read in the sprite data
 rdbyte pixel_data, sprite_ptr
 add sprite_ptr, #1

 ' Draw each pixel in this byte (in reverse order)
 add dest_ptr, #3
 mov pixels_remaining, #4
:pixel_loop
 ' Move the current color into position for drawing
 mov temp, pixel_data
 and temp, #%11
 shl temp, #3
 ror sprite_colors, temp

 ' Draw the pixel if non-transparent
 cmp temp, #0 wz
if_nz wrbyte sprite_colors, dest_ptr
 sub dest_ptr, #1

100

The render_sprites routine handles eight sprites per line.

The decode_registers routine is a helper called during the
main loop to decode the video register values from local
variables. These contain some information, including Cody
Computer color codes, that need translated to their Propeller
NTSC equivalents. Others contain data that's packed into a
single register, such as nibble values that map to memory
locations within the shared memory. This routine helps with
unpacking and keeps the related logic in one place.

 ' Prepare for the next pixel
 rol sprite_colors, temp
 shr pixel_data, #2

 djnz pixels_remaining, #:pixel_loop

 add dest_ptr, #5
 djnz chars_remaining, #:byte_loop

:next_sprite
 ' Increment the sprite register pointer to the start of the next sprite
 andn curr_sprite_ptr, #3
 add curr_sprite_ptr, #4

 ' Loop if we have more sprites remaining
 djnz sprites_remaining, #:sprite_loop

render_sprites_ret ret

decode_registers

 ' Calculate color memory position
 mov colmem_ptr, colorreg
 shr colmem_ptr, #4
 shl colmem_ptr, #10
 add colmem_ptr, memory_ptr

 ' Calculate screen memory position
 mov scrmem_ptr, basereg
 shr scrmem_ptr, #4
 shl scrmem_ptr, #10
 add scrmem_ptr, memory_ptr

 ' Calculate character set position
 mov chrset_ptr, basereg
 and chrset_ptr, #$7
 shl chrset_ptr, #11
 add chrset_ptr, memory_ptr

 ' Calculate scroll values
 mov scrollv, scrollreg

101

The decode_registers routine that unpacks register values.

The apply_row_effects routine is related. On old
computers, it was common to use special tricks, such as
switching out video data, on certain lines to extend the
hardware's graphics abilities. The Cody Computer has a similar
feature where data can be overridden on each of the 25 rows
on the screen. Rather than setting interrupts and changing
register data, additional registers let you specify override
values and where to apply them.

This routine handles those situations by checking to see if
the row effects are enabled, and if so, whether they need to be
applied based on the current scanline. The scanline is divided
by 8 to determine what row on the screen is being drawn, and
then any of the video data that has been overridden is updated
in the local variables. By doing this in the main loop prior to
decoding the registers, any overridden values are
automatically used when rendering the scanline.

 and scrollv, #%00000111

 mov scrollh, scrollreg
 shr scrollh, #4
 and scrollh, #%00000011

 ' Calculate shared screen colors
 mov common_screen_colors, screenreg
 shl common_screen_colors, #1
 add common_screen_colors, lookup_ptr
 rdword common_screen_colors, common_screen_colors
 shl common_screen_colors, #16

 ' Calculate shared sprite colors
 mov common_sprite_colors, spritereg
 shl common_sprite_colors, #1
 add common_sprite_colors, lookup_ptr
 rdword common_sprite_colors, common_sprite_colors
 shl common_sprite_colors, #24

decode_registers_ret ret

apply_row_effects

102

The apply_row_effects routine replaces old-school raster
interrupts.

 ' Quick check to ensure that row effects are enabled
 test controlreg, #%00001000 wz
if_z jmp #apply_row_effects_ret

 ' Calculate what row we're currently on for row effects
 mov roweff_row, curr_scanline
 shr roweff_row, #3

 ' Start at the beginning of each bank of registers
 mov roweff_cntl_ptr, ROWEFF_CNTL_OFFSET
 mov roweff_data_ptr, ROWEFF_DATA_OFFSET

 ' Begin the row effects loop
 mov roweff_remaining, #32

 ' Read the control and data bytes
:loop rdbyte roweff_cntl_byte, roweff_cntl_ptr

 mov temp, roweff_cntl_byte
 and temp, #%00011111

 rdbyte roweff_data_byte, roweff_data_ptr

 ' Test that this line is applicable for this row
 cmp temp, roweff_row wz
if_nz jmp #:next

 ' Apply the replacement for the selected register
 mov temp, roweff_cntl_byte
 and temp, #%11100000

 cmp temp, #%10000000 wz
if_z mov basereg, roweff_data_byte

 cmp temp, #%10100000 wz
if_z mov scrollreg, roweff_data_byte

 cmp temp, #%11000000 wz
if_z mov screenreg, roweff_data_byte

 cmp temp, #%11100000 wz
if_z mov spritereg, roweff_data_byte

:next add roweff_cntl_ptr, #1
 add roweff_data_ptr, #1

 djnz roweff_remaining, #:loop

apply_row_effects_ret ret

103

INTRODUCTION

On startup, the Cody Computer boots into Cody BASIC, a
BASIC interpreter written from scratch just for the Cody
Computer. It allows you to write moderately-complex
programs and perform file operations from the BASIC prompt.
The BASIC dialect is inspired by Tiny BASIC, a small open-
source BASIC dating to the 1970s.

While largely a dialect of Tiny BASIC, Cody BASIC has some
additional features typically not present in most Tiny BASIC
environments. These include (limited) arrays, strings, and
DATA statements. Cody BASIC also uses messages and
commands inspired by Commodore BASIC instead of the Tiny
BASIC equivalents. Also unlike many Tiny BASIC dialects but
similar to the Commodore, the program is not directly
interpreted. Rather, the BASIC program is tokenized into small
pieces that are executed more quickly at runtime.

We'll cover how to program in Cody BASIC later in the book,
but here we'll talk a bit about how it's implemented in 65C02
assembly. The code itself is open source and heavily
commented, so we won't go over every single line here. We're
more focused on a high-level view of the code, with some
detailed analysis of particular subroutines.

Keep in mind that while the actual source file is somewhat
long, it produces a mere 6 kilobytes of machine code for the
65C02 (an additional 2 kilobytes contain the character set).
The Cody BASIC ROM itself is embedded as data within the

105

Propeller program mentioned in the previous section, mapped
to the very top of the 65C02's memory area.

STARTUP AND INITIALIZATION

When the 65C02 starts, it loads a two-byte address from
memory location $FFFC, lowest byte first (this is always the
case for the 65C02, as it's a little-endian processor). Here we
put the address for our MAIN routine, responsible for the
initial startup. It has to initialize most of the hardware and
software from the 65C02's side, including copying the
character set into video memory, setting up video registers,
and preparing a timer interrupt for timekeeping and keyboard
scanning. It also sets up a simple error handling system that
allows BASIC interpreter routines to easily signal an error.

An excerpt from the initialization code in MAIN.

Different parts of the initialization process run depending on
whether a cartridge is connected to the computer or not. If a
cartridge is present, most of the initialization process is
skipped or not enabled, instead loading and running a binary

 STZ VID_SCRL ; Clear out scroll registers

 STZ VID_CNTL ; Clear out control register

 LDA #$E7 ; Point the video hardware to default color memory, border color yellow
 STA VID_COLR

 LDA #$95 ; Point the video hardware to the default screen and character set
 STA VID_BPTR

 STZ KEYLAST ; Clear out the major keyboard-related zero page variables
 STZ KEYLOCK
 STZ KEYMODS
 STZ KEYCODE

106

program from the cartridge. In other situations the Cody BASIC
interpreter is launched.

TIMER INTERRUPT

Cody BASIC relies on a timer interrupt to handle keyboard
scanning, simple timekeeping, and other periodic tasks. This
timer interrupt is generated by the 65C22 VIA chip that also
handles most of the computer's I/O operations. The interrupt
is configured to run 60 times per second. Most of the setup
occurs in the MAIN routine, but the interrupt isn't actually
started until the BASIC interpreter itself takes control.

Setting up the timer interrupt in MAIN.

One level of indirection exists for the timer interrupt's
handler. Because the 65C02's interrupt handler is fixed at
address $FFFE in memory, code in ROM would make it
impossible for other programs (such as those written in
assembly language) to change the interrupt handler to
something different.

 LDA #<TIMERISR ; Set up ISR routine address
 STA ISRPTR+0
 LDA #>TIMERISR
 STA ISRPTR+1

 LDA #<JIF_T1C ; Set up VIA timer 1 to emit ticks (60 per second)
 STA VIA_T1CL
 LDA #>JIF_T1C
 STA VIA_T1CH

 LDA #$40 ; Set up VIA timer 1 continuous interrupts, no outputs
 STA VIA_ACR

 LDA #$C0 ; Set up VIA timer 1 interrupt
 STA VIA_IER

107

To avoid that problem, we put a simple stub, ISRSTUB, at the
65C02's interrupt handler address. This jumps to a different
address, ISRPTR, stored in the zero page and pointing to the
actual location of the interrupt service routine. If other code
wants to change the interrupt behavior, it needs only change
the value of ISRPTR to point to its own routine.

The ISRSTUB that jumps to the actual interrupt handler.

Cody BASIC's interrupt handler or service routine, TIMERISR,
is responsible for several important functions. First it calls
KEYSCAN to scan the keyboard matrix. Next it updates the
jiffies count stored in JIFFIES, a two-byte variable. A jiffy is the
time for a single timer tick, and we keep a count to provide a
simple mechanism for determining elapsed time without a full
real time clock (this technique was very common in the 8-bit
era).

The interrupt handler also provides an important safety
function for BASIC programs. When a BASIC program is
running, it checks to see if the Cody and Arrow keys are both
held down on the keyboard. If both are pressed, the keypresses
are interpreted as a break request by the user. Without this
functionality, it would be possible to get into a nonterminating
BASIC program and be unable to exit without turning the Cody
Computer on and off.

ISRSTUB JMP (ISRPTR)

108

The TIMERISR routine runs for each interrupt.

KEYBOARD SCANNING

The Cody Computer has a 30-key keyboard set up in a
matrix of five columns and six rows. In addition, two Atari-style
joystick ports with five buttons each are mapped as keyboard
rows. Cody BASIC scans the keyboard as part of the timer
interrupt routine, updating eight bytes in zero page memory
(KEYROW0 through KEYROW7) with the current values of the
keyboard rows. These values are subsequently used by other
routines to handle keyboard or joystick input.

Scanning is handled by the KEYSCAN routine. It uses port A
on the 65C22 VIA to iterate over the keyboard matrix, with a
one-of-eight analog switch used to convert a three-bit number

TIMERISR PHA ; Preserve accumulator

 BIT VIA_T1CL ; Read the 6522 to clear the interrupt

 JSR KEYSCAN ; Scan keyboard

 INC JIFFIES ; Increment jiffy count lower byte (after scanning!)
 BNE _TEST

 INC JIFFIES+1 ; Increment jiffy count upper byte on overflow

_TEST LDA RUNMODE ; Only allow breaks if we're running a program
 BEQ _DONE

 LDA KEYROW2 ; Check for Cody key on row 2 (and ONLY the Cody key)
 CMP #$1E
 BNE _DONE

 LDA KEYROW3 ; Check for arrow key on row 3 (and ONLY the arrow key)
 CMP #$0F
 BNE _DONE

 JMP RAISE_BRK ; Break

_DONE PLA ; Restore accumulator

 RTI ; Return from interrupt routine

109

into the current keyboard row to scan. Once a row is selected,
the remainder of port A is read, containing the five bits for the
columns, and stored in the appropriate KEYROW variable. The
timer interrupt calls this routine on a regular basis to update
the data.

The KEYSCAN routine that scans the keyboard matrix.

Converting the raw bits from the matrix into a keyboard
code is the responsibility of the KEYDECODE routine. There the
KEYROW values are examined and converted to a scan code
and stored in KEYCODE. It also performs a special check to see
if the Cody key is pressed, and if so, updates the state of the
keyboard modifiers in KEYMODS.

KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Get the keys for the current row from the VIA port
 LSR A
 LSR A
 LSR A
 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #8 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

KEYDECODE PHX ; Preserve registers
 PHY

 STZ KEYMODS ; Reset scan codes and modifiers at start of new scan
 STZ KEYCODE

 LDX #0 ; Start at the first row and first key scan code
 LDY #0

110

The KEYDECODE routine produces a key code from the matrix.

Key scan codes represent an actual button on the keyboard,
not a character. The Cody Computer uses CODSCII, a special
character set that's just traditional ASCII with the PETSCII

_ROW LDA KEYROW0,X ; Load the current row's column bits from zero page
 INX

 PHX ; Preserve row index

 LDX #5 ; Loop over current row's columns

_COL INY ; Increment the current key number at the start of each new key

 LSR A ; Shift to get the next column bit

 BCS _NEXT ; If the current column wasn't pressed, just skip to the next column

 CPY #KEY_META ; Is this the META special key?
 BNE _CODY

 PHA ; META key is pressed, update current key modifiers
 LDA KEYMODS
 ORA #$20
 STA KEYMODS
 PLA

 BRA _NEXT ; Continue on to the next column

_CODY CPY #KEY_CODY ; Is this the CODY special key?
 BNE _NORM

 PHA ; CODY key is pressed, update current key modifiers
 LDA KEYMODS
 ORA #$40
 STA KEYMODS
 PLA

 BRA _NEXT ; Continue on to the next column

_NORM PHA ; Not a special key so just store it as the current scan code
 TYA
 STA KEYCODE
 PLA

_NEXT DEX ; Move on to the next keyboard column
 BNE _COL

 PLX ; Restore current row index

 CPX #6 ; Continue while we have more rows to process
 BNE _ROW

 LDA KEYCODE ; Update the current key scan code with the modifiers
 ORA KEYMODS
 STA KEYCODE

 PLY ; Restore registers
 PLX

 RTS

111

graphics symbols appended to it. As a result, character
handling is greatly simplified compared to the actual
Commodore computers. Unfortunately, we still have to convert
scan codes to their ASCII (or more accurately CODSCII) values.

This is handled by the KEYTOCHR routine, which accepts a
scan code for the keyboard and converts it to an ASCII code.
The routine's implementation relies on a lookup table
containing the ASCII codes for each scan code. The ASCII codes
correspond to the arrangement of keys in the keyboard matrix
so that once we have a scan code we can look up the
appropriate value. The lookup table also takes into account
whether the Cody or Meta keys have been pressed on the
keyboard. (Shift status and conversion to lowercase, however,
happens elsewhere.)

KEYTOCHR PHX
 DEC A
 TAX
 LDA _LOOKUP,X
 PLX
 RTS

_LOOKUP

.BYTE 'Q', 'E', 'T', 'U', 'O' ; Key scan code mappings without any modifiers

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $00

.BYTE 'Z', 'C', 'B', 'M', $0A

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE 'W', 'R', 'Y', 'I', 'P'

.BYTE $00, $00

.BYTE '!', '#', '%', '&', '(' ; Key scan code mappings with META modifier

.BYTE '@', '-', ':', $27, ']'

.BYTE $00, '<', ',', '?', $00

.BYTE '\', '>', '.', '/', $08

.BYTE '=', '+', ';', '[', ' '

.BYTE '"', '$', '^', '*', ')'

.BYTE $00, $00

.BYTE '1', '3', '5', '7', '9' ; Key scan code mappings with CODY modifier

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $1B

.BYTE 'Z', 'C', 'B', 'M', $18

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE '2', '4', '6', '8', '0'

112

The KEYTOCHR routine and its lookup table.

The KEYDECODE and KEYTOCHR routines are never called
as part of the keyboard scanning done in the timer interrupt.
Instead, they're called from the READKBD routine, which is
completely separate. This routine is called when the Cody
BASIC interpreter expects line-based input, such as during the
REPL loop or in an INPUT statement. Each character entered is
also echoed to the screen. We'll discuss those routines in detail
when we talk about input and output handling.

ERROR HANDLING

As part of the initialization process a simple form of error
handling is set up for the BASIC interpreter and its related
code. Error handling in Cody BASIC works like a very simple
exception handler. On startup the current location in the
65C02's own stack is stored in the STACKREG variable for
later use.

At runtime, whenever the interpreter encounters an error,
one of several error routines are called. The error routine then
calls ERROR to handle the error, print an error message, and
unwind the 65C02 stack. After unrolling the error, it jumps
back into the BASIC interpreter's REPL loop.

Preserving the stack position to unwind in the event of an error.

.BYTE $00, $00

BASIC TSX ; Preserve the stack register for unwinding on error conditions
 STX STACKREG

113

Four helper routines exist to save code and provide a
consistent interface to raise an error condition. The RAISE_BRK
routine corresponds to the ERR_BREAK error code,
RAISE_SYN to ERR_SYNTAX, RAISE_LOG to ERR_LOGIC, and
RAISE_SYS to ERR_SYSTEM.

Entry points to the error-handling system in Cody BASIC.

The first error type, ERR_BREAK isn't an error in the strictest
sense. An error of this type only indicates that the user is
attempting to break from the current program by pressing the
Cody and Arrow keys simultaneously. In this situation, the
error handling process is somewhat abbreviated instead of
displaying a full error message.

The other error types largely match the error conditions
from the original Tiny BASIC in the 1970s. ERR_SYNTAX
indicates that a syntax error was encountered in the current
program, similar to Tiny BASIC's WHAT?. ERR_LOGIC
indicates that the program was running but didn't make logical
sense, similar to Tiny Basic's HOW?. The last error,
ERR_SYSTEM, indicates a system problem such as running out
of memory caused an error, similar to Tiny BASIC's SORRY.

Using the error routines is straightforward. When code
determines that an error exists in the program, it performs an

RAISE_BRK LDA #ERR_BREAK
 BRA ERROR

RAISE_SYN LDA #ERR_SYNTAX
 BRA ERROR

RAISE_LOG LDA #ERR_LOGIC
 BRA ERROR

RAISE_SYS LDA #ERR_SYSTEM
 BRA ERROR

114

unconditional jump to the corresponding routine to raise that
particular error. Detecting the error itself (for example, a
missing keyword in a statement) is the responsibility of the
calling routine. However, once an error routine is called, further
error handling will be taken care of automatically.

Example from MOD16 of raising an error on division by zero.

Once another part of the program has called into the error
handlers, control eventually passes to the ERROR routine. It
unwinds the stack, restores any I/O settings to their screen and
keyboard defaults, and finally prints an error message
indicating the type of error that occurred. If the error occurred
while the program was running, the current line number is
appended as in Commodore BASIC. Once completed, the
routine jumps to the REPL loop, allowing the user to continue
to work with the computer.

MOD16 LDA NUMTWO ; See if the low byte of the second argument is nonzero
 BNE _OK

 LDA NUMTWO+1 ; See if the high byte of the second argument is nonzero
 BNE _OK

 JMP RAISE_LOG ; Raise a logic error for divide by zero

ERROR LDX STACKREG ; Unwind the stack
 TXS

 JSR SERIALOFF ; Turn off serial mode (just in case it was on)

 STZ IOMODE ; Reset IO mode for all future output
 STZ IOBAUD

 STZ OBUFLEN ; Reset output buffer position

 PHA ; Preserve the provided error code in the accumulator

 LDA #CHR_NL ; Ensure error messages begin on a new line
 JSR PUTOUT

 PLA ; Restore the error code into the accumulator

115

The ERROR routine recovers from errors and prints messages.

STARTING BASIC

Once the required setup is out of the way, it's time to start
up BASIC itself. If no cartridge is connected to the computer,
the program continues on to boot up BASIC. While the BASIC
interpreter is somewhat complex, the main loop for it isn't that

 CLC ; Calculate the message table index for the provided error
 ADC #MSG_ERRORS

 JSR PUTMSG ; Print the error

 CMP #MSG_ERRORS ; "Break" errors don't have the word "error" (just BREAK IN ...)
 BEQ _BREAK

 LDA #MSG_ERROR ; Print the word "ERROR" for all other errors
 JSR PUTMSG

_BREAK LDA RUNMODE ; Are we running a program right now? (otherwise hide line numbers)
 CMP #RM_PROGRAM
 BNE _NOLINE

 LDA #MSG_IN ; Append "IN" to our error message
 JSR PUTMSG

 LDY #1 ; Start at line number position in current line

 LDA (PROGPTR),Y ; Copy line number low byte
 STA NUMONE

 INY ; Next byte

 LDA (PROGPTR),Y ; Copy line number high byte
 STA NUMONE+1

 JSR TOSTRING ; Write the line number into the buffer

_NOLINE LDA #CHR_NL ; New line after the error message
 JSR PUTOUT

 LDA #CHR_NL ; Blank line
 JSR PUTOUT

 LDA #MSG_READY ; Ready message
 JSR PUTMSG

 JSR FLUSH ; Print the error message

 STZ RUNMODE ; Reset run mode (REPL mode after errors or breaks)

 CLI ; Enable interrupts (in case we came from the interrupt routine)

 JMP REPL ; Return to the REPL loop

116

difficult to follow. As mentioned in our discussion of error
handling, we keep a copy of the current 65C02 stack position
for our error handler when we enter BASIC. Then a short
startup message is printed. Finally, interrupts are enabled so
that the timer interrupt and keyboard scanning routine will
run.

Final steps before entering BASIC.

We then enter a read-eval-print loop (REPL) that lets the
user enter text into Cody BASIC. All input is tokenized by the
TOKENIZE routine and then examined. If a line begins with a
number, we insert or delete the line from the program with a
call to ENTERLINE. If it doesn't begin with a number, we call
EXSTMT to execute the line as a BASIC statement.

BASIC TSX ; Preserve the stack register for unwinding on error conditions
 STX STACKREG

 STZ OBUFLEN ; Move to beginning of the output buffer

 LDA #MSG_GREET ; Print the welcome message
 JSR PUTMSG
 JSR FLUSH

 LDA #MSG_READY ; Print the ready message
 JSR PUTMSG
 JSR FLUSH

 CLI ; Enable interrupts and drop through to the REPL loop

117

The implementation of Cody BASIC's read-eval-print loop.

STARTING A CARTRIDGE PROGRAM

The only exception to the above sequence occurs when a
cartridge is plugged into the computer. In the event a cartridge
is plugged in, we skip starting up BASIC and instead read in a
binary program from the cartridge. During startup we rely on
the CARTCHECK routine to see if a cartridge is plugged in the
expansion port.

REPL STZ RUNMODE ; Clear out RUNMODE

 STZ IOMODE ; Direct all IO to screen and keyboard

 JSR READKBD ; Read a line of input and advance the screen
 JSR SCREENADV

 JSR TOKENIZE ; Tokenize the input

 LDA TBUF ; Line number to add or execute the line immediately?
 CMP #$FF
 BNE _EXEC

 JSR ENTERLINE ; Enter the line into the program

 BRA REPL ; Next read-eval-print loop

_EXEC STZ PROGOFF ; Start at the beginning of the line

 LDA #<TBUF ; Use the token buffer as the line we're going to run
 STA PROGPTR
 LDA #>TBUF
 STA PROGPTR+1

 JSR EXSTMT ; Execute the statement in the token buffer

 STZ OBUFLEN ; Move to beginning of output buffer

 LDA #MSG_READY ; Print the ready message after each REPL operation
 JSR PUTMSG
 JSR FLUSH

 BRA REPL ; Next read-eval-print loop

118

The section in MAIN that checks for a cartridge.

CARTCHECK toggles some lines on the expansion port to
determine if a cartridge is plugged in. If a cartridge is present,
the CA1 and CA2 lines on the 65C22 VIA will be connected by
a trace on the cartridge's printed circuit board. If not, the CA1
line will be pulled low by a pulldown resistor built into the
Cody Computer itself. We set up the 65C22 so that the CA1
line is positive-edge triggered, then bring CA2 high. If CA1
detected a positive edge, we know a cartridge is connected. If
not, then no cartridge is present.

The CARTCHECK routine for cartridge detection.

If a cartridge is detected, the LOADBIN routine is called to
load binary code from the cartridge's SPI EPROM. This routine

 JSR CARTCHECK ; Check for cartridge plugged in
 BEQ BASIC

 STZ IOMODE ; Cartridge found, load and run binary instead of BASIC
 STZ IOBAUD
 JMP LOADBIN

CARTCHECK LDA #$0D ; Set CA2 to LOW output, CA1 to positive edge trigger
 STA VIA_PCR

 LDA VIA_IORA ; Clear the existing CA1 flag value in the VIA_IFR register

 LDA #$0F ; Toggle CA2 HIGH
 STA VIA_PCR

 LDA VIA_IFR ; Push the CA1 flag value in the VIA_IFR register for later
 PHA

 LDA #$0D ; Set CA2 to LOW output, CA1 to positive edge trigger
 STA VIA_PCR

 LDA VIA_IORA ; Clear the existing CA1 flag value in the VIA_IFR register

 PLA ; Pop the stored CA1 flag value and test if bit was set
 AND #$02

 RTS

119

actually handles loading of binary code from both serial and
SPI sources to save space, but different underlying routines are
called depending on the use case. For loading from SPI, three
helper routines exist to handle SPI communications. The
CARTON routine starts an SPI transaction, the CARTOFF
routine ends an SPI transaction, and the CARTXFER routine
simultaneously sends and receives a byte over SPI.

The CARTXFER routine transfers a single byte over SPI.

CARTXFER PHX

 STA SPIOUT

 STZ SPIINP

 LDX #8 ; 8 bits to read

_LOOP STZ VIA_IORB ; Bring the clock low

 LDA #0 ; Start with no data

 ROL SPIOUT ; Get output bit

 BCC _SEND

 ORA #CART_MOSI ; Output bit was a 1

_SEND STA VIA_IORB ; Put the bit on MOSI

 ORA #CART_CLK ; Bring the SPI clock high
 STA VIA_IORB

 ROL SPIINP ; Rotate SPI input for next bit

 LDA VIA_IORB ; Read the incoming MISO
 AND #CART_MISO

 BEQ _NEXT

 LDA SPIINP
 ORA #1
 STA SPIINP

_NEXT DEX ; Next loop (if any remain)
 BNE _LOOP

 PLX

 LDA SPIINP

 RTS

120

An additional complication exists for cartridges as they have
two possible address sizes: 16 bits (for cartridges up to 64
kilobytes) and 24 bits (for larger SPI memories). The LOADBIN
routine takes this into account, something we'll talk about
when we discuss loading and saving of programs later on.

Portion of LOADBIN that checks for the cartridge's size.

TOKENIZATION AND INTERPRETATION

Running programs in Cody BASIC is a two-step process. The
first step is tokenization, where a program's contents are
translated to a special internal representation of the program.
The second step is interpretation, where the tokenized program
is executed line by line and its statements processed. Both
steps occur regardless of the nature of the program, whether
it's a single line entered in REPL mode, an entire program
that's been typed in by the user, or a program loaded in over a
serial port.

TOKENIZATION

Certain keywords or symbols in Cody BASIC are converted
into tokens. This approach, common to many 1980s BASIC
implementations, serves two purposes. The first is that by

 LDX #2 ; Assume a cartridge with a two-byte address

 LDA VIA_IORB ; If cart size bit is high, we have a three-byte address
 BIT #CART_SIZE
 BEQ _ADDR
 INX

121

reducing an entire word, such as RETURN, to a one-byte token
like $8A, we save considerable space in BASIC program
memory. The second is that the program can be interpreted far
more quickly.

Instead of having to process each letter and determine what
to do at the end of the keyword, we can just test if a byte falls
within a certain range reserved for tokens. If so, we know we
have a keyword or other special value. In some cases, the
tokens can be used as indexes into a jump table, making our
interpreter code even faster.

The tokenization occurs in the TOKENIZE routine. It takes the
contents of a line in the input buffer IBUF and converts it to a
tokenized line in the token buffer TBUF. A tokenized line at
this point consists of the same text contents as its original,
except that certain keywords, symbols, and literals are
replaced by their token equivalents. Constants beginning with
the TOK_ prefix define the numeric values of the tokens.

122

Main loop of the TOKENIZE routine.

Tokens always begin with a single byte that has its highest
bit set to 1. As a practical matter, this means that BASIC tokens
begin at $80 in hex or 128 in decimal. Tokens for keywords are
only a single byte in size. Numbers are the only exception and
begin with a sentinel value of $FF followed by a 16-bit
unsigned number in little-endian format (lowest byte stored
first). Strings are not tokenized and are delimited by ASCII
double-quote characters. Contents within the strings are not
tokenized.

_LOOP LDA IBUF,X ; Load the next character

 CMP #CHR_NL ; End of line?
 BEQ _END

 CMP #CHR_QUOTE ; String?
 BEQ _STR

 JSR ISALPHA ; Letter?
 BCS _LET

 JSR ISDIGIT ; Digit?
 BCS _NUM

 CMP #CHR_LESS ; Rule out relational operator ranges
 BCC _CHR

 CMP #CHR_QUEST
 BCS _CHR

 JMP _OPR ; Relational operators handled as special case

_NUM LDA #<IBUF ; Input buffer lower byte
 STA MEMSPTR

 LDA #>>BUF ; Input buffer high byte
 STA MEMSPTR+1

 PHY ; Preserve current token buffer position

 TXA ; Move the current input buffer position into the y-register
 TAY

 JSR TONUMBER ; Parse the number

 TYA ; Move the updated input buffer position back into the x-register
 TAX

123

Part of the TOKENIZE routine that handles numbers.

The actual text of the tokens is kept alongside all other
string constants in the message table, with the first token being
stored at an offset of MSG_TOKENS from the start of the
messages. To map each string to its token value we use a
binary search algorithm. The _TOKTABLE in the TOKENIZE
routine stores token values in their alphabetical order to assist
with the binary search process. This table is used by the
routine to more quickly match incoming text to tokens.

 PLY ; Restore the token buffer position off the stack

 LDA #$FF ; Write the sentinel value for a number token
 JSR _PUT

 LDA NUMANS ; Store number low byte
 JSR _PUT

 LDA NUMANS+1 ; Store number high byte
 JSR _PUT

 JMP _LOOP

 STZ TOKENIZEL ; Prepare for binary search
 LDA #(_TOKTABLEEND - _TOKTABLE)
 STA TOKENIZER

_TOKNEXT LDA TOKENIZEL ; Are we done yet? (L <= R)
 CMP TOKENIZER

 BCC _TOKCOMP
 BEQ _TOKCOMP

 PLY ; Restore token buffer (Y) and input buffer (X) positions
 PLX

 JMP _CHR ; Process as normal character

_TOKCOMP CLC ; Calculate our position in the token lookup table
 LDA TOKENIZEL
 ADC TOKENIZER
 LSR A
 TAX

 PHX

 LDA _TOKTABLE,X ; Get the token's matching index in the string table
 TAX

 LDA TOKTABLE_L,X ; Put the token's address in the memory destination pointer
 STA MEMDPTR

124

Binary search as implemented in the TOKENIZE routine.

The performance of the tokenization process is very
important to the overall usability of the Cody Computer.
Unlike most tokenized BASICs, Cody BASIC does not use its
tokenized form when a copy is saved via SAVE or loaded via
LOAD. Instead, all tokens are converted back to their plain text
to make the content readable in just about any text editor. This
means that when a program is loaded over a serial connection,
it must also be tokenized. This also means that the loading
speed of a BASIC program is largely limited by how fast the
incoming text can be tokenized.

 LDA TOKTABLE_H,X
 STA MEMDPTR+1

 PLX

 LDY #$FF ; Use the y register for our position in the strings

_TOKCHAR INY ; Move to next char

 LDA (MEMDPTR),Y ; If we've reached the end of the token we're testing against, we have a match
 BEQ _TOKYES

 LDA (MEMSPTR),Y ; Get the next character from the input string and UPPERCASE it
 JSR TOUPPER

 CMP (MEMDPTR),Y ; Compare it to the token string and see if we still match
 BEQ _TOKCHAR
 BCC _TOKLO
 BCS _TOKHI

_TOKHI TXA ; Input token was greater, move to top partition
 INC A
 STA TOKENIZEL
 BRA _TOKNEXT

_TOKLO TXA ; Input token was less, move to bottom partition
 DEC A
 STA TOKENIZER
 BRA _TOKNEXT

125

A TOKENIZE optimization that skips over REM comments.

LINE INSERTION AND DELETION

Once a line is tokenized it's either evaluated immediately or
added to the program. The REPL loop examines the contents of
the token buffer TBUF and checks if the line begins with a
number. If it does, it means the line is either being added,
replaced, or deleted from the program, which is handled by the
ENTERLINE routine.

It extracts the line number from the token buffer and calls
FINDLINE to determine the line's starting location within
program memory. If the line exists, the contents of program
memory are shifted downward to delete the existing line.
Unless the line is empty (containing only the line number),
program memory is then shifted upward to make room for the
new line. INSLINE is called to handle the actual insertion.

_REM LDA IBUF,X ; Skip tokenizing after a REMARK to save time

 CMP #CHR_NL ; End of line?
 BEQ _REMEND

 JSR _PUT ; Copy the character

 INX ; Next character
 BRA _REM

_REMEND JMP _END

ENTERLINE PHA ; Preserve registers

 LDA TBUF+1 ; Get the line number we're looking for
 STA LINENUM+0
 LDA TBUF+2
 STA LINENUM+1

 JSR FINDLINE ; See if the line number entered already exists
 BCC _NEW

126

_DEL LDA LINEPTR+0 ; Use matching line as destination (deleting line by copying over it)
 STA MEMDPTR+0
 LDA LINEPTR+1
 STA MEMDPTR+1

 CLC ; Calculate end of matching line as the source pointer
 LDA MEMDPTR+0
 ADC (LINEPTR)
 STA MEMSPTR+0
 LDA MEMDPTR+1
 ADC #0
 STA MEMSPTR+1

 SEC ; Calculate number of bytes to move down from the top
 LDA PROGTOP+0
 SBC MEMSPTR+0
 STA MEMSIZE+0
 LDA PROGTOP+1
 SBC MEMSPTR+1
 STA MEMSIZE+1

 SEC ; Adjust the top address in program memory because we deleted a line
 LDA PROGTOP+0
 SBC (LINEPTR)
 STA PROGTOP+0
 LDA PROGTOP+1
 SBC #0
 STA PROGTOP+1

 JSR MEMCOPYDN ; Delete the current line by moving memory down

_NEW LDA TBUFLEN ; If nothing on the new line, don't insert anything (just a deletion?)
 CMP #4
 BEQ _END

 LDA LINEPTR+0 ; Is our insertion position the same as the top of program memory?
 CMP PROGTOP+0
 BNE _MOV

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _MOV

 BRA _INS ; If so, we can just insert without copying memory to make space

_MOV LDA LINEPTR+1 ; If we're on the last page of program memory just say we're out
 CMP #>PROGEND
 BEQ _SYS

 LDA LINEPTR+0 ; Use the insertion position as source pointer to move memory
 STA MEMSPTR+0
 LDA LINEPTR+1
 STA MEMSPTR+1

 CLC ; Calculate the destination pointer for copying memory
 LDA MEMSPTR+0
 ADC TBUFLEN
 STA MEMDPTR+0
 LDA MEMSPTR+1
 ADC #0
 STA MEMDPTR+1

 SEC ; Calculate the amount of memory to copy to make room for the new line
 LDA PROGTOP+0
 SBC MEMSPTR+0
 STA MEMSIZE+0
 LDA PROGTOP+1
 SBC MEMSPTR+1

127

The ENTERLINE routine handles lines entered into the REPL.

The FINDLINE routine determines the insert location for a
new line. If a line already exists with the same number, it will
return that location instead. The routine works by starting at
PROGMEM, the base of program memory, and continuing until
either a matching line number is found (indicating the line is
present) or a line number that is larger is found (indicating the
line does not exist).

To compare line numbers it examines the second and third
bytes in each line, which contain the low and high bytes of the
line number. If it needs to move to the following line, the first
byte of the line, containing the line length, is added to the
current pointer in LINEPTR to move forward. If LINEPTR is ever
equal to PROGTOP, the top of program memory, it means the
line does not exist and should be appended to the end of the
program.

FINDLINE is also used by the BASIC interpreter to find
destination line numbers in GOTO and GOSUB statements.

 STA MEMSIZE+1

 JSR MEMCOPYUP ; Copy the memory up to make room for the new line

_INS JSR INSLINE ; Insert the line

_END PLA ; Restore registers

 RTS

_SYS JMP RAISE_SYS ; Indicate we're out of BASIC program memory

FINDLINE PHA ; Preserve registers
 PHY

 LDA #<PROGMEM ; Start at the beginning of program memory
 STA LINEPTR+0
 LDA #>PROGMEM
 STA LINEPTR+1

_LOOP LDA LINEPTR+0 ; Ensure that we're not at the top of program memory already

128

Finding a line's insert position is handled by FINDLINE.

Insertion of a line is handled by INSLINE. It assumes that
appropriate space has already been allocated for the new line
(by ENTERLINE) and doesn't move any contents within
program memory. Instead, it copies the contents of the token
buffer TBUF into a specified address in program memory. It
also somewhat modifies the line contents, changing the first
byte from $FF (representing the start of a number token) to
the line's length in bytes. When done, the value of PROGTOP

 CMP PROGTOP+0
 BNE _COMP

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _COMP

 BRA _NO

_COMP LDY #2 ; Skip leading line size byte when doing line number comparison

 LDA (LINEPTR),Y ; Compare current and desired line number high bytes
 CMP LINENUM+1
 BNE _TEST

 DEY ; Compare current and desired line number low bytes
 LDA (LINEPTR),Y
 CMP LINENUM

_TEST BEQ _YES ; Found a match

 BCS _NO ; Current line greater than desired line number, doesn't exist

 CLC ; Current line less than desired line number, move to next line

 LDA LINEPTR+0 ; Add current line size to low address byte
 ADC (LINEPTR)
 STA LINEPTR+0

 LDA LINEPTR+1 ; Propagate carry to high address byte
 ADC #0
 STA LINEPTR+1

 BRA _LOOP

_NO CLC ; No match found, clear carry
 BRA _END

_YES SEC ; Match found, set carry

_END PLY ; Restore registers
 PLA

 RTS

129

is incremented by the line's length to reflect the increased size
of the program.

The INSLINE routine is also used by the LOADBAS routine
when a BASIC program is being loaded from storage over the
serial port. In this case lines are being appended to the top of
the program as they come in and get tokenized. This allows us
to skip over some unrelated code not needed for this special
case of line insertion.

INSLINE routine for inserting a line into the program.

INSLINE LDA LINEPTR+1 ; If we're on the last page of program memory just say we're out
 CMP #>PROGEND
 BEQ _SYS

 LDA TBUFLEN ; Store token buffer length as first byte in line
 STA TBUF

 STA MEMSIZE+0 ; Set size of memory to copy into program buffer
 STZ MEMSIZE+1

 LDA #<TBUF ; Use token buffer as source pointer
 STA MEMSPTR+0
 LDA #>TBUF
 STA MEMSPTR+1

 LDA LINEPTR+0 ; Use line pointer found for line number as destination pointer
 STA MEMDPTR+0
 LDA LINEPTR+1
 STA MEMDPTR+1

 JSR MEMCOPYDN ; Copy the memory

 CLC ; Update the top of memory to the new location
 LDA PROGTOP+0
 ADC TBUFLEN
 STA PROGTOP+0
 LDA PROGTOP+1
 ADC #0
 STA PROGTOP+1

 RTS

_SYS JMP RAISE_SYS ; Indicate we're out of BASIC program memory

130

INTERPRETATION

Once Cody BASIC code is tokenized, it can be executed via
interpretation. The core of the interpreter is a recursive-
descent parser that goes through each tokenized line looking
for tokens and calling the appropriate routines to handle them.
The PROGPTR zero-page variable points to the start of the
current line while another zero-page variable, PROGOFF,
stores the current position within the line. For evaluating
mathematical expressions or passing values between
interpreter routines, a dedicated expression stack exists in zero
page (EXPRS_L for low bytes, EXPRS_H for high bytes).

The starting point for interpretation is the EXSTMT routine
that interprets a single statement. It examines the first token in
the current line, converts it to an index into a jump table, and
jumps to the appropriate routine to handle the statement type.
When the called routine returns, because we did a jump rather
than a subroutine call, control will return back to the routine
that called EXSTMT. While somewhat hackish, this works
around the 65C02's inability to perform an indirect subroutine
call. (A more generic way around the same problem is to
perform a subroutine call to the code that does the jump, but
for our specific purpose, what we have works quite well.)

Note that the routines that are part of the recursive-descent
interpreter are usually prefixed with EX to indicate they're
used to execute the program. You can see many of these
routines in the jump table included below.

EXSTMT STZ EXPRSNUM ; Start at the bottom of the expression stack

131

EXSTMT is the highest-level routine in the interpreter.

The REPL loop relies on EXSTMT to run the lines of BASIC
code the user enters. In this mode, each entered line that is not
an edit is executed immediately. To make this happen,

 JSR EXSKIP ; Skip any whitespace before we run into a token

 LDY PROGOFF ; Get the current offset in the current line

 LDA (PROGPTR),Y ; Get the current byte

 CMP #CHR_NL ; Was it a newline? If so the entire line was blank
 BEQ _END

 CMP #TOK_SYS+1 ; Check that the byte isn't too big to be a valid token
 BCS _SYN

 SEC ; Subtract from the first statement token to get the index
 SBC #TOK_NEW

 BCC _ASN ; If the result was less than that, assume it was an assignment

 ASL A ; Multiply by two to convert the number into a jump table index
 TAX

 INC PROGOFF ; Increment the current offset since we consumed the token

 JMP (_JMP,X) ; Jump to the code for the statement we have

_END RTS

_ASN JMP EXASSIGN ; Jump to the assignment

_SYN JMP RAISE_SYN ; Raise syntax error

_JMP .WORD EXNEW
 .WORD EXLIST
 .WORD EXLOAD
 .WORD EXSAVE
 .WORD EXRUN
 .WORD EXNOP
 .WORD EXIF
 .WORD _SYN
 .WORD EXGOTO
 .WORD EXGOSUB
 .WORD EXRETURN
 .WORD EXFOR
 .WORD _SYN
 .WORD EXNEXT
 .WORD EXPOKE
 .WORD EXINPUT
 .WORD EXPRINT
 .WORD EXOPEN
 .WORD EXCLOSE
 .WORD EXREAD
 .WORD EXRESTORE
 .WORD EXNOP
 .WORD EXEND
 .WORD EXSYS

132

PROGOFF is set to zero, PROGPTR is pointed to the token
buffer, and EXSTMT is called to execute the line. Once the line
has been executed control returns to the REPL loop for further
input.

The _EXEC portion of the REPL code.

Running an entire program using the RUN command is very
similar, except that lines are interpreted in succession until the
program comes to a stop. Interestingly, it's the responsibility of
the interpreter itself to begin interpreting a full program, as
the RUN statement is actually implemented within the
interpreter itself. When a user enters the RUN statement in the
REPL loop, the interpreter calls the EXRUN routine to execute
it, running the program.

EXRUN starts out by clearing the current interpreter state
back to some sane default values. It also has to set the
RUNMODE so other code, particularly the error handler, knows
that we're running a program. It positions the PROGPTR to the
start of the program, then begins evaluating each line one at a
time by calling EXSTMT.

_EXEC STZ PROGOFF ; Start at the beginning of the line

 LDA #<TBUF ; Use the token buffer as the line we're going to run
 STA PROGPTR
 LDA #>TBUF
 STA PROGPTR+1

 JSR EXSTMT ; Execute the statement in the token buffer

 STZ OBUFLEN ; Move to beginning of output buffer

 LDA #MSG_READY ; Print the ready message after each REPL operation
 JSR PUTMSG
 JSR FLUSH

 BRA REPL ; Next read-eval-print loop

133

As an additional complication, some statements can change
the interpreter's current position in the program. For example,
a GOTO statement could move the current position far away
from the current line, and other statements related to control
flow have similar effects.

To handle these situations, EXRUN also calculates a
PROGNXT pointer to the next line to execute before executing
the current line. Once the current line is executed, it goes to
the line pointed to by PROGNXT. Under normal circumstances
this will be the line after the current one, but for statements
that modify the control flow, the value can be replaced with a
different one when the control statement runs.

EXRUN JSR ONLYREPL ; Only valid in REPL mode

 JSR NEWVARS ; Reset variable memory

 JSR RESTORE ; Reset data buffer for DATA/READ statements

 LDA #RM_PROGRAM ; Set RUNMODE to running
 STA RUNMODE

 STZ GOSUBSNUM ; Start out with empty GOSUB/RETURN and FOR/NEXT stacks
 STZ FORSNUM

 LDA #<PROGMEM ; Use the start of program memory as our starting position
 STA PROGPTR
 LDA #>PROGMEM
 STA PROGPTR+1

_LOOP LDA RUNMODE ; Check that we're still running (e.g. no END statement was executed)
 BEQ _DONE

 JSR ISEND ; Make sure that this line isn't actually the end of the program
 BEQ _DONE

_CONT CLC ; Prepare to calculate the NEXT line we'll be running

 LDA PROGPTR ; Calculate the low byte by adding our pointer to the line's size
 ADC (PROGPTR)
 STA PROGNXT

 LDA PROGPTR+1 ; Propagate the carry
 ADC #0
 STA PROGNXT+1

 LDA #4 ; Start at the first non-line-number position in the current line
 STA PROGOFF

 JSR EXSTMT ; Execute the statement on this line

134

EXRUN runs an entire program from within the interpreter.

The interpreter supports 26 numeric arrays, A through Z,
each capable of holding up to 128 numbers. An additional 26
string variables, A$ through Z$, also exist with a maximum
length of 255 characters plus a terminating NUL char. These
reside in the DATAMEM portion of the interpreter's memory,
with each array or string aligned to a single 256-byte page in
the 65C02's memory. Numeric variables start at ARRA
through ARRZ while string variables start at STRA through
STRZ. The interpreter's EXVAR routine parses variables and
calculates the actual memory address associated with them,
including any array indexes for number variables.

 LDA PROGNXT ; Copy the NEXT line's pointer over to use as the current line
 STA PROGPTR
 LDA PROGNXT+1
 STA PROGPTR+1

 BRA _LOOP ; Repeat, run the next statement

_DONE STZ RUNMODE ; Clear run mode

 STZ IOMODE ; Clear IO mode

 RTS ; Done

EXVAR JSR EXSKIP ; Consume leading space

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 INC PROGOFF ; Consume the character

 JSR ISALPHA ; If not a letter, it's a syntax error
 BCC _SYN

 SEC ; Calculate the page number assuming we have an array variable
 SBC #CHR_AUPPER

 CLC ; Determine the actual page location based on the start of vars
 ADC #>ARRA

 STZ NUMANS ; Assume by default we DO NOT have an index into an array
 STA NUMANS+1

 LDY PROGOFF ; Load another character
 LDA (PROGPTR),Y

135

The EXVAR routine calculates a variable's memory address.

In addition to the many interpreter routines that execute
specific statements or functions in Cody BASIC, there are
helper routines used by the interpreter. Some are part of the

 CMP #CHR_DOLLAR ; String variable so we need to adjust our pointer into string memory
 BEQ _STR

 CMP #CHR_LPAREN ; Array index so we need to adjust our pointer within array memory
 BNE _NUM

 JSR EXLPAREN ; Consume left parenthesis

 LDA NUMANS+1 ; Preserve high byte of variable address (will be clobbered by expr eval)
 PHA

 JSR EXEXPR ; Evaluate expression for array index

 PLA ; Restore the high byte of the variable address (just got clobbered)
 STA NUMANS+1

 JSR EXRPAREN ; Consume right parenthesis

 JSR POPONE ; Pop the array index off the stack

 LDA NUMONE+1 ; High byte should be zero (or will be out of range)
 BNE _LOG

 LDA NUMONE ; Low byte should be less than 128 (or will be out of range)
 BIT #$80
 BNE _LOG

 ASL A ; Shift low byte by one (multiply by two because numbers are two bytes wide)

 STA NUMANS ; Store the index as the low byte

_NUM JSR PUSHANS ; Store the address of the variable

 CLC ; Clear carry to indicate it's a number variable

 RTS ; All done

_STR CLC ; Adjust pointer from array memory to string memory
 LDA #26
 ADC NUMANS+1
 STA NUMANS+1

 INC PROGOFF ; Consume dollar sign

 JSR PUSHANS ; Store the address of the variable

 SEC ; Set carry to indicate it's a string variable

 RTS ; All done

_SYN JMP RAISE_SYN ; Raise a syntax error

_LOG JMP RAISE_LOG ; Raise a logic error (array index out of bounds)

136

BASIC interpreter itself, such as EXSKIP (used for skipping
whitespace), EXLPAREN and EXRPAREN (used for parsing
parentheses), and EXCHARACT (used for requiring that the
next character in a line is a certain value). Routines such as
EXONEARG and EXTWOARG consolidate code for parsing
one-argument and two-argument mathematical functions,
while EXSTRARG does something similar for string functions.

EXTWOARG combines helper routines into another helper
routine.

Other helper routines also exist outside the interpreter core.
Math routines such as MUL16, DIV16, RND16, and SQR16
perform 16-bit math calculations needed to implement some
of Cody BASIC's mathematical functions. Other routines such
as POPONE, POPBOTH, and PUSHANS, assist in moving
values back and forth between the expression stack and the
NUMONE, NUMTWO, and NUMANS zero-page variables
used by many interpreter and helper routines.

EXTWOARG JSR EXLPAREN
 JSR EXEXPR
 JSR EXCOMMA
 JSR EXEXPR
 JSR EXRPAREN
 RTS

137

POPONE removes the top value from the expression stack.

NUMERIC AND STRING EXPRESSIONS

Cody BASIC supports numeric and string expressions. It's
not possible to go over the implementation of every single
command in Cody BASIC (though the code is heavily
documented), but by studying how some of the math and
string operations are implemented, it's possible to develop a
greater understanding of how the BASIC interpreter's
recursive-descent parser works in practice.

Numeric expressions, like everything in Cody BASIC, follow
the language's grammar. A numeric EXPR contains a TERM
followed by zero or more addition or subtraction operators and
TERMs. In turn, the TERM is defined much the same, except that
it begins with a single FACTOR followed by zero or more
multiplication or division operators and FACTORs. Lastly, a
FACTOR can be any of a variety of numeric types, including
number literals, numeric functions, variables, or even a nested

POPONE PHA ; Preserve registers
 PHX

 LDX EXPRSNUM ; Fetch the current size of the expression stack

 LDA EXPRS_L-1,X ; Store the low byte into NUMONE
 STA NUMONE

 LDA EXPRS_H-1,X ; Store the high byte into NUMONE
 STA NUMONE+1

 DEC EXPRSNUM ; Decrement the count by one

 PLX ; Restore registers
 PLA

 RTS ; All done

138

expression in parentheses. Note that this approach also
preserves operator precedence, as individual numbers or
nested expressions end up evaluated first, followed by
multiplication and division, and only last are addition and
subtraction performed.

An EXPR is implemented in the interpreter by the EXEXPR
routine. It calls another routine, EXTERM, to handle the initial
term, then loops as long as an addition or subtraction operator
is present. If one is present, it parses the operator, calls
EXTERM to get the other operand, and then performs the
calculation. Because the operands are pushed on the
expression stack, the values are obtained from there and the
result stored there as well.

EXEXPR JSR EXTERM ; Evaluate the left side of the (possible) operator

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_PLUS ; Addition operation
 BEQ _ADD

 CMP #CHR_MINUS ; Subtraction operation
 BEQ _SUB

 RTS ; All done

_ADD INC PROGOFF ; Consume plus character

 JSR EXTERM ; Evaluate the right side of the plus sign

 LDX EXPRSNUM ; Find how many items we have on the expression stack

 CLC ; Prepare for addition

 LDA EXPRS_L-2,X ; Add number low bytes together and put back on stack
 ADC EXPRS_L-1,X
 STA EXPRS_L-2,X

 LDA EXPRS_H-2,X ; Add number high bytes together and put back on stack
 ADC EXPRS_H-1,X
 STA EXPRS_H-2,X

 DEC EXPRSNUM ; Decrement stack by one (took two values off, put result back on)

 BRA _LOOP ; Next

139

EXEXPR executes the code for a numeric expression.

The EXTERM routine implements the same but for TERMs. In
this case, EXFACTOR is called to put the first operand on the
expression stack. Then the code continues to loop as long as a
multiplication or division operator is present, calling
EXFACTOR for the other operand if so.

In this case the actual calculation is less straightforward as
the 65C02 does not support any hardware multiplication or
division. Instead, we perform the calculation in software, calling
POPBOTH to get the top values of the expression stack into
NUMONE and NUMTWO. We then call MUL16 or DIV16 to
perform the calculation. Lastly, we push the single result in
NUMANS on the stack by calling PUSHANS.

_SUB INC PROGOFF ; Consume minus character

 JSR EXTERM ; Evaluate the right side of the minus sign

 LDX EXPRSNUM ; Find how many items we have on the expression stack

 SEC ; Prepare for subtraction

 LDA EXPRS_L-2,X ; Subtract number low bytes and put back on stack
 SBC EXPRS_L-1,X
 STA EXPRS_L-2,X

 LDA EXPRS_H-2,X ; Subtract number high bytes and put back on stack
 SBC EXPRS_H-1,X
 STA EXPRS_H-2,X

 DEC EXPRSNUM ; Decrement stack by one (took two values off, put result back on)

 BRA _LOOP ; Next

EXTERM JSR EXFACTOR ; Evaluate the left side of the (possible) operator

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_ASTERISK ; Multiplication operation
 BEQ _MUL

 CMP #CHR_SLASH ; Division operation
 BEQ _DIV

140

Numeric terms are executed by the EXTERM routine.

The EXFACTOR has to handle the many possiblities of a
FACTOR in the grammar. Negative numbers beginning with a
unary minus, expressions in parentheses, numeric variables,
functions, and number literals all need to be handled. To
decide what to do, it begins by examining the next token and
branching to an appropriate part of its code.

 RTS ; All done

_MUL INC PROGOFF ; Consume multiply operator

 JSR EXFACTOR ; Evaluate the right side of the multiply sign

 JSR POPBOTH ; Pop both values off the expression stack

 JSR PRE16

 PHA

 JSR MUL16 ; Multiply the numbers together

 PLA

 JSR ADJ16

 JSR PUSHANS ; Push the result back on the stack

 BRA _LOOP ; Next

_DIV INC PROGOFF ; Consume divide operator

 JSR EXFACTOR ; Evaluate the right side of the division sign

 JSR POPBOTH ; Pop both values off the expression stack

 JSR PRE16

 PHA

 JSR MOD16 ; Divide using the modulus operation (division result is also calculated)

 LDA NUMONE ; Copy division result low byte (from the modulus) to the answer
 STA NUMANS

 LDA NUMONE+1 ; Copy division result high byte (from the modulus) to the answer
 STA NUMANS+1

 PLA

 JSR ADJ16

 JSR PUSHANS ; Push the result back on the stack

 BRA _LOOP ; Next

141

For number literals, it simply pushes the value of the
number on the stack. For minus signs, it attempts to interpret
the next value as a number by calling EXFACTOR itself, then
flips its sign via subtraction. For nested expressions, it parses a
left parenthesis via EXLPAREN, an EXPR by calling EXEXPR,
and a right parenthesis via EXRPAREN. For variables, it calls
EXVAR to obtain the variable's memory address then loads the
value from there. And for functions, it converts the token's
value into an index into a local jump table, jumping to the
appropriate routine to handle the function.

EXFACTOR JSR EXSKIP ; Skip any leading spaces

 LDY PROGOFF ; Get the offset in the current line

 LDA (PROGPTR),Y ; Read the character there

 CMP #CHR_MINUS ; Is it a negative number?
 BEQ _NEG

 CMP #TOK_NUM ; Is it a number literal?
 BEQ _NUM

 CMP #CHR_LPAREN ; Is it a nested expression?
 BEQ _EXP

 JSR ISALPHA ; Is it a letter for a variable name?
 BCS _VAR

 CMP #TOK_ASC+1 ; Check that the byte isn't too big to be a valid token
 BCS _SYN

 INC PROGOFF ; Consume the token

 SEC ; Subtract the start of the function tokens to get our index
 SBC #TOK_TIME

 BCC _SYN ; If the result was less than that the token value was too low

 ASL A ; Multiply by two to convert the number into a jump table index
 TAX

 JMP (_JMP,X) ; Jump to the code for the function we have

_NUM INY ; Skip the leading $FF tag at the start of the number

 LDA (PROGPTR),Y ; Fetch number literal low byte
 STA NUMANS
 INY

 LDA (PROGPTR),Y ; Fetch number literal high byte
 STA NUMANS+1
 INY

142

 STY PROGOFF ; Update the offset in the current line

 JSR PUSHANS ; Push the number onto the expression stack

 RTS ; All done

_EXP JSR EXLPAREN ; Grab the left parenthesis

 JSR EXEXPR ; Process the nested expression

 JSR EXRPAREN ; Grab the right parenthesis

 RTS ; All done

_VAR JSR EXVAR ; Evaluate variable to get its address in memory

 BCS _SYN ; If we read a string variable, it's a syntax error here

 JSR POPONE ; Pop the variable's address off the stack

 LDA (NUMONE) ; Read and store the low byte of the variable
 STA NUMANS

 INC NUMONE ; Increment address by one (safe because of page alignment)

 LDA (NUMONE) ; Read and store the high byte of the variable
 STA NUMANS+1

 JSR PUSHANS ; Push the number (not its address) on the stack

 RTS

_NEG INC PROGOFF ; Consume the unary minus

 JSR EXFACTOR ; Process the rest of the factor

 LDX EXPRSNUM ; Get the current expression stack size

 SEC ; Prepare to subtract

 LDA #0 ; Subtract low byte from zero in place on stack
 SBC EXPRS_L-1,X
 STA EXPRS_L-1,X

 LDA #0 ; Subtract high byte from zero in place on stack
 SBC EXPRS_H-1,X
 STA EXPRS_H-1,X

_END RTS

_SYN JMP RAISE_SYN ; Raise a syntax error

_JMP
 .WORD EXTIME
 .WORD EXPEEK
 .WORD EXRND
 .WORD EXNOT
 .WORD EXABS
 .WORD EXSQR
 .WORD EXAND
 .WORD EXOR
 .WORD EXXOR
 .WORD EXMOD
 .WORD EXINT
 .WORD EXLEN

143

EXFACTOR handles a variety of numeric literals and values.

String expressions are handled in a similar way. In some
ways string expressions are more complex, while in others
they're significantly simpler. Instead of storing values on the
expression stack, string expressions are evaluated by copying
their contents into the output buffer OBUF.

This is possible because string expressions have a
significantly reduced grammar, being limited only to
concatenation operations, string variables, string literals, and
string functions that produce no intermediate values. In other
words, a string expression (or STREXPR) consists of one or
more string terms, and string terms (STRTERMs) themselves
aren't particularly complicated.

EXSTREXPR handles a string expression.

The EXSTRTERM routine is a bit more complicated, but not
much so. The STRTERM can only be a string literal, a string

 .WORD EXASC

EXSTREXPR JSR EXSKIP

 JSR EXSTRTERM ; Evaluate the string term we started with

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_PLUS ; Concatenation operator is the only one supported
 BEQ _CAT

 RTS ; All done

_CAT INC PROGOFF ; Consume operator

 JSR EXSTRTERM ; Evaluate the next string term to concatenate

 BRA _LOOP ; Next

 RTS

144

variable, or one of a small number of functions that return a
string value. String literals and string variables can be handled
by copying their contents into the output buffer.

Only three string functions exist, CHR$, STR$, and SUB$.
These are handled by checking for their token and jumping to
EXCHR, EXSTR, or EXSUB directly. Given the small number of
possibilities, a jump table probably isn't worth the overhead.

EXSTRTERM LDY PROGOFF ; Load the next character
 LDA (PROGPTR),Y

 CMP #CHR_QUOTE ; String literal
 BEQ _LIT

 CMP #TOK_CHR ; CHR$ function (char code to string)
 BEQ EXCHR

 CMP #TOK_STR ; STR$ function (number to string)
 BEQ EXSTR

 CMP #TOK_SUB ; SUB$ function (substring to string)
 BEQ EXSUB

 JSR EXVAR ; String variable is all we have left
 BCS _VAR

 JMP RAISE_SYN ; Otherwise it's a syntax error, nothing we can do

_LIT INY ; Skip the leading quote

_LITLOOP LDA (PROGPTR),Y ; Read the next character

 CMP #CHR_NL ; Newlines shouldn't happen, but if they do, stop immediately
 BEQ _LITDONE

 INY ; Consume whatever character we read

 CMP #CHR_QUOTE ; End quote means we're done with the string literal
 BEQ _LITDONE

 JSR PUTOUT ; Otherwise just copy the character to the output buffer

 BRA _LITLOOP ; Repeat

_LITDONE STY PROGOFF ; Update the offset in the current line

 RTS ; All done

_VAR JSR POPONE ; Pop the variable address off the stack

 LDY #0 ; Start at the beginning

_VARLOOP LDA (NUMONE),Y ; Read the character from the string (zero/NUL indicates end of string)
 BEQ _VARDONE

 JSR PUTOUT ; Put the character from the string into the output buffer

145

EXSTRTERM handles the few possibilities for a term in a string
expression.

The general approach shown for expression evaluation is
also the core of the recursive descent mechanism. A more
general routine handles a more complicated part of the BASIC
language, then calls down into more specific subroutines to
handle more specific parts.

For example, printing a numeric calculation's result on the
screen would involve EXSTMT determining that a PRINT
statement was to be executed, then jumping to EXPRINT to
print it. EXPRINT would look ahead and see that a numeric
expression was in play and call EXEXPR to evaluate it. EXEXPR
would call EXTERM, which in turn calls EXFACTOR.

CONTROL AND DATA STATEMENTS

Cody BASIC has some special statements that handle
control flow and data literals in BASIC programs. While
implemented using the same interpreter logic as the rest of
Cody BASIC, they have additional effects that set them apart
from more straightforward operations such as math
calculations or updating variables. These statements also often
maintain information outside of the core BASIC interpreter,

 INY ; Consume the character

 BEQ _SYS ; If we wrapped around then we never found a terminating NUL

 BRA _VARLOOP

_VARDONE RTS ; All done

_SYS JMP RAISE_SYS ; Raise system error indicating we didn't find a NUL

146

such as line pointers, and take actions that in some ways
override the normal interpreter behavior.

One set of such statements are the control flow statements
that change the course of a running program. Cody BASIC
supports the typical BASIC commands for such operations: IF,
GOTO, GOSUB/RETURN, and FOR/NEXT statements are all
implemented.

Many of these statements rely on a similar underlying
implementation. Under normal conditions the interpreter sets
the value of PROGNXT to the start of the next line after
PROGPTR, but individual statements can overwrite the value to
change the path through the program. Different types of
control flow statements also have to maintain additional
information unique to their own special situations, such as
pointers to return lines or terminating loop values.

Another set of statements are those that handle reading of
data literals within a program. Many BASIC dialects supported
the use of DATA statements. A user could enter raw data
separated by commas into these statements, which would be
ignored under normal operation of the interpreter. However,
when a READ statement was executed, values from the DATA
statements scattered through the program would be stored in
variables.

Cody BASIC supports a limited form of this mechanism
inspired by Commodore BASIC. To do so, it maintains some
external information regarding the current data pointer
position and the contents of previous DATA statements.

147

IF STATEMENTS

The IF statement is one of the most simple control flow
statements. It evaluates a relational expression (an expression
that compares two terms). If the expression evaluates to true, it
runs the remainder of the statement after the THEN keyword.
If the expression is false then it skips over the rest of the
statement and proceeds to the next line.

The implementation is somewhat complicated because there
are two kinds of relational expressions. One is for numbers
and compares the results of two numeric expressions. The
other is for strings and compares a string variable's contents to
a string expression. The typical equal, not-equal, greater-than,
less-than, greater-than-or-equal, and less-than-or-equal are
all available for both kinds of expressions.

Because there are different kinds of comparisons that must
be performed, the comparison testing logic is also somewhat
complicated. Once the appropriate comparison has been
performed, the code loads a constant indicating what relational
operators would be true given the inputs. This value is ANDed
with a constant for the relational operator to determine if the
result is true or false.

EXIF JSR EXSKIP ; Skip any leading space after the "IF"

 LDY PROGOFF ; Read the first character to see if it could be a string var
 LDA (PROGPTR),Y

 JSR ISALPHA ; If we have a string var it has to start with a letter
 BCC _NUM

 INY ; Read the next character to see if it's a dollar sign
 LDA (PROGPTR),Y

 CMP #CHR_DOLLAR ; If we have a string var it ends with a dollar sign

148

 BNE _NUM

_STR JSR EXVAR ; Parse a string variable (syntax error if not a string)
 BCC _SYN

 JSR _RELOP ; Evaluate the relational operator and store the index temporarily
 PHA

 STZ OBUFLEN ; Evaluate the right hand side as a string into the output buffer
 JSR EXSTREXPR

 LDX OBUFLEN ; Append a NUL to the end of the buffer to make the comparison easier
 LDA #0
 STA OBUF,X

 JSR POPONE ; Pop the string variable address off the stack

 LDY #0 ; Loop over the string in the buffer

_STRLOOP LDA (NUMONE),Y ; Compare the characters in the string and the output buffer
 CMP OBUF,Y

 BEQ _STRNEXT ; Branch depending on the result of the comparison
 BCC _LT
 BRA _GT

_STRNEXT CMP #0 ; If we have a null char for both, the strings are equal
 BEQ _EQ

 INY ; Increment the position in the output buffer to compare to

 BRA _STRLOOP ; Next character

_SYN JMP RAISE_SYN ; Raise a syntax error (needs to be here for branch distance purposes)

_NUM JSR EXEXPR ; Evaluate left hand side of the relational operator

 JSR _RELOP ; Evaluate the relational operator and store the index temporarily
 PHA

 JSR EXEXPR ; Evaluate the right hand side of the relational operator

 JSR POPBOTH ; Pop both numbers off the stack

 LDA NUMONE+1 ; Compare high bytes using a signed comparison
 CMP NUMTWO+1

 BEQ _LO
 BMI _LT
 BPL _GT

_LO LDA NUMONE ; Compare low bytes using an unsigned comparison
 CMP NUMTWO

 BEQ _EQ
 BCC _LT
 BRA _GT

_EQ LDA #(REL_LE | REL_GE | REL_EQ) ; Equals is true for "<=", ">=", or "="
 BRA _THEN

_LT LDA #(REL_LE | REL_LT | REL_NE) ; Less than is true for "<=", ">" or "<>"
 BRA _THEN

_GT LDA #(REL_GE | REL_GT | REL_NE) ; Greater than is true for ">=", ">" or "<>"
 BRA _THEN

_THEN PLX ; Get the index in our table for the relational operator

149

EXIF processes IF statements and their THEN clauses.

GOTO STATEMENTS

Another simple control flow statement, the GOTO
statement, simply looks up the line number to go to, then sets
the PROGNXT pointer to that line's pointer. On the next
iteration the interpreter will run the destination line.

 AND _BITS,X ; AND the table entry with the possible matches we have

 BEQ _DONE ; If nothing matches, then the result of the comparison was false

 LDA #TOK_THEN ; We expect a "THEN" token after the string
 JSR EXCHARACT

 JMP EXSTMT ; Then evaluate the rest of the line as its own statement

_DONE RTS ; Nothing to do since condition was false

_BITS .BYTE REL_LE ; Lookup table that matches valid relop results with relops
 .BYTE REL_GE
 .BYTE REL_NE
 .BYTE REL_LT
 .BYTE REL_GT
 .BYTE REL_EQ

_RELOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character from the line (should be a relop token)
 LDA (PROGPTR),Y

 INC PROGOFF ; Consume the token

 CMP #(TOK_EQ+1) ; Was the token out of the expected range (too high)?
 BCS _SYN

 SEC ; Adjust token into lookup table value (and check if too low)
 SBC #TOK_LE
 BCC _SYN

 RTS ; All done, leave index in accumulator

150

The EXGOTO routine handles GOTO statements.

GOSUB AND RETURN STATEMENTS

GOSUB and RETURN statements are somewhat more
complicated as the line to return to must be stored somewhere.
In Cody BASIC this information is stored in a gosub-return
stack using zero-page variables GOSUBS_L (for low bytes)
and GOSUBS_H (for high bytes) containing the return line's
address. When a GOSUB is executed, the current PROGNXT
pointer is stored on the stack before jumping to the destination
line by delegating to the EXGOTO routine. A check is
performed to ensure that sufficient space exists in the gosub-
return stack.

EXGOTO JSR ONLYRUN ; Only valid in RUN mode

 JSR EXEXPR ; Evaluate the line number to jump to

 JSR POPONE ; Pop the number off the stack

 LDA NUMONE ; Copy line number to LINENUM before we search
 STA LINENUM
 LDA NUMONE+1
 STA LINENUM+1

 JSR FINDLINE ; Try to find a matching line (control flow error if none)
 BCC _LOG

 LDA LINEPTR ; Use the pointer we found as the next line to execute
 STA PROGNXT
 LDA LINEPTR+1
 STA PROGNXT+1

 RTS ; All done

_LOG JMP RAISE_LOG ; Indicate the line number was invalid

151

EXGOSUB preserves the next line pointer before branching.

When a RETURN statement is executed, the top value on the
gosub-return stack is popped and used as the new value for
PROGNXT. This returns control to the line after the GOSUB
that pushed the value on the stack, working just as we'd expect.
We also have to do a check to ensure there's a value on the
stack at all, otherwise we have a RETURN without a matching
GOSUB.

EXRETURN pops the line pointer and returns control to that
location.

EXGOSUB JSR ONLYRUN ; Only valid in RUN mode

 LDX GOSUBSNUM ; Do we have room on the GOSUB/RETURN stack?
 CPX #MAXSTACK
 BCS _SYS

 LDA PROGNXT ; Store the NEXT line pointer to execute as our return position
 STA GOSUBS_L,X
 LDA PROGNXT+1
 STA GOSUBS_H,X

 INC GOSUBSNUM ; Increment stack count (we just pushed an item on it)

 JMP EXGOTO ; The rest of our statement is just like a GOTO, so go there

_SYS JMP RAISE_SYS ; Indicate the GOSUB-RETURN stack is out of memory

EXRETURN JSR ONLYRUN ; Only valid in RUN mode

 LDX GOSUBSNUM ; Load the number of GOSUB/RETURN entries (control flow error if none)
 BEQ _LOG

 LDA GOSUBS_L-1,X ; Copy the top item on the GOSUB/RETURN stack as our next line to run
 STA PROGNXT
 LDA GOSUBS_H-1,X
 STA PROGNXT+1

 DEC GOSUBSNUM ; Decrement count (we just removed an item from the stack)

 RTS ; All done

_LOG JMP RAISE_LOG ; Indicate we have a RETURN without a GOSUB

152

FOR AND NEXT STATEMENTS

Implementing FOR and NEXT statements is somewhat more
complex. The line to return to in the FOR loop must be
preserved similar to the return line in a GOSUB. However, we
also have to keep a pointer to the FOR loop's variable so we
can update it on each loop. We also have to keep the stop
value so we know when the end of the loop has been reached.
Cody BASIC's solution is to use a stack that is similar to the
gosub-return loop, but with extra values for a variable pointer
and a stop value. This information is kept in the FORLINE_L/
FORLINE_H, FORVARS_L/FORVARS_H, and FORSTOP_L/
FORSTOP_H zero-page variables.

EXFOR JSR ONLYRUN ; Only valid in RUN mode

 JSR EXVAR ; Evaluate the loop variable as an lvalue (only number vars)
 BCS _SYN

 JSR EXEQUALS ; Consume equals

 JSR EXEXPR ; Evaluate starting expression

 LDA #TOK_TO ; Consume "TO"
 JSR EXCHARACT

 JSR EXEXPR ; Evaluate ending expression

 LDX FORSNUM ; Do we have room on the FOR/NEXT stack?
 CPX #MAXSTACK
 BCS _SYS

 LDA PROGNXT ; Store the line pointer to execute as our return position
 STA FORLINE_L,X
 LDA PROGNXT+1
 STA FORLINE_H,X

 JSR POPONE ; Pop the ending value for the FOR loop off the stack

 LDA NUMONE ; Store the ending value into the FORSTOPs
 STA FORSTOP_L,X
 LDA NUMONE+1
 STA FORSTOP_H,X

 JSR POPBOTH ; Pop the variable address and the initial value off the stack

 LDA NUMONE ; Store the variable address into the FORVARS

153

EXFOR handles the beginning of a FOR-NEXT loop.

Surprisingly, much of the FOR loop is actually handled by
the NEXT statement. When a NEXT statement is executed, it
checks to see if the value in the loop's variable is equal to the
stop value. If so, the loop is done and popped from the for-
next stack, while control proceeds to the next line. If it's not
equal, the variable is incremented by one and PROGNXT
updated with the first line in the loop's body, similar to how a
RETURN statement works. A sanity check also ensures that a
matching FOR exists.

 STA FORVARS_L,X
 LDA NUMONE+1
 STA FORVARS_H,X

 LDA NUMTWO ; Store the low byte of the initial loop value
 STA (NUMONE)

 INC NUMONE ; Move to the high byte (relies on page alignment to be safe)

 LDA NUMTWO+1 ; Store the high byte of the initial loop value
 STA (NUMONE)

 INC FORSNUM ; Increment stack count (we just pushed an item on it)

 RTS ; All done

_SYN JMP RAISE_SYN ; Raise syntax error

_SYS JMP RAISE_SYS ; Indicate the FOR-NEXT stack is out of memory

EXNEXT JSR ONLYRUN ; Only valid in RUN mode

 LDX FORSNUM ; Load the number of FOR/NEXT entries (logic error if none)
 BEQ _LOG

 LDA FORVARS_L-1,X ; Assemble the variable address from the low and high bytes
 STA MEMSPTR
 LDA FORVARS_H-1,X
 STA MEMSPTR+1

 LDY #0 ; Compare low bytes
 LDA (MEMSPTR),Y
 CMP FORSTOP_L-1,X
 BNE _LOOP

 INY ; Compare high bytes
 LDA (MEMSPTR),Y
 CMP FORSTOP_H-1,X
 BNE _LOOP

154

Much of the loop is actually implemented by EXNEXT.

DATA AND READ STATEMENTS

Cody BASIC supports a form of the RESTORE, DATA, and
READ statements common to many 8-bit BASIC dialects. A
DATA statement specifies comma-delimited number literals
that can be read into variables using the READ statement.
When data is to be read, the interpreter starts at the top of the
program, going through each line until a new DATA statement
is found.

To repeat the process from the beginning, the RESTORE
statement can be called to move the current data pointer back
to the beginning of the program. In many respects the behavior
is a number-only subset of the DATA statements in
Commodore BASIC.

Some zero-page variables and memory locations are very
important to the processing of DATA statements. The DATAPTR

 DEC FORSNUM ; This loop is done, remove it from the stack

 BRA _DONE ; All done here

_LOOP CLC ; Prepare to increment the variable by one

 LDY #0 ; Increment low byte
 LDA (MEMSPTR),Y
 ADC #1
 STA (MEMSPTR),Y

 INY ; Increment high byte (with carry)
 LDA (MEMSPTR),Y
 ADC #0
 STA (MEMSPTR),Y

 LDA FORLINE_L-1,X ; Copy the top item on the FOR/NEXT stack as our next line to run
 STA PROGNXT
 LDA FORLINE_H-1,X
 STA PROGNXT+1

_DONE RTS ; All done

_LOG JMP RAISE_LOG ; Indicate a NEXT-without-FOR error

155

variable points to the next line to search for data. Because the
content read from DATA statements is stored in a buffer until it
is read, DBUFL and DBUFH point to the start of storage for the
data's low and high bytes respectively. DBUFLEN stores the
number of items held in the current data buffer, while
DBUFPOS stores the current index within the buffer for READ
statements.

Loading data begins with the MOREDATA routine, which is
called whenever a READ statement needs data and the buffer
is empty. MOREDATA starts at the current DATAPTR and
continues until a line with a DATA statement is found. If a
matching DATA statement is found, the numbers in that
statement are parsed and stored in DBUFL and DBUFH.

Because parsing a DATA statement is in some ways similar
to the parsing of any other statement, the routine temporarily
replaces PROGPTR with the current value of DATAPTR to reuse
some of the existing routines. When a DATA statement is
encountered during the normal interpretation of a program,
it's skipped over entirely. DATA statements only get processed
when a call to READ needs more data and reading has
advanced to a given line.

MOREDATA LDA PROGPTR ; Preserve the current program pointer
 PHA
 LDA PROGPTR+1
 PHA

 LDA PROGOFF ; Preserve the current program line offset
 PHA

 LDA DATAPTR ; Temporarily use the line pointer as the data pointer
 STA PROGPTR
 LDA DATAPTR+1
 STA PROGPTR+1

_LINE JSR ISEND ; Are we at the end of the program?
 BNE _LINEOK

156

 JMP _DONE ; End of program (need JMP because of distance)

_LINEOK LDA #4 ; Start after line number in the current line
 STA PROGOFF

 JSR EXSKIP ; Skip whitespace

 LDY PROGOFF ; Read the next token
 LDA (PROGPTR),Y
 INC PROGOFF

 CMP #TOK_DATA ; If a DATA statement, process the line
 BEQ _LOOP

 JSR _NXTLINE ; Otherwise go to the next line

 BRA _LINE

_LOOP JSR EXSKIP ; Skip whitespace

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 INY ; Consume number token symbol

 CMP #CHR_NL ; Newline means we're done
 BEQ _EOL

 CMP #CHR_MINUS ; Minus means a negative number
 BEQ _NEG

 CMP #TOK_NUM ; Otherwise just a number (or a syntax error)
 BNE _SYN

_POS LDX DBUFLEN ; Load the current data buffer length

 LDA (PROGPTR),Y ; Store data low byte
 STA DBUFL,X
 INY

 LDA (PROGPTR),Y ; Store data high byte
 STA DBUFH,X
 INY

 BRA _NXT ; Next number in list

_NEG STY PROGOFF ; Update program offset

 JSR EXSKIP ; Skip any trailing space after the minus sign

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 CMP #TOK_NUM ; Must be a number
 BNE _SYN
 INY

 LDX DBUFLEN ; Load the current data buffer length

 SEC ; Prepare to subtract

 LDA #0 ; Subtract low byte from zero and store in buffer
 SBC (PROGPTR),Y
 STA DBUFL,X
 INY

 LDA #0 ; Subtract high byte from zero and store in buffer
 SBC (PROGPTR),Y

157

MOREDATA fills the data buffer with more data when called.

The EXREAD routine implements the read functionality. It
loops over one or more variables, attempting to populate each
of the variables with data. When the data buffer is empty
(DBUFLEN is zero), it calls MOREDATA to read more data. If
nothing is found, an out of data error condition exists. On the

 STA DBUFH,X
 INY

_NXT STY PROGOFF ; Update program offset

 INC DBUFLEN ; Update data buffer length (overflow shouldn't happen)

 JSR EXSKIP ; Skip any trailing space after the number

 LDY PROGOFF ; Read and consume the next character in the line
 LDA (PROGPTR),Y
 INC PROGOFF

 CMP #CHR_NL ; Newline means we're done
 BEQ _EOL

 CMP #CHR_COMMA ; Otherwise it needs to be a comma
 BNE _SYN

 BRA _LOOP ; Next data value in list

_EOL JSR _NXTLINE

_DONE PLA ; Restore the program line offset
 STA PROGOFF

 PLA ; Restore the program pointer
 STA PROGPTR+1
 PLA
 STA PROGPTR+0

 RTS

_SYN JMP RAISE_SYN

_NXTLINE CLC ; Move to the next line by adding the line length

 LDA PROGPTR
 ADC (PROGPTR)
 STA PROGPTR
 STA DATAPTR

 LDA PROGPTR+1
 ADC #0
 STA PROGPTR+1
 STA DATAPTR+1

 RTS

158

other hand, if data was found and stored in the buffer, it begins
copying data out of the buffer and into the variable list.

EXREAD implements the READ statement.

For the last statement in this group, the RESTORE statement,
the EXRESTORE routine is called. However, EXRESTORE only
calls the RESTORE routine already used when a program is

EXREAD

_LOOP JSR EXVAR ; Read the variable to read into, it has to be a number variable
 BCS _SYN

 LDA DBUFLEN ; Verify that we still have data in the buffer to read
 BNE _READ

 STZ DBUFPOS ; Out of data, need to read more in from the program
 JSR MOREDATA

 LDA DBUFLEN ; Did we find any more data in the program?
 BEQ _LOG

_READ JSR POPONE ; Pop the variable address into NUMONE

 LDX DBUFPOS ; Read current index in the data buffer

 LDA DBUFL,X ; Copy low byte
 STA (NUMONE)

 INC NUMONE ; Move on to high byte (relies on page alignment)

 LDA DBUFH,X ; Store high byte
 STA (NUMONE)

 DEC DBUFLEN ; Decrement data buffer size and increment buffer position
 INC DBUFPOS

 JSR EXSKIP ; Skip any whitespace

 LDY PROGOFF ; Load the next character from the current line
 LDA (PROGPTR),Y

 CMP #CHR_NL ; Newline means we're done with this statement
 BEQ _DONE

 CMP #CHR_COMMA ; If it's not a comma then it's a syntax error
 BNE _SYN

 INC PROGOFF ; Consume the comma

 BRA _LOOP ; Next variable

_DONE RTS

_SYN JMP RAISE_SYN
_LOG JMP RAISE_LOG

159

being run. It resets the DBUFLEN and DBUFPOS to zero, then
moves the DATAPTR to the start of program memory.

RESTORE resets the handling of DATA statements.

INPUT AND OUTPUT STATEMENTS

Cody BASIC supports input and output similar to many
other BASIC dialects. INPUT and PRINT statements handle
generic input and output. OPEN and CLOSE statements select
either the keyboard and screen or a serial port as the current I/
O device. Within the BASIC interpreter there are several
routines that work together to implement input and output.

Input and output in Cody BASIC, much like Tiny BASIC, is
line-based, with two buffers set up to store input data and
output data. IBUF is an input buffer that stores up to 255
characters read from the keyboard or a serial port. OBUF is an
output buffer that also stores 255 characters to be printed to
the screen or sent to a serial port. The length of the contents of
each buffer are stored in IBUFLEN and OBUFLEN.

The I/O routines support a combined keyboard-screen
device and the Cody Computer's two serial ports. Two zero
page variables, IOMODE and IOBAUD, contain the current I/O
mode (the device) and a value representing the baud rate

RESTORE STZ DBUFLEN ; Reset data buffer positions
 STZ DBUFPOS

 LDA #<PROGMEM ; Move data line pointer to start of program
 STA DATAPTR+0
 LDA #>PROGMEM
 STA DATAPTR+1

 RTS

160

(only used for serial ports). These are set either by code
internal to the interpreter (such as when loading or saving
programs) or by user code in the BASIC program.

OPEN AND CLOSE STATEMENTS

The OPEN and CLOSE statements are used to redirect input
and output to specific devices, either the screen/keyboard
combination (in the default case) or one of the Cody
Computer's two serial ports.

The OPEN statement is implemented by the EXOPEN
routine. It sets the IOMODE and IOBAUD values to configure
the input and output. If a serial port is selected, it also calls the
SERIALON routine to set up the UART for the selected serial
device.

The EXOPEN routine configures input and output.

The CLOSE statement is implemented by the EXCLOSE
routine. It calls SERIALOFF to disable the UART for the selected

EXOPEN JSR ONLYRUN ; Only valid in RUN mode

 JSR EXEXPR ; Read device number

 JSR EXCOMMA ; Comma separator

 JSR EXEXPR ; Baud rate (1 through 15)

 JSR POPBOTH ; Get both values off the stack

 LDA NUMTWO ; Baud rate (1 through 15)
 STA IOBAUD

 LDA NUMONE ; Device number
 STA IOMODE

 BEQ _DONE ; If a UART was selected turn serial on
 JSR SERIALON

_DONE RTS

161

serial port (for keyboard/screen operation this reduces to a
no-op). Once the UART is shut down, it clears out the IOMODE
and IOBAUD variables to return input and output to the
keyboard and screen.

The EXCLOSE routine restores I/O to the screen and keyboard.

PRINT STATEMENTS

The EXPRINT routine handles a PRINT statement to write
text to the screen. It accepts string expressions that are stored
in the output buffer and later written to the current I/O
device's output via FLUSH. It also supports some control codes
and format specifiers to handle clearing the screen, changing
text colors, aligning text, and moving the cursor, though these
are only relevant when the screen is the output device. Some
of the functionality for these features is actually implemented
in the screen routines rather than in EXPRINT itself.

EXCLOSE JSR ONLYRUN ; Only valid in RUN mode

 JSR SERIALOFF ; Turn serial off (routine should check if IOMODE is actually set)

 STZ IOMODE ; Clear IO mode and IO baud settings (defaults back to screen/keyboard)
 STZ IOBAUD

 RTS

EXPRINT STZ OBUFLEN ; Start at beginning of output buffer

_LOOP JSR EXSKIP ; Skip any leading space

 LDY PROGOFF ; Load the next character in the current line
 LDA (PROGPTR),Y

 CMP #TOK_AT ; "AT()" format specifier to change screen location
 BEQ _AT

 CMP #TOK_TAB ; "TAB() format specifier to advance position in line
 BEQ _TAB

162

Excerpt from EXPRINT showing possible arguments.

When the statement is done, it sends its output via the
FLUSH routine. FLUSH goes over the contents in the output
buffer OBUF and sends them to the current IO device. It checks
the current value of IOMODE and calls either SCREENPUT or
SERIALPUT to print out the individual characters in the buffer.
Other routines that populate the output buffer also call FLUSH
to print out the contents.

 CMP #CHR_QUOTE ; Quote means a string expression
 BEQ _STR

 CMP #TOK_STR ; "STR$" function means a string expression
 BEQ _STR

 CMP #TOK_CHR ; "CHR$" function means a string expression
 BEQ _STR

 CMP #TOK_SUB ; "SUB$" function means a string expression
 BEQ _STR

 CMP #CHR_NL ; Newline means the end of the line
 BEQ _ADV

 CMP #CHR_SEMICOLON ; Semicolon means the end of the line without advancing
 BEQ _END

 JSR ISALPHA ; At this point, the only possibility left is a string variable
 BEQ _NUM

 INY ; Look ahead one character
 LDA (PROGPTR),Y

 CMP #CHR_DOLLAR ; String variables end with a dollar sign ("$")
 BEQ _STR

FLUSH PHA ; Preserve registers
 PHX
 PHY

 LDY IOMODE ; We'll be checking the IO mode a lot

 LDX #0 ; Start at the beginning

_LOOP CPX OBUFLEN ; Check that we have more characters to print
 BEQ _END

 LDA OBUF,X ; Load the next character from the output buffer
 INX

 CPY #0 ; Determine whether to use screen or serial output
 BEQ _SCREEN

_SERIAL JSR SERIALPUT ; Print it to the serial port (current UART)

163

The FLUSH routine writes the output buffer to the current
output.

INPUT STATEMENTS

The EXINPUT routine implements the internals for Cody
BASIC's INPUT statement. It reads a line of input from the
current I/O device into the input buffer and then attempts to
parse it into the variable list passed to the statement. Both
numbers and strings are supported. As part of its operations,
the routine has to check the current I/O mode and call either
READKBD or READSER depending on the mode.

Portion of EXINPUT selecting the input source.

Unlike the common FLUSH routine for sending out printed
output, no similar single routine for reading input exists.
Instead, the READKBD routine populates the input buffer IBUF
from keyboard input, updating the screen contents as the user
types. This routine relies on a variety of other routines related

 BRA _LOOP

_SCREEN JSR SCREENPUT ; Print it on the screen
 BRA _LOOP

_END STZ OBUFLEN ; Clear the length of the output buffer (we're empty now)

_NOOFF PLY ; Restore registers
 PLX
 PLA

 RTS ; All done

_READ LDA IOMODE ; Determine where to read from
 BEQ _KBD

_SER JSR READSER ; Read our input line from the UART
 BRA _INP

_KBD JSR READKBD ; Read out input line from the keyboard

164

to screen output and keyboard scanning covered elsewhere in
this chapter.

READKBD PHA ; Preserve registers
 PHX

 LDX #0 ; Start at beginning of input buffer

_NEXT LDA JIFFIES

_WAIT JSR BLINK ; Wait for jiffies to change to know we got a new keyboard scan
 CMP JIFFIES
 BEQ _WAIT

 JSR KEYDECODE ; Decode whatever key was pressed (if anything)

 LDA KEYCODE ; Debounce keys by making sure we read the same code twice in a row
 CMP KEYDEBO
 STA KEYDEBO
 BNE _NEXT

 LDA KEYCODE ; Suppress repeated key presses by comparing to last key read
 CMP KEYLAST
 STA KEYLAST
 BEQ _NEXT

 CMP #$60 ; Check for CODY + META (shift lock) toggle
 BEQ _TOG

 BIT #$1F ; Suppress key codes when no keys (aside from modifiers) were pressed
 BEQ _NEXT

 JSR KEYTOCHR ; Convert key code to CODSCII code and preserve on stack
 PHA

 LDA KEYLOCK ; Check if the shift lock is set
 BEQ _KEY

 PLA ; Convert CODSCII code to lowercase
 JSR TOLOWER
 PHA

_KEY PLA ; Restore keyboard CODSCII code from stack

 CMP #CHR_CAN ; Skip cancel character
 BEQ _NEXT

 CMP #CHR_BS ; Check for backspace character
 BEQ _DEL

 CPX #$FE ; Check for space to store character
 BEQ _NEXT

 STA IBUF,X ; Put the character in the buffer
 INX

 CMP #CHR_NL ; Check for newline character (end of line)
 BEQ _DONE

 JSR SCREENPUT ; Echo to the screen

 BRA _NEXT

_DEL CPX #0 ; Check that we have something in the buffer to delete

165

The READKBD routine reads a line from the keyboard.

For serial operations, the READSER routine will populate
IBUF with the contents read from the serial port's UART. The
routine stops when a carriage return or newline character are
read from the serial input. This is essentially the serial
equivalent of the READKBD routine. It relies on the serial
routines covered later in the chapter.

 BEQ _NEXT

 DEX ; Back up one position the buffer and remove the char from the screen
 JSR SCREENDEL

 BRA _NEXT

_TOG LDA KEYLOCK ; Toggle shift lock
 EOR #$01
 STA KEYLOCK

 BRA _NEXT

_DONE STX IBUFLEN ; Update input buffer length

 LDA #20 ; TODO: CLEAR BLINKING CURSOR (MAKE THIS BETTER, ALSO SEE ABOVE)
 STA (CURSCRPTR)

 PLX ; Restore registers
 PLA

 RTS

READSER PHA
 PHX

 LDX #0 ; Start at beginning of buffer

_READ JSR SERIALGET ; Poll for next character
 BCC _READ

 STA IBUF,X ; Store the character and increment the buffer position
 INX

 CPX #$FE ; Do we still have space in the buffer?
 BCS _SYS

 CMP #CHR_NL ; Newline characters can be an end of line
 BEQ _DONE

 CMP #CHR_CR ; Carriage return characters can be an end of line
 BEQ _DONE

 BRA _READ ; Continue

_DONE STX IBUFLEN ; Store the input line length

166

READSER uses serial routines to read a line of text from a
UART.

LOADING AND SAVING PROGRAMS

Cody BASIC supports the LOAD and SAVE commands for
loading and saving programs. With the exception of loading
binary programs over the serial port or from a cartridge, load
and save operations rely almost entirely on other functionality
in Cody BASIC.

When loading a BASIC program, input is redirected from the
serial port, and each incoming line is tokenized as though the
user had typed the program in. When saving a program,
output is redirected to the serial port, and the program is listed
as though a LIST command had been executed.

LOAD STATEMENTS

The EXLOAD routine implements the BASIC portion of LOAD
statements. It parses parameters containing the device number
and mode before calling the appropriate routine to do the
operation. In the event that the program to be loaded is a
BASIC program, it calls LOADBAS, and for binary programs, it
calls LOADBIN instead.

 PLX
 PLA

 RTS

_SYS JMP RAISE_SYS ; Indicate we're out of space in the input buffer

EXLOAD JSR ONLYREPL ; Only valid in REPL mode

167

EXLOAD implements the LOAD statement in Cody BASIC.

LOADBAS loads BASIC programs over the serial port. Each
line is read into the input buffer IBUF just as a user would
enter the code line by line, with each line being tokenized and
appended at the end of the program. When the routine
encounters a line with no characters, it considers the load
completed and returns to the REPL loop.

Unlike many other 8-bit systems, Cody BASIC doesn't save
its BASIC programs in their tokenized format. This makes it
easier to exchange BASIC files with other computers, but it also
makes it slower to load because of the retokenization. As the
speed of tokenization is the main limit to loading programs
quickly, optimization of the tokenizer is very important. This
also means that terminal programs talking to the Cody
Computer usually need to insert a delay after each line so that
the tokenizer can keep up.

 LDA #RM_COMMAND ; Running without a line number so we can break
 STA RUNMODE

 JSR EXEXPR ; Device argument

 JSR EXCOMMA ; Comma separator

 JSR EXEXPR ; Mode argument (0 for BASIC, 1 for binary)

 JSR POPBOTH ; Pop results

 LDA #$F ; Read at 19200 baud
 STA IOBAUD

 LDA NUMONE ; Use device number as UART number
 STA IOMODE

 LDA NUMTWO ; Read BASIC or binary file as appropriate
 BNE _BIN

_BAS JSR LOADBAS ; Load tne BASIC program

 STZ RUNMODE ; Reset run mode and return
 RTS

_BIN JMP LOADBIN

168

Some simple optimizations and sanity checks are added to
this code path to speed up loading and guard against obvious
errors (such as out-of-order line numbers). Much like what
happens when input statements are redirected to serial,
LOADBAS sends a question-mark character before waiting for
each incoming line. If the device sending the program
recognizes this, it can immediately skip to the program's next
line rather than waiting for a fixed period for each line.

LOADBAS JSR NEWPROG ; Clear out the current program

 STZ LINENUM ; Start at "line zero" as the first line
 STZ LINENUM+1

 JSR SERIALON ; Turn serial port on

_LOOP LDA #CHR_QUEST ; Send question mark prompt (for more advanced loaders)
 JSR SERIALPUT

 JSR READSER ; Read a line of input

 LDX IBUFLEN ; Make sure we actually read a full line
 CPX #2
 BCC _DONE

 DEX ; Replace trailing character with a newline (could be a carriage return!)
 LDA #CHR_NL
 STA IBUF,X

 JSR TOKENIZE ; Tokenize the line

 LDA TBUF ; Basic validity check (must start with line number)
 CMP #$FF
 BNE _SYS

 LDA TBUF+2 ; Another validity check (ensure line numbers ascending)
 CMP LINENUM+1
 BNE _LINE

 LDA TBUF+1
 CMP LINENUM
 BEQ _SYS
_LINE BCC _SYS

 LDA PROGTOP ; Set destination as the top of the program
 STA LINEPTR
 LDA PROGTOP+1
 STA LINEPTR+1

 JSR INSLINE ; Insert the line into the program

 LDA TBUF+1 ; Update last line number for future tests
 STA LINENUM
 LDA TBUF+2
 STA LINENUM+1

169

The LOADBAS routine loads a BASIC program into memory.

For loading binary files, the LOADBIN routine is used
instead. Loading a binary file is somewhat easier as it's
essentially a direct read of bytes into the Cody Computer's
memory, followed by a jump to the loading address. Because
binary programs can be loaded from the serial ports (in
BASIC) or from a cartridge (on system startup), LOADBIN has
to take into account both possibilities.

The Cody Computer's binary format is simple. Two bytes
contain the start address, two bytes contain the end address,
and the remainder consists of raw bytes for the program. To
load the program the computer needs only to point a
destination pointer at the start address, read and store a byte,
and continue reading until the destination pointer equals the
end address.

 BRA _LOOP ; Read the next line

_DONE JSR SERIALOFF ; Turn off serial port

 STZ IOMODE ; Clear I/O settings back to screen/keyboard
 STZ IOBAUD

 STZ RUNMODE ; Not "running" any more

 RTS

_SYS JMP RAISE_SYS ; Indicate IO error during read

LOADBIN LDA IOMODE
 BEQ _INITSPI

_INITSER JSR SERIALON ; Start running serial port

 BRA _LOAD

_INITSPI JSR CARTON ; Begin SPI transaction

 LDA #$03 ; Command 3 to begin reading
 JSR CARTXFER

 LDX #2 ; Assume a cartridge with a two-byte address

170

 LDA VIA_IORB ; If cart size bit is high, we have a three-byte address
 BIT #CART_SIZE
 BEQ _ADDR
 INX

_ADDR LDA #$00 ; Send the appropriate number of zeroed address bytes
 JSR CARTXFER
 DEX
 BNE _ADDR

_LOAD JSR _READ ; Read starting address (low and high bytes)
 STA MEMSPTR
 STA PROGPTR

 JSR _READ
 STA MEMSPTR+1
 STA PROGPTR+1

 JSR _READ ; Read ending address (low and high bytes)
 STA MEMDPTR

 JSR _READ
 STA MEMDPTR+1

_LOOP JSR _READ ; Read and store another byte
 STA (MEMSPTR) ; Store it in memory

 LDA MEMSPTR ; If not at the destination address, read another byte
 CMP MEMDPTR
 BNE _INCR

 LDA MEMSPTR+1
 CMP MEMDPTR+1
 BNE _INCR

 LDA IOMODE ; Finished loading, shutdown for SPI vs serial is different
 BEQ _DONESPI
 BNE _DONESER

_INCR INC MEMSPTR ; Increment source pointer by one
 BNE _LOOP
 INC MEMSPTR+1
 BRA _LOOP

_DONESER JSR SERIALOFF ; Stop running serial port

 STZ IOMODE ; Clear I/O settings back to screen/keyboard
 STZ IOBAUD

 BRA _DONE

_DONESPI JSR CARTOFF

_DONE STZ RUNMODE ; Ensure run mode is zero before jumping to loaded binary

 SEI ; Disable interrupts for BASIC (keyboard scan and clock)

 LDX STACKREG ; Roll back the BASIC stack
 TXS

 JSR _JUMP

 JMP MAIN ; If it returns for some reason, start all over and hope

_JUMP JMP (PROGPTR) ; Jump to the load address (indirect JSR workaround)

_READ LDA IOMODE ; Determine what mode we're running in
 BNE _READSER

171

READBIN loads binary programs from serial ports or
cartridges.

SAVE STATEMENTS

Saving programs is somewhat more straightforward because
Cody BASIC only supports saving the current BASIC program
in memory as text. No provision is mode for dumping an
arbitrary region of memory to serial output as raw bytes, and
BASIC programs can only be saved to serial ports, not
cartridges.

To save a program, output is redirected to one of the serial
ports, the entire program is listed by calling LISTPROG, and a
blank line is written to mark the end of the program. Because
of its overall simplicity this is entirely implemented in the
EXSAVE routine used by the interpreter.

_READSPI LDA #$00 ; Read value and return as accumulator
 JSR CARTXFER
 RTS

_READSER JSR SERIALGET ; Busy-wait for another byte
 BCC _READSER
 RTS

EXSAVE JSR ONLYREPL ; Only valid in REPL mode

 LDA #RM_COMMAND ; Running without a line number so we can break
 STA RUNMODE

 JSR EXEXPR ; Read the device number for the UART
 JSR POPONE

 LDA NUMONE ; Use it as the UART number
 STA IOMODE

 LDA #$F ; Save at 19200 baud
 STA IOBAUD

 LDA #<PROGMEM ; Start at the beginning of program memory
 STA LINEPTR
 LDA #>PROGMEM
 STA LINEPTR+1

172

EXSAVE is a short routine that implements the SAVE
command.

Most of the actual work in saving a program is done by the
LISTPROG routine. This same routine is also called when a user
enters the LIST statement at the BASIC prompt, except that in
this case we're listing the program to a serial port instead.
LISTPROG works opposite to a tokenizer, starting at the
beginning of the BASIC program, going through each
tokenized line, and looking up the actual values of each token
to put them into the output buffer. Once an entire line is
decoded, it's flushed to the current output device.

 LDA PROGTOP ; Stop at the top of program memory
 STA STOPPTR
 LDA PROGTOP+1
 STA STOPPTR+1

 JSR SERIALON ; Start the serial port

 JSR LISTPROG ; List the program out the serial port to "save" it

 STZ OBUFLEN ; Write an empty line to mark the end (the loader expects this!)
 LDA #CHR_NL
 JSR PUTOUT
 JSR FLUSH

 JSR SERIALOFF ; Stop the serial port

 STZ RUNMODE ; Reset run mode

 STZ IOBAUD ; Go back to screen/keyboard IO when we're done
 STZ IOMODE

 RTS

LISTPROG PHA ; Preserve registers
 PHX
 PHY

_LOOP LDA LINEPTR+0 ; Always do a sanity check (data can come from LIST)
 CMP PROGTOP+0
 BNE _SANE

 LDA LINEPTR+1
 CMP PROGTOP+1
 BNE _SANE

 BRA _DONE

173

_SANE LDA LINEPTR+0 ; Are we at the line we're supposed to stop at?
 CMP STOPPTR+0
 BNE _LINE

 LDA LINEPTR+1
 CMP STOPPTR+1
 BNE _LINE

_DONE PLY ; No more lines in program, restore registers
 PLX
 PLA

 RTS ; All done

_LINE STZ OBUFLEN ; Start at the beginning of the output buffer

 LDY #1 ; Start at beginning of line (skipping line length byte)

 LDA (LINEPTR),Y ; Copy line number low byte
 STA NUMONE+0
 INY

 LDA (LINEPTR),Y ; Copy line number high byte
 STA NUMONE+1
 INY

 JSR TOSTRING ; Write the number's digits to the output buffer

_PART LDA (LINEPTR),Y ; Load the next byte in the line

 CMP #$FF ; Do we have a number token?
 BEQ _NUM

 BIT #$80 ; Do we have a token to decode?
 BNE _TOK

 JSR PUTOUT ; Normal character, put it into the output buffer
 INY

 CMP #CHR_NL ; If it was a newline, move on to the next source line
 BEQ _NEXT

 BRA _PART ; Next part of the current line

_TOK AND #$7F ; Mask out the number of the actual token

 CLC ; Adjust the token number into the message table
 ADC #MSG_TOKENS

 JSR PUTMSG ; Put the token's text into the output buffer

 INY ; Consume the token

 BRA _PART ; Next part of the current line

_NUM INY ; Skip leading number token tag

 LDA (LINEPTR),Y ; Copy integer low byte
 STA NUMONE+0
 INY

 LDA (LINEPTR),Y ; Copy integer high byte
 STA NUMONE+1
 INY

 JSR TOSTRING ; Print integer

 BRA _PART ; Next part of the current line

174

LISTPROG is used internally to both list and save programs.

SERIAL ROUTINES

When input and output have been redirected to one of the
serial ports (IOMODE of 1 or 2), serial routines are called to
configure the appropriate UART and perform reads and writes.
The SERIALON routine starts up the serial UART, SERIALPUT
places a byte in its transmit buffer, SERIALGET reads a byte
from its receive buffer, and SERIALOFF turns it off. Together
these provide enough features to support Cody BASIC's line-
based input and output when a serial port is enabled.

Because the register layout for each UART is identical, the
relevant assembly code uses indirect addressing to access
them. Either UART1_BASE or UART2_BASE is stored into the
UARTPTR zero page variable when SERIALON is called, and all
subsequent calls to serial routines use the specified pointer to
access the current UART.

_NEXT JSR FLUSH ; Flush the output buffer

 CLC ; Move the pointer to the next line
 LDA LINEPTR+0
 ADC (LINEPTR)
 STA LINEPTR+0
 LDA LINEPTR+1
 ADC #0
 STA LINEPTR+1

 BRA _LOOP ; Next line

SERIALON PHA
 PHY

 LDA IOMODE ; What UART are we using?
 CMP #1
 BEQ _UART1
 BCS _UART2

175

SERIALON configures a UART to transmit and receive.

Turning off serial communications is somewhat simpler, as it
only waits for any pending bytes to be transmitted and then
turns off the UART. The check for transmitting data is a two-
step process, ensuring that the transmit buffer is empty, then
checking to ensure no byte is currently stored and being sent
out.

 JMP RAISE_SYS ; Indicate an IO error (should never happen!)

_UART1 LDA #<UART1_BASE ; Running UART 1
 STA UARTPTR
 LDA #>UART1_BASE
 STA UARTPTR+1

 BRA _INIT

_UART2 LDA #<UART2_BASE ; Running UART 2
 STA UARTPTR
 LDA #>UART2_BASE
 STA UARTPTR+1

_INIT LDA #0

 LDY #UART_RXTL ; Clear out buffer registers
 STA (UARTPTR),Y

 LDY #UART_TXHD
 STA (UARTPTR),Y

 LDA IOBAUD ; Set baud rate
 AND #$0F
 LDY #UART_CNTL
 STA (UARTPTR),Y

 LDA #01 ; Enable UART
 LDY #UART_CMND
 STA (UARTPTR),Y

 LDY #UART_STAT ; Wait for UART to start up
_WAIT LDA (UARTPTR),Y
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

SERIALOFF PHA
 PHY

 LDA IOMODE ; Special check in case this was called incorrectly
 BEQ _DONE

176

SERIALOFF turns off serial communication.

To transmit data, the SERIALPUT routine is called with a
single byte. The routine checks to see if there's room in the
transmit ring buffer, and if not, blocks until a space exists in
the buffer. Once a space exists, the byte is added to the buffer
and the head position of the buffer incremented. Calling this
routine when a UART is not running will cause the routine to
block indefinitely once the buffer is full.

_WAITBUF LDY #UART_TXHD ; Wait for any pending characters to transmit
 LDA (UARTPTR),Y
 LDY #UART_TXTL
 CMP (UARTPTR),Y
 BNE _WAITBUF

 LDY #UART_STAT ; Wait for any pending byte to be sent out
_WAITBIT LDA (UARTPTR),Y
 AND #$10
 BNE _WAITBIT

_SHUTOFF LDA #0
 LDY #UART_CMND
 STA (UARTPTR),Y ; Clear bit to stop UART

 LDY #UART_STAT
_WAITOFF LDA (UARTPTR),Y ; Wait for UART to stop
 AND #$40
 BNE _WAITOFF

_DONE PLY
 PLA

 RTS

SERIALPUT PHA
 PHX
 PHY

 PHA ; Preserve character to store

_WAIT LDY #UART_TXHD ; Get current head position
 LDA (UARTPTR),Y

 INC A ; Increment by one (to test if overflow)
 AND #$07

 LDY #UART_TXTL ; Compare to current tail position (equals means we overflow!)
 CMP (UARTPTR),Y
 BEQ _WAIT

 TAX ; Store new head position (we'll need it really soon)

 LDY #UART_TXHD ; Use current head position to calculate offset
 CLC

177

The SERIALPUT routine enqueues bytes for transmission.

Receiving data is handled by the SERIALGET routine. It
checks whether a byte exists in the receive ring buffer, and if
so, copies the byte and increments the receive buffer's tail
position to consume it. If no byte exists, the routine returns
without any action being taken. Because a value of zero would
be valid, the 65C02's carry flag is used to indicate whether or
not a byte was read. Unlike the SERIALPUT routine, this routine
won't block if the UART wasn't turned on, but neither will it
read any data.

 LDA (UARTPTR),Y
 ADC #UART_TXBF
 TAY

 PLA ; Store character in buffer
 STA (UARTPTR),Y

 LDY #UART_TXHD ; Update head position
 TXA
 STA (UARTPTR),Y

 PLY
 PLX
 PLA

 RTS

SERIALGET PHY

 LDY #UART_STAT ; Get current control register
 LDA (UARTPTR),Y

 BIT #$06 ; Test that no error bits are set
 BNE _SYS

 LDY #UART_RXTL ; Get current tail position
 LDA (UARTPTR),Y

 LDY #UART_RXHD ; Compare to head position
 CMP (UARTPTR),Y

 BEQ _EMPTY ; If they match then the buffer is empty

 CLC ; Calculate the buffer position and read the character
 ADC #UART_RXBF
 TAY
 LDA (UARTPTR),Y

 PHA ; Keep the character around for later

178

The SERIALGET routine reads a byte from the receive buffer.

SCREEN OUTPUT

Cody BASIC has a set of routines to handle text output to
the screen. Similar in some ways to a terminal device, the
routines not only display characters but will move the cursor
location, clear the screen, and change the foreground and
background colors of text based on control codes. The
SCREENPUT, SCREENDEL, SCREENCLR, SCREENADV, and
SCREENPOS routines contain the necessary code for screen
output.

Screen display routines share a few zero page variables that
encapsulate the current state of screen output. The cursor
position is actually represented two different ways. The
CURCOL and CURROW zero-page variables contain the
current x and y coordinates of the cursor, while the
CURSCRPTR and CURCOLPTR values point to the
corresponding positions in screen and color memory. Because
the routines also allow changes to foreground and background

 LDY #UART_RXTL ; Update tail position since we read from the buffer
 LDA (UARTPTR),Y
 INC A
 AND #$07
 STA (UARTPTR),Y

 PLA ; Pull the character we read off the stack

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_SYS JMP RAISE_SYS ; Indicate we detected an IO error

179

colors, another zero-page variable, CURATTR, contains the
current foreground and background colors to use for new
output.

The SCREENPUT routine displays a single character on the
screen at the current cursor position. It also takes into account
special control codes that change the foreground and
background colors or clear the screen, and must also account
for scrolling the screen when the cursor reaches the bottom.

Excerpt showing control codes handled by SCREENPUT.

Like other screen routines, it also has to ensure that certain
critical sections of code aren't changed by the timer interrupt,
which could happen if the user attempts to break out of the
program. If this happened at a particularly bad time, internal
variables related to the cursor position could be corrupted. This
would cause future output to be broken and could potentially
have knock-on effects for the rest of the system, particularly if
the values of the pointers are corrupted.

SCREENPUT CMP #CHR_CLEAR ; Clear screen
 BEQ _CLR

 CMP #CHR_REVERSE ; Reverse field
 BEQ _REV

 CMP #CHR_NL ; Newline (advance screen)
 BEQ _NL

 CMP #$F0 ; Foreground color special character
 BCS _FG

 CMP #$E0 ; Background color special character
 BCS _BG

 PHP ; Store flags and disable interrupts (cursor/pointer updates are critical section)
 SEI

 STA (CURSCRPTR) ; Store the character in the screen buffer

 PHA ; Store the cursor attribute in the color memory buffer

180

Critical section in SCREENPUT that writes a character.

When the user is typing and wants to delete a character, we
need to have a way to remove it from the screen. In this
situation SCREENDEL is called, which clears the screen content
for the cursor and the previous position. To ensure everything
matches up, it also moves the cursor position and memory
pointers back by one, also taking into consideration the
possibility that the cursor went back an entire line. This routine
is needed by READKBD when the user wants to delete part of
their newly-typed input.

 LDA CURATTR
 STA (CURCOLPTR)
 PLA

 INC CURSCRPTR+0 ; Increment screen memory location
 BNE _ATTR
 INC CURSCRPTR+1

_ATTR INC CURCOLPTR+0 ; Increment color memory location
 BNE _DOIT
 INC CURCOLPTR+1

_DOIT LDA CURCOL ; Increment the cursor x position
 INC A
 STA CURCOL
 CMP #40
 BNE _INT

 STZ CURCOL ; Increment the cursor y position (when needed)
 LDA CURROW
 INC A
 STA CURROW
 CMP #25
 BNE _INT

 STZ CURCOL ; Move the cursor to the start of the last row (0, 24)
 LDA #24
 STA CURROW

 PLP ; Out of critical section, copying memory can take a lot of cycles

 JMP _SCR ; Jump to scroll the memory (moved outside to make branches fit)

_INT PLP ; Pull processor flags to re-enable the previous interrupt status

SCREENDEL PHA

 DEC CURCOL ; decrement column
 BPL _DEL
 LDA #39 ; wrapped to previous column

181

SCREENDEL deletes a character and handles related
calculations.

Other routines also exist to handle particular aspects of
screen output. The SCREENADV routine advances the screen
by a single line, while SCREENPOS moves the cursor position
and memory pointers based on new column and row
coordinates. SCREENCLR clears the contents of screen memory
and sets the contents of color memory, also moving the cursor
back to the top of the screen. These routines are used within
the codebase to handle special output needs.

 STA CURCOL
 DEC CURROW ; decrement row since we wrapped around
 BPL _DEL
 STZ CURCOL ; wrapped off screen, need to correct that
 INC CURROW
 BRA _DONE

_DEL LDA #$20 ; clear current cursor position
 STA (CURSCRPTR)
 SEC ; subtract one from the cursor pointer
 LDA CURSCRPTR+0
 SBC #1
 STA CURSCRPTR+0
 LDA CURSCRPTR+1
 SBC #0
 STA CURSCRPTR+1
 LDA #$20 ; replace the character with the current cursor attributes to clear it
 STA (CURSCRPTR)

 LDA CURATTR ; clear current cursor position
 STA (CURCOLPTR)
 SEC ; subtract one from the cursor pointer
 LDA CURCOLPTR+0
 SBC #1
 STA CURCOLPTR+0
 LDA CURCOLPTR+1
 SBC #0
 STA CURCOLPTR+1
 LDA CURATTR ; replace with the current cursor attributes to clear it
 STA (CURCOLPTR)

_DONE PLA

 RTS

SCREENCLR PHA

 PHP ; Disable interrupts (critical section)
 SEI

182

SCREENCLR clears the screen and moves the cursor back to the
top left.

 STZ CURCOL ; Reset the cursor x and cursor y to (0, 0)
 STZ CURROW

 STZ TABPOS ; Reset tab position

 LDA #<SCRRAM ; Reset the cursor pointer to the start of text memory
 STA CURSCRPTR+0
 LDA #>SCRRAM
 STA CURSCRPTR+1

 LDA #<COLRAM ; Reset the cursor color pointer to the start of color memory
 STA CURCOLPTR+0
 LDA #>COLRAM
 STA CURCOLPTR+1

 PLP ; Restore interrupts (critical section)

 LDA #<SCRRAM ; Fill the contents of text memory with spaces
 STA MEMDPTR+0
 LDA #>SCRRAM
 STA MEMDPTR+1
 LDA #<1000
 STA MEMSIZE+0
 LDA #>1000
 STA MEMSIZE+1
 LDA #$20
 JSR MEMFILL

 LDA #<COLRAM ; Fill the contents of color memory with the current attribute
 STA MEMDPTR+0
 LDA #>COLRAM
 STA MEMDPTR+1
 LDA #<1000
 STA MEMSIZE+0
 LDA #>1000
 STA MEMSIZE+1
 LDA CURATTR
 JSR MEMFILL

 PLA

 RTS

183

INTRODUCTION

This chapter describes how to build your own Cody
Computer, including the assembly of a small mechanical
keyboard, the main printed circuit board, and the computer's
case. Each part is broken out into its own section, and inside
each section the assembly is broken into multiple steps. Photos
are also provided to point out aspects of the assembly process.
You should read the chapter in its entirety before beginning
the build.

Just because something worked well for me doesn't
mean it will work as well for you. As you go through the
build, you'll want to consider what you're doing and
evaluate your own results. The Cody Computer is more
like a garage kit, particularly with the 3D printing side, so
you'll want to build accordingly.

NOTES ON 3D PRINTING

The Cody Computer is heavily dependent on 3D printing for
its construction, so you will need to either print the parts
yourself or find someone who can print them for you. When
developing the Cody Computer we were able to print all the
parts on a more or less stock Ender 3 Pro, with the only major
modifications being a glass bed and an eventual extruder
replacement.

185

Because of differences between 3D printers, you may need
to make adjustments to obtain suitable results. It's assumed
your printer is dialed in with a reasonably high level of
accuracy. If not you should be comfortable making your own
adjustments to the printer and ensuring the fit of finished parts
as they come off. The OpenSCAD design files are also
provided if you need to make major adjustments to some of
the dimensions for the build.

It's also worth planning the order in which you print the
parts. One option is to print the parts for each step as needed,
checking for proper fit at that time. Another option is to print
the parts up front, perhaps even batching some of them
together, and perform many of the basic test-fits up front as
well. Whatever approach you use, make sure that you perform
the test fits mentioned in the various assembly steps. If you
decide to group your prints together by color, see the
following:

Black PLA filament (Hatchbox Black, Inland Black, or
equivalent):

Alphanumeric keycaps (KeycapA.stl through
KeycapZ.stl)
Cody keycap (KeycapCody.stl)
Meta keycap (KeycapMeta.stl)
Arrow keycap (KeycapArrow.stl)
Spacebar (Spacebar.stl)
Keyboard plate (KeyboardPlate.stl)
Case badge (CaseBadge.stl)
LED holder (LEDHolder.stl)

•

◦

◦
◦
◦
◦
◦
◦
◦

186

Left mounting bracket
(KeyboardBracketWithoutHoles.stl)
Right mounting bracket
(KeyboardBracketWithHoles.stl)

Beige PLA filament (Inland Light Brown or equivalent):
Case top (CaseTop.stl)
Case bottom (CaseBottom.stl)

White PLA (if using paint) or various color PLA:
Case badge inlay, red (CaseBadgeInlay.stl)
Case badge inlay, orange (CaseBadgeInlay.stl)
Case badge inlay, yellow (CaseBadgeInlay.stl)
Case badge inlay, green (CaseBadgeInlay.stl)
Case badge inlay, blue (CaseBadgeInlay.stl)

When printing consider the orientation of the parts on the
print bed. For large pieces such as the case top and bottom, we
printed them upside down to avoid the large overhead of
supports for such pieces. The keyboard brackets were printed
upright despite a need for some supports to avoid
dimensionality problems for the magnet and screw pilot holes.
Keycaps were printed face-down on a glass bed with good
leveling to minimize gaps for later application of the air-dry
clay.

◦

◦

•

◦
◦

•

◦
◦
◦
◦
◦

187

A Creality Ender 3 Pro printing the Cody Computer's case top.
Note the upside-down print orientation to avoid printing
supports.

Also consider the infill and resolution settings when you run
the STL files through your slicer. For parts with very specific
dimensional requirements, such as the keycaps and their
stems, use a standard or high resolution. For larger parts that
take a long time and require significant strength, such as the
case top and bottom, consider a lower resolution or draft print.
You will want to take into account your own printer's
characteristics and your tolerance for long builds when making
such decisions.

188

KEYBOARD ASSEMBLY

Your first step in building the Cody Computer is to assemble
its keyboard module. It's a good place to start because it
combines all the things you'll need to do in later steps, from
3D printing (with reasonably tight tolerances) to soldering up
a circuit board.

If you have any problems in this step, it may indicate that
you want to work them out before going on to later steps. For
example, if your printer isn't calibrated enough or you need to
make your own adjustments to the design files, there's a good
chance you'll find that out here. Likewise, if you run into
problems with soldering, it's better to solve those problems
now before you start soldering the main logic board. In
general, the keyboard is going to be a lot more forgiving of
mistakes.

MAKING THE KEYCAPS

In this step we'll print out and make the keycaps for the
keyboard. The keycaps have Cherry MX compatible stems, but
they have a smaller spacing, so you can't use standard keycaps
with the Cody Computer. There are 30 keycaps including a
spacebar key.

Many early computer keycaps were manufactured using
"double-shot" injection moulding. This meant that one color of
plastic was shot into the mould for the keycap itself, while a
second color of plastic was shot into the mould for the legend

189

on it. You can do something similar with 3D printing in multiple
colors (and we actually did that as well), but we obtained the
best results using air-dry clay deposited into recessed legends
in the 3D printed keycaps.

Before your get too far into the build process, it's a
good idea to print a single keycap and test the fit against
one of the Cherry MX switches if you haven't done so
already. If adjustments are needed to your printer or to
the OpenSCAD models to work with your printer or
keyswitches, you want to do that before you've made a
useless set of keycaps.

For this step, you'll need the following:

26 alphanumeric keycaps (KeycapA.stl through
KeycapZ.stl)
1 Cody keycap (KeycapCody.stl)
1 Arrow keycap (KeycapArrow.stl)
1 Meta keycap (KeycapMeta.stl)
1 Spacebar keycap (Spacebar.stl)
White air-dry clay (Sculpey Air-Dry or equivalent)
Wet cloth
Dry cloth

Before beginning the assembly, wash and dry the keycaps.
This will help the air-dry clay adhere to the plastic. Once the

•

•
•
•
•
•
•
•

190

keycaps are dry, do the following for each keycap except the
spacebar:

Take a small amount of air-dry clay and roll it into the
keycap legend.
Wipe away the excess from the keycap using your finger.
Clean up any remainder from the keycap surface with the
wet cloth. Be careful not to wipe away much of the clay in
the legends.
Dry off the top of the keycap by gently blotting with the
dry cloth. Be careful not to dislodge the clay in the
legends.

1.

2.
3.

4.

191

A close-up of some keycaps after the air-dry clay has been
applied. From left are the Cody key, the Meta key, and the
Arrow key.

MAKING THE KEYBOARD CABLE

You'll also need to make an 11-pin cable to connect the
keyboard to the Cody Computer's main circuit board. Rather
than making a real cable it's a minimal approach using some
jumper wires and electrical tape to create a cable by taping the
connectors together. One of the actual connectors the cable
will connect to is used as a jig to hold the connectors during
the assembly.

192

For the jumper wire in this step, use the kind that comes in a
strip and can be peeled apart. You're basically trying to make a
custom cable on the cheap, so if the wires are connected, you
can just tape the connectors together with electrical tape and
end up with a reasonable substitute. Jumper wire like this is
colloquially referred to as "jumper jerky" and can be found at
many retailers.

For this step you'll require only a few parts:

1 11-pin male .100" header, right angle
11 10cm jumper wire with .100" female connector (from
"jumper jerky")
Electrical tape
Scissors

Once you've collected the above, proceed with the
assembly:

Insert one end of the connected jumper wire onto the
right-angle header.
Wrap electrical tape around the female connectors on
that end to secure them together.
Remove the connected jumper wire from the right-angle
header.
Insert the untaped end of the connected jumper wire onto
the right-angle header.
As before, wrap electrical tape around the female
connectors to secure them together.
Remove the cable from the connector.

•
•

•
•

1.

2.

3.

4.

5.

6.

193

The assembled keyboard cable. Note the electrical tape
holding the connectors on each end together.

ASSEMBLING THE KEYBOARD

Once you have the keycaps it's time to build the keyboard.
You need to be careful and follow the steps in order. You'll be
soldering a connector onto a board that ends up hidden by a
keyboard plate. You'll also be inserting switches through a
keyboard plate into a printed circuit board and then soldering
them. If you do the steps in the wrong order, you'll end up in a
situation where further assembly may be mechanically
impossible.

194

This step requires the following:

30 keycaps including spacebar
31 keyswitches, 5 pin, PCB mount (Cherry MX or
equivalent)
1 11-pin male .100" header, right angle
Keyboard plate (KeyboardPlate.stl)
Keyboard cable
Solder
Soldering iron

Refer to the above caution about following the assembly
steps. As with anything, it's worth going through the
instructions using the parts as a dry run, making sure you
understand what you're doing. When adding the spacebar
keycap, equal force on both switches is necessary, and you
may need to sand the interior of the spacebar to avoid
jamming. When you're ready, assemble the keyboard module
through the following steps:

Solder the 11-pin right angle male connector to J1. Ensure
the connector is flat and the solder joints are good.
Place the keyboard plate over the keyboard printed circuit
board. Ensure the notch in the keyboard plate aligns with
the connector.
Insert the Cherry MX switches into the circuit board
through the keyboard plate. Ensure the keyswitches are
fully seated into the circuit board and hold the plate
securely.
Solder each of the keyswitches to the circuit board.

•
•

•
•
•
•
•

1.

2.

3.

4.

195

Press each of the keycaps onto the appropriate switch.
Use the photo below to determine the location for each
key.
Connect one end of the keyboard cable to connector J1.
The cable should fit through the notch in the keyboard
plate.

The back of the assembled keyboard. Note the placement of
the printed circuit board inside the keyboard plate with the
keyswitches soldered from the bottom. Also note connector J1
soldered from the now-hidden front of the board, now with
attached keyboard cable.

5.

6.

196

The front of the assembled keyboard. Use this photo as a
reference when placing the keycaps.

PRINTED CIRCUIT BOARD ASSEMBLY

The next step is to assemble the printed circuit board for the
Cody Computer. This board is the motherboard or logic board
for the entire computer, containing all the chips and discrete
components necessary for the computer to run (with the
exception of the keyboard).

It's important to proceed with the assembly methodically
and use good soldering technique at each step. Ensure that

197

components are held to the board by a clamp or piece of tape
if needed and check for cold solder joints or solder bridges.

INSTALLING INTEGRATED CIRCUIT SOCKETS

To begin we'll install the sockets for the integrated circuits.
Rather than solder the chips directly to the board, we install
sockets and add them at a later step. While unlikely to ever
happen, this makes it easier to replace one of them if
something goes wrong. It also makes it less likely to mess one
of them up while soldering, as they're not installed until the
end. This step requires:

3 40-pin wide DIP sockets
1 32-pin wide DIP socket
1 20-pin DIP socket
1 16-pin DIP socket
1 8-pin DIP socket

When installing the sockets, note if your socket contains a
notch, dot, half-circle, or other identifier to indicate the top of
the IC. If so, ensure they are rotated the same way as the
silkscreen on the printed circuit board. Once the sockets have
been collected, proceed with the assembly:

Solder a 40-pin wide DIP socket into U3 rotated 180
degrees.
Solder a 40-pin wide DIP socket into U5 rotated 180
degrees.

•
•
•
•
•

1.

2.

198

Solder a 40-pin wide DIP socket into U7 rotated 180
degrees.
Solder the 32-pin wide DIP socket into U6.
Solder the 20-pin DIP socket into U1 rotated 180 degrees.
Solder the 16-pin DIP socket into U8 rotated 90 degrees
counterclockwise.
Solder the 8-pin DIP socket into U4.

The printed circuit board with the IC sockets soldered in. Note
the varying orientations and corresponding notches in the IC
sockets.

3.

4.
5.
6.

7.

199

INSTALLING DIODES

In this step we'll install the diodes for the joystick ports. The
Cody Computer uses the same circuit to read the joystick ports
as it does to scan the keyboard. Without these diodes, the
joystick ports could interfere with each other, causing false
reads when both joysticks are in use. You will need:

10 1N4148 small-signal diodes

Note that diodes have a polarity. This means that if you
solder them in backwards, they won't work as expected. Each
diode has a stripe on it indicating the diode's cathode, and this
should be aligned to the corresponding stripe on the
silkscreen. Proceed with the assembly starting in order on the
PCB:

Solder 1N4148 diodes into D5, D3, D2, D1, D4, D9, D6, D7,
D8, and D10.

•

1.

200

The diodes soldered next to U7 and the future joystick port
connectors. Note the stripes and their orientation.

INSTALLING DECOUPLING CAPACITORS

Next we'll install the decoupling capacitors. These are small
capacitors that help filter out tiny blips in the Cody
Computer's power supply and ensure reliable operation.
They're located next to the power supply pins for the
integrated circuits. (One of these, C6, is actually part of the

201

audio circuit, but as it has the same capacitance value, we
include it in this step.) You'll need the following:

9 0.1µF ceramic capacitors (KEMET C315C104K1R5TA or
equivalent)

These are ceramic capacitors and have no polarity, so you
don't have to worry about the direction you solder them in
(other than, perhaps, for aesthetic purposes). Make sure you
solder all of the following:

Solder 0.1µF ceramic capacitors into C1, C2, C6, C3, C4, C8,
C9, C10, and C11.

•

1.

202

The board with decoupling capacitors (plus C6, part of the
audio circuit) installed.

INSTALLING THE EXPANSION CONNECTOR

The Cody Computer has an expansion port for DIY
experiments, cartridges, or third-party peripherals. The
mechanical connection is a 20-pin right angle .100" female
connector. For this step you'll need the following:

1 Raspberry Pi Pico stackable header

Because of their ubiquity, we use one from a set of stackable
Raspberry Pi Pico headers (the kind with the long pins) and

•

203

bend it to fit. Note that the port isn't electrically compatible.
We're just using the header, and any standard right-angle
female header cut to size would also suffice. For this step do
the following:

Insert the stackable header into J6 and bend until aligned
with the board edge.
Solder the stackable header to J6.

The board with the Raspberry Pi Pico stackable header bent
into place and soldered.

1.

2.

204

INSTALLING PULL-UP RESISTORS

In this step we'll install several pull-up resistors. Most of
these are used by the keyboard matrix, but there are also
others. R2 is used to pull up the Propeller's RESET pin, R3 is
used as a pull-up for I2C EEPROM communication, and R8
pulls the 65C02's RDY pin high to protect it in the event of a
wait-for-interrupt instruction. This step requires the following
resistors:

8 10kΩ (brown-black-orange) resistors, 1/4 watt, 5%
tolerance
1 3.3kΩ (orange-orange-red) resistors, 1/4 watt, 5%
tolerance

Installation should proceed as follows:

Solder 10kΩ resistors to R3, R9, R10, R11, R12, and R13.
Solder 10kΩ resistors to R2 and R14 in a vertical
orientation (see photo).
Solder the 3.3kΩ resistor to R8.

•

•

1.
2.

3.

205

A close-up of some of the resistors after being soldered to the
board. Note the vertical orientations of R2 and R14.

INSTALLING POWER SUPPLY COMPONENTS

The Cody Computer's power supply circuit is located at the
top right of the printed circuit board. It consists of a voltage
regulator, a large electrolytic capacitor, some connectors, and a
resistor. This step requires the following parts:

1 LM2937ET-3.3 voltage regulator IC
1 1000µF electrolytic capacitor (Rubycon
10ZLH1000MEFC8X16 or equivalent)
1 1kΩ (brown-black-red) resistor, 5% tolerance

•
•

•

206

1 2.0x6.5mm DC barrel jack (CUI PJ-102A or equivalent)
1 2-pin male .100" vertical header pin

The voltage regulator needs to be bent at a 90-degree
angle so that the body and heat sink match the silkscreen on
the circuit board. The electrolytic capacitor is polarized and
must be installed according to the silkscreen. For this assembly
step do the following:

Solder the LM2937ET-3.3 to U2. Ensure the IC is placed
and bent horizontally as shown in the photo.
Solder the 1000µF capacitor to C5. Verify the longer lead
is on the positive side and the stripe on the case is on the
negative side, following the silkscreen.
Solder the 1kΩ resistor to R1.
Solder the DC barrel jack to J1.
Solder the male header pins to J2.

•
•

1.

2.

3.
4.
5.

207

The power supply circuit including the horizontally-aligned
voltage regulator and properly-oriented electrolytic capacitor.
Also note the DC barrel jack.

INSTALLING PROPELLER COMPONENTS

There are still some discrete components to install for the
Propeller. These include a 5 MHz crystal that serves as the
Propeller's external clock signal as well as some resistors and
capacitors used for audio and video output. This step uses the
following:

1 5Mhz 20pF HC-49/US crystal (ECS ECS-50-20-4X or
equivalent)

•

208

1 10µF electrolytic capacitor (KEMET ESL106M050AC3AA
or equivalent)
1 1.1kΩ (brown-brown-red) resistor, 1/4 watt, 1% tolerance
1 560Ω (green-blue-brown) resistor, 1/4 watt, 1%
tolerance
1 270Ω (red-violet-brown) resistor, 1/4 watt, 1% tolerance
1 220Ω (red-red-brown) resistor, 1/4 watt, 1% tolerance

Once you've found all the components solder the following:

Solder the 20pF crystal to Y1.
Solder the 1.1kΩ resistor to R6.
Solder the 560Ω resistor to R5.
Solder the 270kΩ resistor to R4.
Solder the 220kΩ resistor to R7.
Solder the 10µF capacitor to C7.

•

•
•

•
•

1.
2.
3.
4.
5.
6.

209

The extra components needed for the Propeller. To the left of
the socket, note from the top the crystal oscillator, video DAC
resistors, and capacitors and resistor for the audio circuit.

INSTALLING ADDITIONAL REAR CONNECTORS

In this step we'll finish adding the remaining connectors
along the back of the Cody Computer. These include the audio
and video jacks, a jumper used for firmware programming, and
a four-pin connector wired into the Propeller as a serial port.
The RCA jack colors are not required but are specified to help

210

tell the video and audio jacks apart once the Cody Computer is
assembled. You'll need the following parts for this step:

1 RCA jack, black color (CUI RCJ-011 or equivalent)
1 RCA jack, yellow color (CUI RCJ-014 or equivalent)
1 2-pin male .100" header, vertical
1 4-pin male .100" header, right-angle

Add the following connectors:

Solder the 4-pin right-angle male header to J3.
Solder the 2-pin vertical male header to JP1.
Solder the black RCA jack to J5.
Solder the yellow RCA jack to J4.

•
•
•
•

1.
2.
3.
4.

211

Additional connectors on the back of the Cody Computer. Note
from left to right the NTSC video output jack, audio output jack,
jumper pins (without jumper attached), and Propeller Plug
connector.

INSTALLING KEYBOARD AND JOYSTICK
CONNECTORS

In this step we'll add the connectors for the joystick ports
and the keyboard. The DB9 connectors used for the joystick
ports as they must have a very specific shape to fit in the
alloted space on the board. When ordering you should check

212

the mechanical diagrams to ensure the parts will actually fit.
Collect the following:

2 male DB9 connectors, .318" footprint (NorComp
182-009-113R531 or equivalent)
1 11-pin male .100" header, vertical

Solder the remaining components:

Solder the 11-pin vertical male header to J7.
Solder the two male DB9 connectors to J8 and J9.

The Cody Computer's keyboard connector soldered at the
bottom of the board.

•

•

1.
2.

213

The Cody Computer's joystick ports soldered along the right
side of the board.

POWER TEST

Now that the printed circuit board has been assembled
(except for inserting the ICs), we can begin to test the circuit.
We'll start by testing the power supply to ensure we're getting
the expected 3.3 volts. If we're not, it's likely a sign of a solder
bridge, PCB problem, or an issue with the power supply. It's

214

better to find that out before we insert any chips into their
sockets. For this step you will need:

5-volt (or similar) DC power supply with 5.5mm x 2.1mm
connector
Voltmeter/multimeter

Any wall-wart transformer or power supply with a suitable
plug and an output voltage of 5V (or slightly above) should
work well for this test. To test the circuit do the following:

Ensure the printed circuit board is resting on a
nonconductive surface.
Plug the power supply's barrel plug into the DC power
jack on the circuit board.
Connect the power supply into a wall outlet.
Use your voltmeter to measure the voltage across pins 1
(GND) and 2 (3.3V) on the expansion port.
Verify the voltage is 3.3V or very close to it.
For advanced builders, find the power supply pins on
some of the IC sockets, and test those also.
Disconnect the power supply.

If the test fails, check the power supply circuit on the printed
circuit board. Also check the voltage from the DC power supply
is correct. If none of this yields a result, examine the rest of the
printed circuit board for defective traces or solder bridges.

•

•

1.

2.

3.
4.

5.
6.

7.

215

Use a voltmeter to check that the output from the power
supply circuit is correct. You should measure a steady voltage
around 3.3 volts.

FIRMWARE PROGRAMMING

In this step we'll program the Propeller's firmware. To do so
you'll need to insert the first two integrated circuits, the
Propeller and its 32-kilobyte EEPROM, into the matching
sockets on the board. Once you've done that you'll use
Propeller software to write the program into the EEPROM.
Before you begin, you'll want to download the software
(Propeller IDE or similar) for your computer and familiarize
yourself with it.

216

Also pay attention to the jumper JP1 during assembly. When
closed, the Propeller's reset pin connects to the Prop Plug's
reset pin, allowing the Prop Plug to reset the Propeller and
enter programming mode. When open, the two are
disconnected and the Propeller's reset pin is held high. The
latter configuration is the normal mode of operation, but you'll
want to remember the jumper exists in case you ever program
your own custom firmware.

You will need the following for this step:

1 Propeller P8X32A integrated circuit (DIP-40)
1 24LC256 32-kilobyte I2C EEPROM or equivalent (DIP-8)
1 Prop Plug with USB cable
1 2-pin jumper/shunt (Harwin M7583-46 or equivalent)
Computer running Propeller IDE (or similar programming
software)

When inserting the integrated circuits, ensure that they're
fully seated into their sockets and none of the pins are bent.

The exact steps for programming the firmware will differ
depending on the IDE you use, so you will need to refer to the
tool's documentation for exact steps. The overall procedure will
be the same:

Ensure power is turned off to the printed circuit board.
Insert the Propeller IC into U3 rotated 180 degrees.
Insert the 24LC256 I2C EEPROM into U4.
Place the jumper over both pins of JP1.
Plug the Prop Plug into J3. Verify the pinout (pin 4 is
GND).

•
•
•
•
•

1.
2.
3.
4.
5.

217

Plug the Prop Plug's USB cable into your computer.
Connect power to the printed circuit board.
Launch your Propeller software (for example, Propeller
IDE).
Open the main firmware (cody_computer.spin) and write
it.
Verify that the software states the program was
successfully written.
Turn off power to the printed circuit board.
Unplug the Prop Plug from J3.
Remove the jumper. To avoid losing it reattach to only 1
pin on JP1.

If your programming software doesn't recognize the Prop
Plug, try disconnecting and reconnecting the cable and/or
Prop Plug. If that does not work, ensure that the programming
software has permissions to the Prop Plug's USB. If
programming the Propeller fails, check the solder connections
and ensure the Propeller and its EEPROM are properly seated
in their sockets. Also ensure the jumper is correctly attached.

6.
7.
8.

9.

10.

11.
12.
13.

218

The Prop Plug connected to the serial port on the printed
circuit board. Note jumper JP1 in the firmware programming
position with both pins covered.

INSTALLING THE INTEGRATED CIRCUITS

In this step we'll insert the remaining ICs into their sockets.
It's very important to make sure that power is disconnected for
this step. You will need:

1 74HC541 octal line driver (DIP-20)
1 W65C02 microprocessor (DIP-40)
1 AS6C1008 128-kilobyte static RAM (DIP-32)
1 W65C22 Versatile Interface Adapter (DIP-40)

•
•
•
•

219

1 CD4051 1-of-8 analog multiplexer (DIP-16)

It's also very important to check that the orientation of the
integrated circuits matches the silkscreen. Many of the ICs are
installed rotated by 90 or 180 degrees. As before, make sure
that each IC goes into the socket fully with no bent pins. Insert
the ICs as follows:

Insert the 74HC541 into U1. Note U1 is rotated 180
degrees.
Insert the W65C02 into U5. Note U5 is rotated 180
degrees
Insert the AS6C1008 into U6.
Insert the W65C22 into U7. Note U7 is rotated 180
degrees
Insert the CD4051 into U8. Note U8 is rotated 90 degrees
counterclockwise.

•

1.

2.

3.
4.

5.

220

Close up of several integrated circuts securely inserted into
their sockets. Note the differing orientations and how the
notches on the ICs match with the sockets and silkscreen
markings.

CASE ASSEMBLY

Once the printed circuit board and keyboard have been
assembled, it's time to begin assembling the Cody Computer's
case. We'll start with the top of the case and its components,
including the case badge and power LED. From there we'll
assemble the rest from the bottom up, installing the printed
circuit board and keyboard brackets into the case bottom. Once
the bottom portion is finished we'll attach the keyboard to it as

221

well, connecting the keyboard cable to the main printed circuit
board. Lastly, we'll affix magnets to hold the case together,
connect the power LED, and finish our assembly.

CASE BADGE ASSEMBLY

First we'll assemble the case badge. You should have
already printed the case badge and the case badge inlays
before beginning this step. Note that if you didn't print the
case badge inlays in different colors, you'll have to paint them
as part of this assembly step. For this step you'll need:

1 case badge (CaseBadge.stl)
5 case badge inlays (CaseBadgeInlays.stl)
White air-dry clay
Cyanoacrylate glue
Optional: Paint (red, orange, yellow, green, and blue) for
inlays

Once you're prepared and have collected the parts, proceed
with the following:

Wash and dry the case badge and case badge inlays. This
will help the air-dry clay (and paint if needed) adhere to
the plastic.
Test-fit the case badge inlays into the slots on the case
badge. Sand if necessary.
Insert air-dry clay into the "CODY" legend on the case
badge. Wipe away excess with a cloth and water.

•
•
•
•
•

1.

2.

3.

222

If the inlays were not printed using color filaments, paint
the inlays (red, orange, yellow, green, and blue).
Allow the air-dry clay to dry completely. If you painted
the inlays, allow these to dry then remove any paint from
the gluing surfaces.
Glue the inlays into the case badge slots (top: red,
orange, yellow, green, and blue).

An almost-completed Cody Computer case badge. Air-dry
clay was pressed into the legend and all but the blue inlay
have been glued into place.

4.

5.

6.

223

POWER LED ASSEMBLY

Next we need to assemble the power LED. We're going to
solder some leads to the LED and make some other
adjustments so that it can be inserted into the Power LED
holder. It may be helpful to refer to the attached photo. This
step requires the following parts and tools:

1 10mm LED (blue)
1 10cm jumper wire with .100" female connector
Electrical tape
Solder
Soldering iron
Scissors
Wire cutters
Sharpie (or other marker)

The assembly steps are as follows:

Bend the female jumper wire into two equal lengths and
secure the connector end with the tape.
Cut the jumper wire into two pieces at the bend and strip
two or three millimeters from the cut ends.
Twist and affix the wire ends onto the LED leads, marking
the wire connected to the cathode (longer lead).
Solder the wire ends to the LED leads, then trim the
excess from the soldered LED leads.
Wrap some electrical tape around the soldered portions
of the leads to prevent shorts.

•
•
•
•
•
•
•
•

1.

2.

3.

4.

5.

224

The power LED soldered to the jumper wire and female
connector.

CASE TOP ASSEMBLY

Once the case badge and power LED are ready, we can
attach them to the top of the case. In this step we'll glue the
case badge and power LED holder to the case, then place the
power LED in the holder. You'll need the following:

1 case top (CaseTop.stl)
1 LED holder (LEDHolder.stl)
1 assembled case badge
1 assembled LED with connector

•
•
•
•

225

Cyanoacrylate glue

After collecting the parts proceed with the assembly:

Test-fit the power LED in the power LED holder. It should
fit without a great deal of force.
Glue the case badge into the rectangular slot on the case
top.
Glue the LED holder (without the LED) into the round slot
on the case top.
Allow the glue to dry.
Place the LED into the LED holder from the front. Don't
worry if the LED is too loose as we'll be removing it
temporarily in a following assembly step.

•

1.

2.

3.

4.
5.

226

The case badge being glued into the case top. The LED holder
is visible in the background.

227

The power LED being inserted into the LED holder from the
front.

CASE BOTTOM ASSEMBLY

In this step we assemble the bottom portion of the case
including the printed circuit board and keyboard brackets. This
step is somewhat trick as it involves lining up the brackets,
board, and case bottom in an inverted position, then screwing
the case bottom to the brackets. For this portion you will
require:

1 case bottom (CaseBottom.stl)•

228

1 left mounting bracket
(KeyboardBracketWithoutHoles.stl)
1 right mounting bracket
(KeyboardBracketWithHoles.stl)
4 M3 x 10mm self-tapping screws, round/pan head (US
#4 x 3/8")
Screwdriver

Once you have the parts collected, assemble the bottom of
the case:

Place the printed circuit board flat on a table (or other
surface) with the components facing up.
Align the right mounting bracket on to the right side of
the printed circuit board. Test the fit for the joystick and
power connectors.
Align the left mounting bracket on to the left side of the
printed circuit board.
Flip the entire assembly upside down so that the tops of
the brackets are on the table and the bottom of the board
is facing up.
Align the case bottom (upside down) to the top of the
brackets. The rear ports should align with the slots in the
back of the case and the screw holes should align with
those in the brackets.
Screw the parts together ensuring that the alignment is
not disturbed. It may help to screw in from opposite
corners to ensure the case and brackets remain aligned.

•

•

•

•

1.

2.

3.

4.

5.

6.

229

Testing the keyboard bracket's fit with the joystick and power
connectors.

230

Assembling the case bottom, printed circuit board, and
keyboard brackets using screws.

INSTALLING THE KEYBOARD

Once the bottom of the Cody Computer is assembled the
keyboard module must be attached. The keyboard module's
cable must be connected to the keyboard connector on the
main printed circuit board. Once the cable is connected the
keyboard module must be inserted into place. This step
requires:

1 assembled case bottom
1 assembled keyboard module

•
•

231

Proceed with installing the keyboard as follows:

Test-fit the keyboard module ends against the slots in the
brackets. This can be done by sliding from the outside of
the brackets.
Ensure that the keyboard cable is snugly attached to the
connector on the keyboard module.
Note the wire that corresponds to pin 1 on the keyboard
module side of the conector.
Identify the matching pin 1 annotation on the main
printed circuit board.
Attach the keyboard connector to the main printed circuit
board. The cable will need to be twisted around to line up.
Ensure the keyboard connector is still snugly attached to
both connectors.
Slide the keyboard into the slots in the brackets from the
inside, first one side, then the other.
Line up the sides of the keyboard module with the sides
of the brackets.

1.

2.

3.

4.

5.

6.

7.

8.

232

Connecting the keyboard to the main printed circuit board.
Note the intentional twist in the cable.

233

Sliding the keyboard module into the mounting slots on the
brackets. Start with one side and then slide in the other.

INSTALLING MAGNETS

The case is held together with a set of eight rare-earth
magnets to permit easy access. As an educational computer,
the intention is to make it as open as possible, both
metaphorically and literally. With magnets the case can be
opened to show off the interior. Be careful that your magnets
are glued in with the proper orientation. If you don't the case

234

won't fit together correctly because the magnets will repel
instead of attract. You'll need the following:

1 assembled case top
1 assembled case bottom
8 8mm x 2mm rare earth disc magnets (US 5/16" x
5/64")
Cyanoacrylate glue

Assembly is rather straightforward except for the warning
about ensuring the magnets are aligned. One option is to mark
each magnet with a Sharpie or other semi-permanent means.
Proceed as follows:

Temporarily remove the power LED from the case top.
Place it in a safe location.
Test-fit the magnets into their holes and the assembled
case with the magnets in place.
Mark one side of each magnet with a marker. Be sure that
you are consistent with the side you are marking or the
case will not attach correctly.
Glue four magnets into the holes in the keyboard slots
with the marked side visible, ensuring that the magnets
are fully inserted. Be careful not to get glue onto the
keyboard by accident.
Glue four magnets into the holes in the case top with the
marked side not visible. Again, ensure that the magnets
are fully inserted.
Allow the glue to dry thoroughly.

•
•
•

•

1.

2.

3.

4.

5.

6.

235

Installing magnets into the case top. Remember that magnets
with opposite orientation need to be installed into the case
bottom as well.

Watch out for the magnets as they're not to be
swallowed by man or beast. If you have issues with the
glue holding them into place, you may want to try a
different adhesive. If this happens, consider printing an
extra part off for testing purposes.

236

FINAL ASSEMBLY

Once the keyboard is connected the only remaining step is
to attach the top part of the case to the rest of the Cody
Computer. We'll also have to connect the power LED prior to
snapping the case together. You'll need the two parts of the
computer:

1 assembled case top
1 assembled case bottom

The assembly steps are as follows:

Reinsert the power LED into the LED holder on the case
top. If the LED is too loose, the LED leads can be bent and
tape affixed from the bottom to hold it in place.
Connect the power LED connector to the printed circuit
board. Ensure that the wire you previously marked as the
cathode (the long LED lead) is aligned to pin 1 on the LED
connector.
Align the case top and place it onto the case bottom and
brackets, using the magnets to hold the case tight. You
may need to push on the LED and/or LED wires to ensure
a successful fit without the LED popping out.

•
•

1.

2.

3.

237

Close-up of the connected power LED and magnets. Note the
magnets on the brackets have their marked side outward while
the magnets on the case have their marked side inward.

238

The fully-assembled Cody Computer from the front. The case
is held together with magnets.

INITIAL SETUP

Now that the Cody Computer is built, it's time to plug it in
and test it out. You'll need a few last items that you may have
to get from the audiovisual section of your local store:

RCA video and audio cable (red, white, and yellow plugs)
RCA audio Y-splitter
DC power supply (from earlier steps)
Inline switch for power supply cable (recommended)
Television with NTSC composite RCA inputs

•
•
•
•
•

239

You're ready to connect the Cody Computer and power it up
for the first time:

Plug the splitter into the computer's audio port.
Plug the red and white audio cables into the splitter.
Plug the yellow cable into the computer's video port.
Plug the red, white, and yellow cables into the TV.
Plug the DC power supply cable into the inline switch.
Plug the inline switch into the computer's power jack.
Plug the DC power supply into the wall.
Turn on the television.
Flip the inline switch to turn on the Cody Computer.

1.
2.
3.
4.
5.
6.
7.
8.
9.

240

The Cody Computer with audio, video, and power connected.
Note the inline power switch to the right of the computer.

If all goes well, after a second or two the Cody Computer will
boot into Cody BASIC. You'll see a short welcome message, the
READY prompt, and a blinking cursor. From here you can learn
to program the Cody Computer as well as load and save
programs, all of which we'll be covering in the next chapters.

241

On startup the Cody Computer boots into Cody BASIC.

242

INTRODUCTION

Now that you have your Cody Computer set up and running,
it's time to learn how to use it. In this chapter you'll learn the
fundamentals of Cody BASIC, the simple programming
language built into the Cody Computer. Cody BASIC is
inspired by Tiny BASIC, a 1970s programming language
written for resource-constrained hobbyist computers. It also
has a lot of influence from Commodore BASIC, a BASIC
originally written by Microsoft and modified by Commodore.
Cody BASIC is a very simple BASIC but it provides a good
starting point for your explorations.

This chapter assumes that you have at least some
programming background. If you don't, you can probably still
follow along, but it won't be as easy. It doesn't assume any
particular familiarity with BASIC dialects of the 8-bit era, which
themselves were quite different from any modern BASIC you
may have encountered.

USING THE KEYBOARD

You'll be using the keyboard to enter commands in Cody
BASIC, so before we begin, we need to cover a little bit about
how to use the Cody Computer's keyboard and its special keys.
The keyboard is a simplified QWERTY layout with a total of 26
alphabetic characters. Each key contains a letter of the
alphabet, and most contain special characters on the top-left
and top-right. Pressing the key by itself will give you the

244

letter, but pressing it with other special keys will give you the
special characters instead.

The QWERTY keys as an example of the Cody Computer's
keyboard layout. Note the additional characters on the top left
and top right.

The Cody Computer's keyboard also contains three
additional keys used for special functions: The Cody key, the
Meta key, and the Arrow key. These are similar to the modifier
keys on more modern computers. On the Cody Computer, they
let you type the other special characters just discussed, but
they also have some other special functions.

The Cody Computer's special keys. From left, the Cody key (a
stylized depiction of Cody's pawprint), the Meta key (depicted
as a hollow square), and the Arrow key (containing a left-
pointed arrow).

The Arrow key is the simplest of the three. When pressed
by itself, it acts as a Return key and enters the current line of

245

input. In combination with other keys it can also be used to
delete content or break out of running programs.

The Meta key is used to make existing keys assume some
other function. Pressing it with one of the alphabetic keys
generates the punctuation or math symbol printed on the top
right of the key. For example, if you pressed Meta followed by
Q, you would get an exclamation mark. Holding it down when
pressing Arrow deletes the character previously typed.

The Cody key is another special key. It can be used to obtain
extra characters or for system-related functions. When it's
pressed with an alphabetic key, it generates the digit printed
on the key's top left. If you pressed Cody followed by Q, you
would actually get the number 1. When pressed with Arrow it
signals Cody BASIC to break out of the current program. When
pressed with Meta, it toggles the shift mode so that alphabetic
keys will be lowercase instead of uppercase (or vice-versa).

THE READ-EVAL-PRINT LOOP

Cody BASIC is an interpreted language as opposed to a
compiled one. You can directly interact with Cody BASIC by
typing in statements and getting the results back. If you do
something that doesn't make sense to it, Cody BASIC will tell
you as soon as it finds out about it. You'll interact with the
Cody BASIC interpreter in what's called a Read-Eval-Print
Loop (REPL), where the Cody Computer reads what you typed,
attempts to evaluate it, and prints out a result of what
happened if relevant.

246

To see this in action, start up your Cody Computer. After a
moment you should see the welcome message and READY
prompt at the top of the screen. This indicates the Cody
Computer is ready for your commands. At the blinking cursor,
type PRINT 3 + 4. Once it's typed in, press Arrow. Cody BASIC
should print the result, 7, on the screen, followed by another
READY prompt.

Your first statement and its output.

If you encountered a syntax error, carefully review what you
typed in. Remember that when typing a line, you can use Meta
+ Arrow to delete characters. Also remember that you can use
the Cody and Meta keys to enter special characters such as
numbers or punctuation. In the above example, to enter 3 + 4,
you would type Cody + E to get a 3, Meta + F to get a plus
sign, and Cody + R to get a 4.

TYPING AND EDITING PROGRAMS

When you want to run more than one command at a time,
you need to type in a program. Cody BASIC has a built-in way

 **** CODY COMPUTER BASIC V1.0 ****

READY.
PRINT 3+4
7

READY.
■

247

to enter programs using line numbers. First you type in the
line number followed by the content for that line, then press
Arrow. The line is entered into the program. The cursor moves
on to the next line.

Entering a single line into the current program.

To see the current program in memory, you can use the LIST
command. Entering LIST and pressing Arrow will show each
line in the program.

Listing your simple single-line program.

Because the program is stored in memory, it doesn't run
when you type it in. It's waiting for you to tell Cody BASIC to
run it, which you can do by entering the RUN command.

10 PRINT "HELLO"
■

LIST
10 PRINT "HELLO"

READY.
■

248

Running the single-line example program from above.

If you later want to remove a line, entering the line number
by itself (with no spaces) and pressing Arrow will delete it.

Removing line 10 from the program.

If you want to delete the entire program in memory, you can
use the NEW command instead of turning the Cody Computer
off and on. The NEW command performs a soft reset of Cody
BASIC, clearing out program memory along with associated
data and variables.

Using NEW before each new program is entered.

RUN
HELLO

READY.
■

10
LIST

READY.
■

NEW

READY.
■

249

INPUT AND OUTPUT

An important part of writing computer programs is making
them interact with the user. In Cody BASIC the PRINT and
INPUT statements handle the most common user interaction.
PRINT lets you print out information to the user, while INPUT
lets you get information from the user.

Both statements can use a variety of different types of data,
but for now, we'll begin with a simple example you should
type in. Remember to run NEW first if you had already typed
other programs in.

A small program demonstrating PRINT and INPUT statements.

Line 10 prints out a message asking for the user's name,
while line 20 prompts the user and stores the result as text in
a variable called N$. Line 30 prints out a message asking for
the user's age, while line 40 stores the result as a number in a
variable called A. The last line, line 50, prints out the user's
name and age in a message to the user. The semicolons are a
special hint to the PRINT statement to avoid advancing to

10 PRINT "WHAT IS YOUR NAME";
20 INPUT N$
30 PRINT "HOW OLD ARE YOU";
40 INPUT A
50 PRINT N$," IS ",A," YEARS OLD."
■

250

another line on the screen, while the commas split up the
arguments to the PRINT statement.

If you run the program you'll get something like the
following:

An example run of the above program.

If you encounter any errors, remember that you can LIST
your program and check the offending line for any typos. If
you find any, retype the line correctly and re-run the program.
A more detailed discussion of error messages is found later in
the chapter if you get stuck, but for this program, you probably
won't need it. Just make sure what you typed in matches the
program, and refer to the earlier section on typing in programs
whenever you need to.

VARIABLES, NUMBERS, AND STRINGS

Variables are used to store data in your programs. In the
previous input-output example, variables held the name (in
variable N$) and age (in variable A) of the user. Most
programs will use variables for a variety of purposes, so it's
important to understand them and what they can hold.

RUN
WHAT IS YOUR NAME? CODY
HOW OLD ARE YOU? 14
CODY IS 14 YEARS OLD.

READY.
■

251

Variables can be one of two types, corresponding to the two
data types supported by Cody BASIC. Number variables
contain numbers, while string variables contain text. The two
cannot be directly substituted for one another in a program,
but functions exist to convert between the two types. Other
functions also exist for special operations that pertain to each
type, such as square roots for numbers or extracting
substrings for strings.

NUMBERS AND NUMBER VARIABLES

Numbers in Cody BASIC are 16 bits and represent integers
between -32768 and 32767, inclusive. Numbers can be used in
mathematical expressions, such as addition, subtraction,
multiplication, and division, as well as in various mathematical
functions. They are also the return type of most Cody BASIC
functions. Most data in a Cody BASIC program is likely to be
numeric in nature.

Number literals are just the number typed in, for example
10 or 1234. These values can be used just about anywhere that
a number is required.

Number variables are represented by a letter between A
and Z. Number variables are temporary storage for numeric
data in a program, and each can hold one number in its
assigned memory.

Number variables in Cody BASIC are somewhat unique in
that they also act as arrays. There are a total of 128 indexes
into a number array, with each index itself a number between
0 and 127. The use of a number variable without an index is

252

actually just a shorthand for the first element in the array,
meaning that A(0) and A are actually the same variable.

An example type-in program demonstrating numbers,
number variables, and arrays. Note how A is used as an alias
for A(0).

STRINGS AND STRING VARIABLES

Strings in Cody BASIC are text information. Each string can
consist of up to 255 characters plus a terminating NULL
character, and internally strings are represented as C-style
byte arrays. Cody BASIC has somewhat limited support for
strings and string handling, but it does support a minimum set
of string functions suitable for most beginner-to-intermediate
programs. These functions include limited string concatenation
and substring extraction.

String literals consist of characters contained in double
quotes. For example, "HELLO" and "1234" are both string
literals, even though the latter is a string containing numbers.

Cody BASIC also has 26 string variables A$ through Z$,
each of which contains a single string. Each variable has its own

10 A(0)=10
20 A(1)=20
30 PRINT A+A(1)*3
RUN
70

READY.
■

253

assigned memory and there is no overlap with the number
variables A through Z. String arrays are not supported.

An example type-in program demonstrating strings and string
variables.

CONTROL STATEMENTS

Cody BASIC has several statements that allow you to
change the course of a running program. Most programs need
to be able to do this to respond to internal or external
situations as well as to perform processing within a running
program. The IF statement allows the program to take different
branches based on conditional expressions. The GOTO
statement allows the program to jump to a different line in a
program. GOSUB and RETURN allow programs to call
subroutines on other lines and return back to the calling
location. FOR and NEXT allow a program to loop for a defined
number of iterations, incrementing a variable as a side effect.

10 M$ = "HELLO "
20 N$ = "WORLD!"
30 PRINT M$,N$
RUN
HELLO WORLD!

READY.
■

254

IF STATEMENTS

The IF statement makes a decision based on the result of an
expression. These statements are the primary way of
controlling the behavior of a program based on data or user
input. When the expression is true, the portion of the
statement after THEN is evaluated. If not, then the remainder
of the statement is skipped entirely. IF statements are often
combined with GOTO or GOSUB to pass control to other parts
of the program based on the results of decision criteria.

For numeric data, the expression consists of numeric
expressions on the left hand and right hand sides. The
expression also contains a relational operator that acts as the
decision-maker, with the less-than (<), greater-than (>), less-
than-or-equal (<=), greater-than-or-equal (>=), equal-to
(=), and not-equal (<>) relations supported.

Example program using if-statements and relational operators
for numbers.

10 INPUT N
20 IF N<0 THEN PRINT "NEGATIVE"
30 IF N=0 THEN PRINT "ZERO"
40 IF N>0 THEN PRINT "POSITIVE"
RUN
? 3
POSITIVE

READY.
■

255

IF statements can also use strings in their expressions. The
same relational operators are used and comparisons are
performed lexicographically using the CODSCII value for each
character.

Example program using if-statements with strings.

GOTO STATEMENTS

The GOTO statement behaves like a high-level version of a
jump instruction, moving control to another line in the
program without any direct possibility of returning. GOTO
statements are often frowned upon in modern programming,
but they were a common technique in the early days of BASIC
programming.

10 INPUT S$
20 IF S$<"B" THEN PRINT "LESS"
30 IF S$="B" THEN PRINT "EQUAL"
40 IF S$>"B" THEN PRINT "GREATER"
RUN
? BA
GREATER

READY.
■

256

A program using GOTO to skip to another line.

GOSUB AND RETURN STATEMENTS

The GOSUB and RETURN statements implement subroutine
calls in Cody BASIC. The GOSUB statement tells the program
to call a subroutine starting at a specific line number. The
RETURN statement tells the program to go back to the line
after the most recent GOSUB.

Using these together allows Cody BASIC programs to have a
simple form of subroutines similar to those in early BASIC
interpreters. The statements don't support additional features
of more modern languages, such as parameter passing or
return values. Such features need to be explicitly handled by
passing data in variables.

10 PRINT "A"
20 GOTO 40
30 PRINT "B"
40 PRINT "Z"
RUN
A
Z

READY.
■

257

An example of a subroutine using GOSUB and RETURN.

FOR AND NEXT STATEMENTS

The FOR and NEXT statements implement a counting loop in
Cody BASIC. Each FOR statement takes a number variable
(which can include an array index), a starting number or
expression, and an ending number or expression.

The following NEXT statement repeats the body of the FOR
loop until the variable equals the ending number from the
FOR statement. On each loop, the value of the variable is
incremented by one.

10 PRINT "A"
20 GOSUB 50
30 PRINT "C"
40 END
50 PRINT "B"
60 RETURN
RUN
A
B
C

READY.
■

258

A simple for-loop that prints out the loop variable's value.

LOADING AND SAVING PROGRAMS

You don't always have to type in programs to load them.
Cody BASIC supports LOAD and SAVE statements for loading
existing programs and saving the current program. These
commands rely on the existence of another device connected
to the Cody Computer via the Prop Plug, typically a computer
or mobile device running some type of terminal program.
BASIC programs are stored as plain text files that can be
transmitted and received by any terminal software that has the
appropriate features.

To load and save BASIC programs the terminal software you
use will need to support regular serial communications at
19200 baud, 8-N-1 (eight data bits, no parity bit, and 1 stop
bit), and ASCII linefeeds for the end-of-line character. When

10 FOR I=1 TO 5
20 PRINT I
30 NEXT
RUN
1
2
3
4
5

READY.
■

259

transmitting files, it should allow for a configurable per-line
delay of up to 40 or 50 milliseconds. This final requirement is
necessary so that Cody BASIC can tokenize an incoming
program.

Loading a Cody BASIC program from a Chromebook Pixel
running Ubuntu. The Linux version of CoolTerm is used as the
terminal program.

260

You should be able to use any terminal program that
meets the above requirements. I used Roger Meier's cross-
platform CoolTerm during development because it
supports all the necessary features to transmit and receive
files with Cody BASIC. For Android devices, Kai Morich's
Serial USB Terminal is a good choice once you have the
configuration sorted out.

SAVING A PROGRAM

To save a program we'll need a program to save in the first
place. Type in the following and verify the program contents
using the LIST command.

A boilerplate program to use for our saving and loading
example.

Once you have the program entered in, go to your terminal
program on the other computer. Using the software, save a text
file from the Prop Plug at 19200 baud, serial setting 8-N-1,
and line feeds for the end of line. The software should be
waiting for you to save the program.

At this time, run the SAVE command on I/O port 1, the Prop
Plug:

10 PRINT "SAVED PROGRAM"
■

261

Saving the sample program.

Once you see the READY prompt, the program has been
sent. In your terminal software, stop receiving, then verify the
contents of the received file. You should see a two-line text file,
one containing the print statement, and another completely
blank line indicating the end of the BASIC program. (If you
encounter problems during this step or the next, you may want
to examine the file in more detail using a hex editor.)

Saved program from the terminal program. Note the required
blank line marking the end of the program in the saved file.

LOADING A PROGRAM

Now that you've saved a program, it's time to load it and
verify that all is in working order. To begin, clear out program
memory using the NEW command, then LIST the current
program to verify nothing is there. The LOAD command
replaces the current program, but for testing purposes, we
want to be sure before we proceed.

SAVE 1

READY.
■

10 PRINT "SAVED PROGRAM"

262

Once you're sure there's no program in memory, run the
LOAD command, We're loading from I/O port 1, the Prop Plug,
in mode 0. Mode 0 indicates we're loading a Cody BASIC
program, while mode 1 indicates that we're loading a binary
program, something we'll cover later.

Loading the previously-saved program.

Now that the Cody Computer is waiting for the program, go
back to your terminal and send the program. You'll want to
send it as a text file, again at 19200 baud and 8-N-1 with ASCII
linefeeds as the end-of-line character. Also remember to
insert a per-line delay, perhaps starting around 40 or 50
milliseconds to be conservative.

Once the program has been received, the LOAD command
will stop with a READY prompt. List the program to verify its
contents, then run it.

LOAD 1,0

263

Transcript of loading and verifying the sample program.

If you encounter any problems, verify the serial connection
and serial software is working correctly. Also note that the per-
line delay can be raised or lowered on a per-program basis, as
the time required to parse the longest line in the program
depends on the line's complexity.

Cody BASIC actually sends an ASCII question mark
before waiting for the next line of the incoming program.
A dedicated program or peripheral could also check for
this as an optimization along with the normal line delay.
This would speed up the loading of Cody BASIC programs
without having an effect on anything else.

UNDERSTANDING ERROR MESSAGES

Sometimes when entering or running a program, things can
go wrong. Cody BASIC has a small set of error messages to try

READY.
LIST
10 PRINT "SAVED PROGRAM"

READY.
RUN
SAVED PROGRAM

READY.
■

264

and help you diagnose the underlying problem. Cody BASIC is
patterned after Tiny BASIC and has only three error types, but
given Cody BASIC's relative simplicity, these are sufficient. The
error messages are inspired by the later Commodore BASIC,
and while they may not tell you everything, they should tell
you enough to investigate what happened.

The three error types represent syntax errors (when Cody
BASIC couldn't parse what you typed in), logic errors (when
your program tried to do something that made no sense), and
system errors (something about the current computer's state
made it impossible to do what was asked).

Errors can occur when entering lines into the REPL or when a
program is run. If an error occurs while a program is running
the line number in the program will be included in the error
message. If the error occurs in REPL mode, there isn't any
associated line number, and none will be shown.

An example error message that includes a line number.

RUN

LOGIC ERROR IN 10

READY.
■

265

SYNTAX ERRORS

Syntax errors occur when something you've typed in doesn't
fit with Cody BASIC's grammar. Cody BASIC, like any
programming language, is defined by a strict grammar
specifying what statements and expressions are valid. If you
type in something that's invalid, Cody BASIC can't understand
what you mean and prints out a syntax error.

A syntax error in REPL mode resulting from invalid characters
in a PRINT statement.

LOGIC ERRORS

Logic errors result when Cody BASIC is asked to do
something nonsensical. This can be something obvious, such as
attempting to divide by zero or specifying an invalid value for
a character or constant. It can also be something less obvious,
such as attempting to read data that doesn't exist or trying to
change the current position in the program in a way that
doesn't make sense.

PRINT !!!

SYNTAX ERROR

READY.
■

266

A logic error in REPL mode resulting from a division by zero.

SYSTEM ERRORS

System errors happen when Cody BASIC isn't able to
perform a requested operation that's otherwise valid. This can
occur if some of Cody BASIC's internal data areas overflow,
making it impossible to run some of its control structures or
evaluate complex expressions. It can also happen during I/O
operations if errors are detected or if invalid data is passed to
certain functions.

A system error in a program caused by infinite recursion in a
GOSUB.

PRINT 1/0

LOGIC ERROR

READY.
■

10 GOSUB 10
RUN

SYSTEM ERROR IN 10

READY.
■

267

INTRODUCTION

Now that you're familiar with some of the basics of Cody
BASIC, it's time to learn about its more advanced features.
While "advanced" is relative and Cody BASIC is intentionally
simplified, it has a set of features consistent with many 8-bit
BASIC dialects. It has support for minimal mathematics and
string operations, literal data, text file input and output,
reading and writing memory, and even the ability to call into
machine code from BASIC programs.

WORKING WITH NUMBERS

Cody BASIC supports many of the more common
mathematical operations, although with some limitations.
Numbers in Cody BASIC are integers ranging from -32768 to
32767, so many mathematical operations are limited by
necessity. A handful of math functions are also implemented.
More complicated functions must be implemented by the user
either in BASIC or using machine language and calling it from
your program.

ARITHMETIC OPERATIONS

For arithmetic operations, the standard addition, subtraction,
multiplication, and division are supported. Cody BASIC obeys
the normal order of operations, with multiplication and
division performed first, followed by addition and subtraction.

269

Expressions that are very complex may cause Cody BASIC's
expression stack to overflow and produce a system error.

Cody BASIC follows the order of operations.

Because all numbers in Cody BASIC are integers, the result
of division will sometimes be different than you would expect.
The result of a division is the integer portion without any
remainder because fractional or decimal values aren't
supported.

Numbers in Cody BASIC are integers, so integer division is
used.

Parentheses are used to group subexpressions. Expressions
in parentheses are evaluated first, starting with the most
nested set of parentheses and working outward. As with
expressions, deeply nested parentheses can cause problems
with the interpreter, so it's best to keep expressions simple.

PRINT 4+5*6-10
24

READY.
■

PRINT 16/5
3

READY.
■

270

Using nested expressions in Cody BASIC.

Negative numbers are supported by adding a leading minus
sign (known as a unary minus). The leading minus works like it
does in normal arithmetic, so it can be used in front of
variables and expressions as well as in front of numbers.

An example of a leading minus sign in front of an expression.

In fact, number variables can be used just about anywhere
that a number would be used in Cody BASIC. Unlike many
BASIC dialects, both numbers and numeric expressions can be
used as the destination for GOTO and GOSUB statements.

PRINT 3*((8+2)/2)
15

READY.
■

PRINT -(1+2)
-3

READY.
■

271

A program showing the use of variables in an expression.

MATHEMATICAL FUNCTIONS

Cody BASIC has a limited set of mathematical functions. The
ABS() function returns the absolute value of a number.
Another function, SQR(), returns the square root of a number
with the limitation that only the integer part is represented.
MOD() returns the modulus (remainder left over after a
division) of two numbers.

10 A=20
20 B=2
30 PRINT -A*B
RUN
-40

READY.
■

272

Examples of the ABS, SQR, and MOD functions.

The RND() function exists to generate random numbers
between 0 and 255. The function has two forms, one that
accepts a number as the random seed value, and a no-
argument form that returns the next random number in the
sequence. For a given seed value the resulting sequence will
always be the same. A seed value of zero is invalid and will be
replaced with the system's default seed value.

PRINT ABS(-10)
10

READY.
PRINT SQR(10)
3

READY.
PRINT MOD(8,5)
3

READY.
■

273

Using the RND function to generate pseudorandom numbers.

A common trick is to use the TI time variable to seed a
random number sequence at the start of a program, discarding
the initial result. The TI variable is discussed later in the
section on timekeeping.

Seeding the RND function with the current timekeeping value.

PRINT RND(10)
0

READY.
PRINT RND()
186

READY.
PRINT RND()
57

READY.
■

PRINT RND(TI)
52

READY.
PRINT RND()
81

READY.
■

274

BITWISE FUNCTIONS

Cody BASIC also has bitwise functions that perform binary
operations on numbers. These work on the raw bits in each
number, which means it's important to consider how the
numbers themselves are stored as zeroes and ones. NOT()
returns the negation of the bits in the number, AND() returns
the bitwise and, OR() returns the bitwise or, and XOR() returns
the bitwise exclusive-or.

A program that lets you experiment with the output of bitwise
functions.

10 INPUT A
20 INPUT B
30 PRINT "NOT ",NOT(A)
40 PRINT "AND ",AND(A,B)
50 PRINT "OR ",OR(A,B)
60 PRINT "XOR ",XOR(A,B)
RUN
? 1
? 0
-2
0
1
1

READY.
■

275

TEXT MANIPULATION AND STRINGS

Cody BASIC supports rudimentary string manipulation. Each
of the 26 string variables is a separate buffer that can store up
to 255 characters plus a terminating null character (similar to
a string in the C programming language). A separate buffer
allows string concatenation in string expressions, and a
handful of functions exist to work with string data.

STRING CONCATENATION

Strings can be concatenated together in string expressions.
Unlike mathematical expressions, string expressions are very
simple and can contain only strings, string variables, and string
functions, and the only supported operator is the addition sign
(representing string concatenation in this case).

Because Cody BASIC has minimal string support, string
expressions can appear in a limited number of places. The
most common case is in assignment to string variables where
the right hand side of the assignment is a string expression.
String expressions can also appear as arguments in PRINT
statements, where string functions are often used to print out
only portions of a string.

276

An example of a string expression in an assignment.

STRING COMPARISONS

As mentioned in the previous chapter, IF statements in Cody
BASIC have a special case that supports string comparisons.
This form is more limited and requires a string variable as the
left hand side of the comparison and a string expression as the
right hand side of the comparison. Usually the right hand side
is just a string or another string variable, but the right hand
side may be a full string expression if needed.

10 A$="HELLO"
20 B$="WORLD"
30 C$=A$+", "+B$+"!"
40 PRINT C$
RUN
HELLO, WORLD!

READY.
■

277

A contrived example of using string concatenation in an IF
statement.

FUNCTIONS IN STRING EXPRESSIONS

Cody BASIC has three string functions which may appear in
a string expression. The SUB$() function returns a substring
from a string variable. The CHR$() function, on the other hand,
lets you build a string from one or more numbers representing
CODSCII characters. The last function, STR$(), returns a string
representation of a number. Functions that return strings are
marked by a dollar-sign ($) as their last character, similar to
Commodore BASIC.

The SUB$() function takes three parameters, a string
variable, a starting position within the string, and the number
of characters to extract. The first argument must always be a
string variable because of Cody BASIC's internal
implementation. String literals are not supported, and string
expressions cannot be nested like mathematical expressions.

10 INPUT A$
20 INPUT B$
30 IF B$=A$+"!" THEN PRINT "MATCH"
RUN
? HELLO
? HELLO!
MATCH

READY.
■

278

Printing out a substring using the STR$ function.

To generate a string from a series of character values, you
use the CHR$() function. Much like a secret code, strings in
Cody BASIC are made up of CODSCII characters between 0
and 255. (CODSCII is just an extended ASCII with the
Commodore graphical characters moved into the extended
ASCII range.) You simply pass one or more numbers (or
numeric expressions) to the function and it will return a string
with the equivalent characters. This is typically used for
printing control codes or graphical characters, but can be used
with any valid character code.

Converting numbers to characters using the CHR$ function.

The last string function, STR$(), converts a number to its
string equivalent. For example, the number 10 would be

10 A$="POMERANIAN"
20 PRINT SUB$(A$,0,3)
RUN
POM

READY.
■

PRINT CHR$(67,111,100,121)
Cody
READY.

■

279

converted to a string equivalent to the literal "10". Many of
these conversions happen automatically in PRINT statements,
but using the STR$() function directly lets you use the result
in string expressions and assignments.

A silly example of converting a number to a string for later
use.

ADDITIONAL STRING FUNCTIONS

Cody BASIC also has some functions that work with strings
but return numbers. To parse a string variable containing a
number, the VAL() function can be used. For finding the length
of a string, the LEN() function is available. And for returning
the CODSCII value of a character in a string, the ASC() function
exists.

The VAL() function is relatively simple to use. It takes a
string variable and returns the number it was able to parse
from the beginning of the string. Leading minus signs are
supported. In situations where there were no valid digits to

10 INPUT N
20 S$=STR$(N)
30 PRINT S$
RUN
? 123
123

READY.
■

280

parse, the function returns zero. In many respects this function
can be considered the inverse of the STR$() function.

Converting a string containing a number into an actual
number.

The LEN() function returns the length of a string variable,
not including the terminating null character. If a stored string is
somehow corrupted or poorly-formed, LEN() raises a system
error when the terminating null is not found.

Finding the length of a string.

The ASC() function returns the character code for the first
character in a string variable. If the string is empty, the null

10 INPUT S$
20 N=VAL(S$)
30 PRINT N*2
RUN
? 10
20

READY.
■

10 INPUT S$
20 PRINT LEN(S$)
RUN
? KODACHROME
10

READY.
■

281

character is returned instead. In many respects this is the
inverse operation of the CHR$() function, except that the
ASC() function only works on the first character of the string.

Obtaining the character code for the first character in a string.

To find character codes for other than the first character, you
need to use the STR$() function to extract a substring into a
temporary variable. The temporary variable can then be used
as the input for ASC(). This has significantly more overhead
because of the temporary string, but in situations where it is
needed, this is the typical solution.

10 INPUT S$
20 PRINT ASC(S$)
RUN
? CARRABELLE
67

READY.
■

282

Obtaining a different character code using a temporary string.

PRINT FORMATTING

Cody BASIC's PRINT statement provides ways of formatting
your output. The formatting can be very simple, such as
moving the cursor on the screen or aligning data in columns.
More complicated formatting can include clearing the screen,
changing the foreground and background colors on a per-
character basis, or using graphical characters alongside the
typical letters, digits, and punctuation marks.

PRINT statements support output formatting in two ways.
One is using the special formatting functions AT() and TAB().
The other is to print special control character codes using the
CHR$() function which are later handled by the Cody BASIC
interpreter.

10 INPUT S$
20 INPUT N
30 T$=SUB$(S$,N,1)
40 PRINT ASC(T$)
RUN
? FOLKSTON
? 2
76

READY.
■

283

POSITIONING THE CURSOR

The current cursor position can be updated within PRINT
statements using the AT() function. The AT function takes two
numbers as arguments, one for the new cursor column and the
other for the new cursor row. When called the current output
buffer (anything before this that hasn't been printed yet) will
be printed to the screen and the cursor moved to the new
position.

Moving the cursor using the AT() function. When the program
is actually run the output will start at the top left corner of the
screen.

10 FOR I=0 TO 9
20 PRINT AT(I,I),"HELLO, WORLD!"
30 NEXT
RUN
HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!
 HELLO, WORLD!

READY.
■

284

Note that the AT() function only works when the output is
going to the screen. If you are writing to a file over a serial
device (discussed below), cursor positioning makes no sense.

ALIGNING OUTPUT WITH TABS

In many programs, particularly those concerned with
displaying calculations, summaries, or reports, it helps to be
able to align output into columns. Cody BASIC doesn't handle
every possible case, but the TAB() output function does allow
you to align output to specific columns on the screen.

The function takes only one argument, the column number
from 0 to 39. When it runs, it generates spaces in the output
buffer until the next output position matches the desired
position. This means that on a line-by-line basis you can
ensure the same information will be printed on the same
columns, so long as the data isn't so big that it overflows the
available space.

285

Aligning output to specific columns using the TAB() function.

This function is also useful when writing to output files. As
you'll learn in the upcoming section on reading and writing to
files, it's usually easier to store one piece of information on
each line when writing to a file. However, if you decide to store
multiple pieces of information on the same line, aligning each
piece to known columns will make it easier to split apart when
you read it back in later.

CLEARING THE SCREEN

The simplest control code clears the screen. Character code
222 will clear the screen and move the cursor back to the very
top. This can be useful to start from a known position in your

10 FOR I=1 TO 10
20 PRINT I,TAB(5),I*I,TAB(20),"MESSAGE"
30 NEXT
RUN
1 1 MESSAGE
2 4 MESSAGE
3 9 MESSAGE
4 16 MESSAGE
5 25 MESSAGE
6 36 MESSAGE
7 49 MESSAGE
8 64 MESSAGE
9 81 MESSAGE
10 100 MESSAGE

READY.
■

286

Cody BASIC programs. It's also a good way to focus the user
on what you want them to see by clearing out any leftover
input or output from earlier.

Clearing the screen using the clear control code. When run in
Cody BASIC the last READY statement will appear at the top of
a new, blank screen.

SETTING THE FOREGROUND COLOR

The foreground color can be changed using character codes
between 240 and 255. Each code maps to one of the Cody
Computer's 16 colors, each of which can be found in the
reference in the back of the manual. To choose a specific
foreground color, just take the color's number and add it to
240.

Printing out each foreground color using control codes.

10 PRINT CHR$(222)
RUN

READY.
■

10 FOR I=0 TO 15
20 PRINT CHR$(240+I),240+I
30 NEXT
40 PRINT CHR$(241)

RUN

287

The Cody Computer's foreground colors displayed using
control codes.

SETTING THE BACKGROUND COLOR

The background color can be changed using character codes
between 224 and 239. This works in a very similar way to
setting the foreground color except that the background is
changed instead. Just add the color code to 224 to calculate the
appropriate character code for the new background color.

288

Printing out each background color using control codes.

The Cody Computer's background colors displayed using
control codes.

10 FOR I=0 TO 15
20 PRINT CHR$(224+I),224+I
30 NEXT
40 PRINT CHR$(230)

RUN

289

REVERSING FOREGROUND AND BACKGROUND

It'a also possible to reverse the current foreground and
background colors. Character code 223 reverses the
foreground and background colors. The current foreground
color will be replaced with the current background color, while
the current background color is replaced with the current
foreground color.

This is the Cody Computer's equivalent of the "reverse field"
mode on Commodore computers. The Cody Computer has
unique foreground and background attributes for each screen
location and its character set doesn't contain inverted versions
of each character. Instead it just swaps the attributes
themselves.

Swapping foreground and background colors using the reverse
control code.

10 INPUT S$
20 PRINT CHR$(223),S$,CHR$(223)
RUN
? HELLO, WORLD!
HELLO, WORLD!

READY.
■

290

PRINTING GRAPHICAL CHARACTERS

As mentioned elsewhere, the Cody Computer's CODSCII
character set is just a customized, extended ASCII. The normal
control codes, letters, digits, and punctuations are all the same
as any other ASCII or ASCII-derived character set. As you've
just learned, at the high end of the CODSCII range are control
codes that can control various output attributes on the screen.
However, there's one part of the CODSCII character set we
haven't discussed yet.

Commodore computers used their own character set called
PETSCII, named after the Commodore PET computer it first
appeared in. Because the Commodore PET had no graphics
functionality of its own, the designers included graphical
characters that could be used to make pictures and even
games. This character set continued on for the rest of the
Commodore 8-bit computer line.

The Cody Computer includes the graphical PETSCII subset in
its own character set starting at character 128. You can use
these characters in your own programs and games just like
people did in the Commodore days, and all you need to do is
include the appropriate character code for each one.

291

Program that prints a table of the Cody Computer's PETSCII
subset. In the actual output the ellipsis will be replaced by a
table.

The program output showing the PETSCII subset in the Cody
Computer's CODSCII character set.

10 FOR I=0 TO 66
20 IF MOD(I,6)=0 THEN PRINT
30 PRINT 128+I," ",CHR$(128+I)," ";
40 NEXT
50 PRINT

292

FILE INPUT AND OUTPUT

Cody BASIC has the ability to read and write text files from
within BASIC programs. Within a program, the OPEN and
CLOSE statements can be used to redirect the program's input
and output to one of the Cody Computer's two serial ports.
From that point on, PRINT statements write to the serial port,
while INPUT statements read from it. A CLOSE statement
returns back to the screen and keyboard.

Note that this approach, while simple, also has its own
challenges. Much like loading programs, the user must be
careful that data lines aren't sent to the Cody Computer faster
than the BASIC program can process them. Large per-line
delays may be necessary. It also makes no provision for
reading or writing binary data as only text is supported. For
binary data, dropping into machine language is recommended,
and it may be advisable to write your entire program in
assembly or another compiled language if speed is that
critical.

A similar strategy of reading and writing data files by
input and output redirection was used in the OSI
Challenger's version of Microsoft BASIC. In that system,
LOAD and SAVE commands within a program directed
output to the cassette, allowing INPUT and PRINT
statements to read and write from the cassette port.

293

Note that when running programs that read and write files
to the serial ports, the other device must be configured
appropriately. The steps required are the same as those
discussed in the previous chapter. The baud rate specified in
Cody BASIC must match that configured for the external
device, the external device must be configured for 8-N-1 (8
data bits, no parity bit, 1 stop bit), and a single ASCII linefeed
should be set as the newline character. When reading from the
device, line delays will be required on a per-program basis
depending on the processing required.

WRITING TO A FILE

Writing to a file from within a Cody BASIC program requires
you to open the correct I/O device, write your data to it, and
then close the I/O device. For most purposes your I/O device
will be device 1, the serial port wired to the Prop Plug
connector at the back of the computer. A second serial port is
wired to pins on the expansion slot and can be used to interact
with your own projects and custom peripherals.

Opening the I/O device is performed by the OPEN
statement, which takes two arguments. The first is the I/O
device number (1 or 2) and the second is a constant
representing one of 15 different baud rates. This constant is the
same as the value passed directly to the UART in the Propeller
and can be any number between 1 (50 baud) and 15 (19200
baud). Once the port is opened, PRINT statements will print to
the serial port until a CLOSE statement is encountered.

294

A program that writes the names of the space shuttles and
number of flights to a text file.

Because the INPUT statement in Cody BASIC works on a
per-line basis, it's important that the data you write also be
readable on a per-line basis. One option, such as in this
example, is to put each unique piece of data on its own line.
The other option is to split up a line of data when read using
the STR$() function, though this brings other complications
with it.

10 OPEN 1,15
20 PRINT "ENTERPRISE"
30 PRINT 5
40 PRINT "COLUMBIA"
50 PRINT 28
60 PRINT "CHALLENGER"
70 PRINT 10
80 PRINT "DISCOVERY"
90 PRINT 39
100 PRINT "ATLANTIS"
110 PRINT 33
120 PRINT "ENDEAVOUR"
130 PRINT 25
140 PRINT "EOF"
150 CLOSE
160 PRINT "DONE"
RUN
DONE

READY.
■

295

The data file generated by the above sample program. Note
how each piece of data is on its own line.

READING FROM A FILE

Reading from a file is very similar to writing to one. The
device must be opened using OPEN and closed using CLOSE.
All the same caveats about baud rates and serial modes also
apply. The main difference is that instead of writing data using
PRINT you read data line by line using INPUT. Another
difference is that, as your program is reading data, you may
need to configure a line delay on the device sending you data
so that your program can keep up.

As mentioned above, the INPUT statement in Cody BASIC
works a little differently than in Commodore BASIC or similar.
Each input variable reads an entire line, so each piece of data
should also be on its own line in the data file. The only way
around this would be to read the line, then split out each part
of it into its own substring, something we won't tackle here.

Remember that while a device is open, both input and output
are redirected to it. That means that while you're reading from

ENTERPRISE
5
COLUMBIA
28
CHALLENGER
10
DISCOVERY
39
ATLANTIS
33
ENDEAVOUR
25
EOF

296

the external device, whatever you print will be sent to it, not to
the screen. You will need a temporary storage area to keep
whatever counts or tallies are needed until reading is done. In
some cases this can be easy, while in other cases, designing
your temporary storage can be difficult given the constraints
of Cody BASIC.

A program that reads the space shuttle data file from the
previous example. As a simple example, a string is used to
collect the output until processing is complete. Note the check
for a special end token to determine the end of the file. (A
blank line is another good option.)

10 OPEN 1,15
20 INPUT S$
30 IF S$="EOF" THEN GOTO 70
40 INPUT N
50 O$=O$+S$+" ("+STR$(N)+")"+CHR$(10)
60 GOTO 20
70 CLOSE
80 PRINT O$
RUN
ENTERPRISE (5)
COLUMBIA (28)
CHALLENGER (10)
DISCOVERY (39)
ATLANTIS (33)
ENDEAVOUR (25)

READY.
■

297

Even when input and output have been redirected to a
serial port, the INPUT statement still sends an ASCII
question mark before waiting for the next line. Just like we
discussed in the last chapter about loading programs, a
terminal program or other application that recognizes this
could send the next line as soon as it's asked for rather
than waiting for a delay on each line. This would help
speed up the loading of data files over serial connections.

INCLUDING DATA IN PROGRAMS

Another way to use data in a Cody BASIC program is
hardcode it using DATA statements. Like Commodore BASIC
and many other Microsoft BASIC dialects, Cody BASIC lets you
add data in DATA statements and read it later using READ
statements. Unlike other BASICs, however, Cody BASIC
requires that all data be numeric in nature. Strings are not
supported.

The data is read using READ statements. A READ statement
takes one or more number variables as arguments and fetches
the next entries from DATA statements, starting at the top of
the program. If no more data exists, a logic error is raised to
indicate an out of data condition.

DATA statements can be placed anywhere in the program. If
one is encountered by the program, it is ignored. Only READ
statements use DATA statements.

298

To reread data starting from the beginning of the program,
the RESTORE statement can be used.

Calculating totals and averages from numbers in DATA
statements. A negative number is used as a sentinel value to
stop processing.

DATA and READ statements can be very helpful in programs
that contain a lot of raw data or data tables. Games are a
classic example as they contain sequences of bytes
representing the game's sprites, tiles, backgrounds, and more.
If a program needs to use portions of machine code to speed
up operations or perform special operations, storing the
assembled code in DATA statements is also common. Lastly,
programs with mathematical computations can use DATA
statements to store lookup tables for part of their calculations.

10 READ I
20 IF I<0 THEN GOTO 60
30 T=T+I
40 C=C+1
50 GOTO 10
60 PRINT "TOTAL ",T
70 PRINT "COUNT ",C
80 PRINT "AVERAGE ",T/C
90 DATA 3,10,12,7,6
100 DATA 3,15,8,2,-1
RUN
TOTAL 66
COUNT 9
AVERAGE 7

READY.
■

299

Consider, for example, a program that estimates model rocket
flights using tables of rocket engine data.

TIMEKEEPING

Cody BASIC has a limited form of timekeeping using the TI
variable. More of a pseudovariable, TI stores the number of
jiffies since the computer powered on. The value starts at zero,
counts up through the positive numbers, wraps around through
the negative numbers, and repeats. A single jiffy is 1/60th of a
second, so the full range of TI is a little over 18 minutes. For
longer time periods you can check in on the TI variable and
update a seconds or minutes counter accordingly.

Using TI is preferable to hardcoded delays from loops in
your Cody BASIC programs. However, direct comparisons
between two values are not meaningful because TI will loop
around through both positive and negative values. Instead, you
must subtract the current value of TI from your previous value,
then compare the difference. Because of the nature of signed
arithmetic and modular arithmetic, this will calculate the
correct difference in jiffies.

300

Sample program that waits for a given number of seconds
before stopping. Note the conversion of the delay from
seconds to jiffies (multiplying by 60), as well as the inline
calculation subtracting the current TI from the initial value.

READING AND WRITING MEMORY

While Cody BASIC is more high-level than assembly
language, it's still very low-level compared to most modern
languages. In the 8-bit era, interpreted BASICs commonly
manipulated hardware directly, generally through reading and
writing to memory. Communication with support chips and
peripherals often occurred by direct reads and writes to
registers, and passing data to machine language routines
required similar access to reserved memory locations.

Cody BASIC, like most BASICs, provides the POKE statement
to write to memory and the PEEK statement to read from it. It's
important to be careful when using these parts of Cody BASIC
as you can easily freeze up the Cody Computer or worse.
However, once you understand how they work and learn the
Cody Computer's memory map, most of the computer's

10 INPUT D
20 D=D*60
30 I=TI
40 IF TI-I<D THEN GOTO 40
RUN

READY.
■

301

features will be open to you from BASIC alone. While many
programs at this level are better written in assembly language,
BASIC provides a solid foundation to begin from.

It's worth noting that the 65C02's address space ranges
from 0 to 65535 because its address bus is 16 bits wide. Cody
BASIC numbers are also 16 bits, but they are signed numbers,
not unsigned, and they range from -32768 to 32767.
Fortunately, Cody BASIC automatically parses unsigned
number literals as the equivalent signed value, so you won't
have a problem working with memory addresses in Cody
BASIC. For example, you can type 50176 (the default start of
screen memory) directly into your program and have it work.
However, if you print the number out, Cody BASIC will print
-15360, the signed number equivalent for the same bit pattern
as 50176.

WRITING TO MEMORY

The POKE statement writes to memory. It takes two
arguments, a memory address and a value to write to that
address. The address can be anything within the 65C02's
address space, ranging from 0 to 65535 (or the signed-
number equivalent as discussed above). The value written to
that address should be a byte from 0 to 255.

302

Program that directly writes to screen and color memory to
draw graphical characters in a variety of colors. Exactly why
this works is discussed in the chapter on graphics
programming.

A POKE statement won't work correctly in memory areas
that are read-only on the Cody Computer. The top 8 kilobytes
of the Cody Computer's memory are essentially a ROM with
Cody BASIC and the default character set, and these can't be
modified by writing to them. Some registers are also read-
only.

READING MEMORY

The PEEK() function reads a memory address. It takes one
argument, a memory address just like those used in the POKE
statement. It returns the byte at that address in memory as a
number between 0 and 255.

10 S=50176
20 C=55296
30 FOR I=0 TO 999
40 POKE S+I,128+MOD(RND(),32)
50 POKE C+I,RND()
60 NEXT
RUN

READY.
■

303

Program that reads a memory location representing the first
keyboard row. The memory location is automatically updated
by a keyboard scanning routine in Cody BASIC. Your program
can read the memory location and determine what keys are
held down at the moment.

PEEK() functions aren't dangerous like POKE statements
because they don't change the contents of memory. However,
it's still important to understand the memory map and use the
correct addresses. Otherwise your programs might not work
correctly, and at such a low level, it can be difficult to debug
them.

USING MACHINE CODE

High-performance programs for the Cody Computer should
probably be written in assembly language and loaded as
binary programs. However, it's possible to include some of the
benefits of assembly language in your Cody BASIC programs.
To do this, you write small portions of assembly language

10 PRINT "PRESS Q TO QUIT..."
20 IF AND(PEEK(16),1)=1 THEN GOTO 10
30 PRINT "Q PRESSED"
RUN
PRESS Q TO QUIT...
PRESS Q TO QUIT...
PRESS Q TO QUIT...
Q PRESSED.

READY.
■

304

(either using an assembler or by hand), then load the machine
code into memory as part of your program.

When you want to call the machine code, you use Cody
BASIC's SYS command, which temporarily passes control to a
machine-language subroutine of your choosing. It even
handles swapping the 65C02's accmulator, X, and Y registers
in and out of special memory locations so you can use them in
your code.

This topic is difficult enough that it's worth a detailed
walkthrough. For a very simple example, imagine we want a
machine code routine that takes the values in the accumulator,
X register, and Y register, then increments each by one before
returning to BASIC. First we need to write the assembly
language routine that would do this for us. (Our example is
simple enough to assemble by hand, but an assembler is
recommended for more advanced ones.)

A snippet of 65C02 assembly that increments the
accumulator, X, and Y registers.

Once we have the assembly language code, we need to load
it into a memory location that's otherwise not in use.
Somewhere very high in BASIC program memory or another
free spot in the memory map are ideal. We include the
numbers for our assembled machine code in one or more
DATA statements, using READ to get each byte and POKE to
load it into memory starting at that address.

 INC A ; $1A (decimal 26)
 INX ; $E8 (decimal 232)
 INY ; $C8 (decimal 200)
 RTS ; $60 (decimal 96)

305

To actually call the code, we would use the SYS statement. It
takes only one argument, the address to call. It calls that
address using the 65C02's JSR instruction and returns back to
your program once your machine code executes an RTS
instruction.

You can pass parameters back and forth to your machine
code from Cody BASIC using POKE and PEEK to addresses
used by the machine code routine. However, SYS also has
another way to do much of this for you. It copies the values at
the first three memory locations, $00 through $02, into the
accumulator, X register, and Y register before calling your
machine code. When done, it copies the current values of those
registers back to those same memory locations. Your BASIC
program only needs to POKE values into those addresses
before the call, then PEEK them to get the results after it's
done.

306

Using the above machine code in a Cody BASIC program. The
instructions are poked into memory, user-entered data is
moved into designated memory locations, and the routine
called using the SYS statement. When done the updated data
is read back and displayed.

Using machine code from within a Cody BASIC program isn't
an easy thing to do, but in certain situations, it can be quite

10 P=25856
20 READ B
30 IF B<0 THEN GOTO 70
40 POKE P+I,B
50 I=I+1
60 GOTO 20
70 INPUT A
80 INPUT X
90 INPUT Y
100 POKE 0,A
110 POKE 1,X
120 POKE 2,Y
130 SYS P
140 PRINT "A=",PEEK(0)
150 PRINT "X=",PEEK(1)
160 PRINT "Y=",PEEK(2)
170 DATA 26,232,200,96,-1
RUN
? 1
? 4
? 9
A=2
X=5
Y=10

READY.
■

307

beneficial. Effectively doing so requires a good understanding
not only of Cody BASIC but of the Cody Computer's memory
map and of 65C02 assembly language itself.

If you find yourself using this approach, it might be
worth asking yourself if you're better off just writing the
entire program in assembly or a compiled language. On
the other hand, some BASIC programs in the 8-bit era
took advantage of similar features. The most critical parts
of the code were written in assembly language, but most
of the program was written in BASIC.

PROGRAMMING HINTS

Along with all the details involved in Cody BASIC
programming, it's important to be aware of some of the other
important aspects when writing your programs. Many of these
are less technical, but no less important. You want your
programs to be understandable both for yourself and for
others. You also want your programs to be easily changeable
as your requirements change, or if someone else uses one of
your programs and needs to modify it. These skills are
generally the same as in any programming language, but
Cody BASIC's quirks add some additional things to consider.

308

DOCUMENTING YOUR PROGRAMS

In your program you should make use of REM, or remark,
statements. These are the 8-bit BASIC equivalent of code
comments and were used to document programs. Programs
often started with remarks about the name of the program, its
author, and a description of what it did. In the program itself,
remarks often marked different sections or routines within the
program. They were also added to provide some additional
information on particularly complicated parts.

Unlike comments in modern compiled languages, REM
statements take up space in the interpreter, have to be loaded
and saved, and also have to be skipped over at runtime.
Therefore, while they're a no-op, they don't come without a
cost. That said, it's good to document your programs.

Many programs were shared in books or magazine articles
that provided the main documentation for both users and
programmers (in that era, more often than not one and the
same). In today's world it might be helpful to include a text
file, a Markdown document, or even a simple HTML file with
your programs.

USING LINE NUMBERS

Along with documenting your programs, it's important to
structure them so that they're easy to read and modify. While
that's harder in an environment like Cody BASIC, it's not
impossible. Because Cody BASIC, like most retro basics, has a

309

line-oriented editing system, much of your structure will
relate to the line numbering you use.

One tactic for maintainable programs is to be generous with
your use of line numbers. For example, numbering lines by
multiples of 10 gives you additional room to go back and make
changes without having to renumber an entire program. It also
gives someone else the ability to experiment and make
changes more easily.

It can also be helpful to have gaps between line numbering
in unrelated parts of the program. Doing this along with REM
statements at the beginning can help show where your
subroutines begin and end, as well as what they do.

You also have the option to cheat and use a modern PC.
Cody BASIC programs are stored as plain text, unlike
Commodore BASIC programs that were kept in a tokenized
format. They're also written in extended ASCII with the
important non-graphical characters understood by any
modern computer. This means you can load saved Cody BASIC
files in any text editor that won't mangle the file's encoding or
line endings, make changes, and send them along. You can also
write programs from scratch in a text editor and then send
them over to the Cody Computer just like any saved program.
You just need to be careful about line endings. You also must
ensure that your programs end with a blank line indicating the
end of the file.

310

AN EXAMPLE PROGRAM

Below is an example program using some of the above
advice. It's a very contrived example that only adds two
numbers together, and in real life, such a simple program
wouldn't need nearly so much boilerplate. The example is
intentionally simple to demonstrate how the techniques above
might be used in a larger program, without having to wade
through the code of a larger and more complex program itself.

311

An admittedly overengineered program demonstrating some
of the techniques in this section. Note the REM statements, line
numbering, and spacing of subroutines.

10 REM ADDITION BY FJ MILENS III
20 GOSUB 1000
30 GOSUB 2000
40 GOSUB 3000
50 END
1000 REM GET 1ST NUMBER
1010 PRINT "1ST NUMBER";
1020 INPUT A
1030 RETURN
2000 REM GET 2ND NUMBER
2010 PRINT "2ND NUMBER";
2020 INPUT B
2030 RETURN
3000 REM CALC AND PRINT ANSWER
3010 C=A+B
3020 PRINT "THE SUM IS ",C,"."
3030 RETURN
RUN
1ST NUMBER? 6
2ND NUMBER? 5
THE SUM IS 11.

READY.
■

312

INTRODUCTION

The Cody Computer is equipped with its own system for
generating video graphics, the VID or Video Interface Device.
Implemented as a software peripheral inside the Parallax
Propeller chip, it presents itself as hardware on the 65C02's
system bus. Writing to dedicated registers and memory
regions allows you to construct 8-bit mulitcolor graphics.

The VID produces a character-based screen with a resolution
of 160 pixels by 200 pixels. Each character is four pixels by
eight pixels in size, using a fat-pixel ratio similar to that used
by the Commodore 64's multicolor graphics mode. Up to 256
different characters can exist within a single character set, and
multiple character sets can be used on different parts of the
screen. A bitmapped mode is available that essentially
configures all of screen memory to become addressible in
character-like tiles. Screen contents can also be fine-scrolled
in hardware by setting appropriate values.

Sprites are also supported by the VID, allowing you to have
multicolor graphics that hover over the normal screen. These
are 12 pixels across and 21 pixels tall, and each also has a fat-
pixel ratio. The memory layout is very similar to the
Commodore 64's multicolor sprites except that the colors are
less constrained. The Cody Computer's VID doesn't support
other sprite features like scaling or collision detection. It's
there to move sprites around and draw them.

The VID supports 16 colors inspired by the Commodore 64's
color palette. These colors can be used on the screen and on

314

sprites, though are there are some limitations in how many
colors can be used together. Characters on the screen have two
unique colors and two colors shared with the entire screen,
while sprites have two unique colors and one color shared with
other sprites.

Lastly, the VID allows you to change graphics on the fly
using what are called row effects. Similar to old-school raster
interrupts, where video options were switched out at specific
character rows on the screen, you can program the VID to
change sprite banks, character banks, scroll amounts, and even
the colors on each character row as it draws a frame. Further
intervention by the programmer is not required.

CHANGING THE BORDER COLOR

A good introduction to graphics programming is learning
how to change the Cody Computer's border color. The border
can be set to any of the sixteen colors supported by the Cody
Computer. To change it, all you have to do is update the low
four bits of the color register located at position $D002 in
memory.

The high four bits of the color register contain the position of
color memory, something we don't want to change right now.
Instead, what we have to do is read the current value of the
color register, mask out the low four bits with an AND, and
then OR them together with our desired color code.

This can be done from assembly language, but the Cody
BASIC PEEK and POKE will let us directly read and write

315

memory. We just need to use the correct address, 53250, the
decimal equivalent of $D002.

Simple program that changes the border color. The user types
in a number which is put into the low four bits of the color
register. Entering 7 will return the screen to its normal yellow
border.

WORKING WITH SCREEN MEMORY

Now that you know how to change the border color using
PEEKs and POKEs, we'll start using those same operations to
change the screen contents themselves. The Cody Computer's
screen is set up as a range of 1000 bytes, each of which
represents a single character on a 40 column by 25 row screen.
You can change the screen contents by changing the contents
of memory in this region, and in fact that's what Cody BASIC
does internally to display text.

10 PRINT "BORDER COLOR (0-15)";
20 INPUT C
30 IF C<0 THEN END
40 POKE 53250,OR(AND(PEEK(53250),240),C)
50 GOTO 10
RUN
0
1
2
-1

READY.
■

316

UPDATING SCREEN MEMORY

As a simple example, we can fill the screen with data. By
default the screen starts at memory address $C400 or decimal
50176. If we populate the 1000 bytes starting at that location
with numbers corresponding to CODSCII characters, we'll see
them show up on the screen. Each number references a single
character in the character set, so the number we POKE will be
the character that we see.

Directly populating screen memory. Each POKE writes one of
the lowercase characters in the CODSCII character set to a
position in screen memory. When run, the program will
overwrite the screen with lowercase letters.

RELOCATING SCREEN MEMORY

The default screen starts at $C400, but it's possible to move
the screen elsewhere, a capability often used in games and
other graphics-intensive applications. Theoretically, screen
memory can exist anywhere in a 16-kilobyte area of memory
starting at memory address $A000, with the restriction that
the memory must be on a 1-kilobyte boundary.

However, in practice we have to avoid certain parts of
memory. The VID itself uses a page at $D000 for its own

10 FOR I=0 TO 999
20 POKE 50176+I,97+MOD(I,26)
30 NEXT

317

register banks. The SID and UARTs take up a page at $D400.
Memory must also be set aside for color memory and
character memory, two video-related topics we'll get to in this
chapter. When using such techniques in your own programs,
begin with the Cody Computer's memory map and sketch out
where you want things to be placed.

Setting up another region to use as screen memory is just
like the previous example. You just need to write the
appropriate bytes to reference the characters that should be
drawn. However, once you've done that, you still need to tell
the Cody Computer where it lives. The base register at $D003
sets the starting location of both character memory and screen
memory, with screen memory stored in the high four bits.

To determine what value to plug into the high four bits, you
need to do a simple math calculation. Four bits can contain one
of 16 values, which is convenient because a 16-kilobyte area of
memory can contain 16 regions aligned at 1-kilobyte
boundaries (just what we have). Just subtract the start of your
desired screen memory location from $A000, then divide by
1024 to get the result. If your screen memory started at
$A000 you would use a value of 0 because you're in the
initial 1-kilobyte region. For the default screen memory
location at $C400, you would use a value of 9.

318

Temporarily relocating screen memory. Another region in
memory is specified and its base calculated. That same region
is populated with lowercase letters. The base register is then
updated with the new screen memory base, the program waits
for five seconds, and then sets the screen memory base back to
the default.

WORKING WITH COLOR MEMORY

Screen memory specifies what characters to draw on the
screen, but color memory specifies what colors to draw them
in. Characters on the Cody Computer can have up to four
colors, two of which can be unique for each column-row
position on the screen. These two colors are loaded from the
corresponding color memory for the screen.

Much like screen memory, color memory is a contiguous
array of 1000 bytes, and there is a one-to-one
correspondence between screen memory and color memory
locations. Cody BASIC updates color memory locations for you

10 A=41984
20 B=(A-40960)/1024
30 FOR I=0 TO 999
40 POKE A+I,97+MOD(I,26)
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),15),B*16)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),15),9*16)

319

in PRINT statements, but you can also do so by yourself using
POKEs.

UPDATING COLOR MEMORY

Color memory begins by default at address $D800 or
decimal 55296. Much like for screen memory, we need to
POKE data into this region to see the contents of the screen
change. In this case, instead of poking in numbers for
characters, we poke in numbers that represent the foreground
and background colors for each character. The foreground
color code goes into the top four bits of the number and the
background color code goes into the bottom four bits.

Program that updates the default color memory with new
foreground and background colors.

10 A=55296
20 PRINT "FOREGROUND COLOR (0-15)";
30 INPUT F
40 PRINT "BACKGROUND COLOR (0-15)";
50 INPUT B
60 C=F*16+B
70 FOR I=0 TO 999
80 POKE A+I,C
90 NEXT
RUN
FOREGROUND COLOR? 13
BACKGROUND COLOR? 0

READY.
■

320

RELOCATING COLOR MEMORY

Just like screen memory, color memory can be moved to a
different location. As with screen memory, the region of
memory starting at $A000 is divided into 1-kilobyte blocks,
and the same caveats and restrictions on their use apply here
as well. To calculate the base for a particular color memory
location, you can use the same formula that you used for
screen memory in the prior section.

Once you've decided on a new location for color memory,
you need to update the color register at $D002. You updated
the low four bits of this register to change the border color at
the beginning of this chapter, but now you'll update the high
four bits to specify the base location for color memory.

321

Program that temporarily relocates color memory to a
different location. A second color memory region is set up with
the colors selected by the user. The color register is then
temporarily updated to point to the new region before
returning back to the default location.

CHARACTERS AND CHARACTER
MEMORY

Screen memory specifies what characters to draw and color
memory specifies what colors to draw them in, but character
memory specifies what the characters themselves look like. A

10 PRINT "FOREGROUND COLOR (0-15)";
20 INPUT F
30 PRINT "BACKGROUND COLOR (0-15)";
40 INPUT B
50 C=F*16+B
60 A=41984
70 B=(A-40960)/1024
80 FOR I=0 TO 999
90 POKE A+I,C
100 NEXT
110 POKE 53250,OR(AND(PEEK(53250),15),B*16)
120 T=TI
130 IF TI-T<300 THEN GOTO 130
140 POKE 53250,OR(AND(PEEK(53250),15),14*16)
RUN
FOREGROUND COLOR? 15
BACKGROUND COLOR? 12

READY.
■

322

character set on the Cody Computer consists of up to 255
unique characters, each of which is four pixels across and eight
pixels tall.

CHARACTERS IN ROM

The Cody Computer contains the full default CODSCII
character set in a 2-kilobyte area of memory starting at
$E000 or decimal 57344. When the computer starts up, the
BASIC ROM copies this character set into memory at $C800,
where it can be seen by the Video Interface Device and used to
draw the screen. You can always access these characters
yourself to see what data they contain in numeric format.

323

A Cody BASIC program that reads a character's bytes from the
character ROM.

This means that in your own programs, you don't have to
worry about clobbering the existing characters in video
memory, or preserving them somewhere else. You can just
modify or overwrite them, and then copy the original
characters from the ROM back to video memory to clean up.

10 INPUT S$
20 C=ASC(S$)
30 A=57344+C*8
40 FOR I=0 TO 7
50 PRINT PEEK(A+I)
60 NEXT
RUN
? A
0
4
17
17
21
17
17
17

READY.
■

324

A program that copies the lowercase characters over the
uppercase characters, temporarily making everything on the
screen lowercase. When done it copies the original uppercase
characters from ROM back into video memory. Note that this
isn't changing the screen memory contents at all. Instead, it's
changing the characters themselves.

CUSTOM CHARACTERS

As mentioned, characters on the Cody Computer actually
have four colors. Two of the colors, 0 and 1, are unique to each
character position on the screen. Those colors are read from
the color memory you learned about earlier. The other two
colors, 2 and 3, are shared as common colors by every location
on the screen.

The shared colors are kept in the screen colors register at
location $D005 or decimal 53253 and have a similar format to

10 S=51200+97*8
20 D=51200+65*8
30 FOR I=0 TO 207
40 POKE D+I,PEEK(S+I)
50 NEXT
60 T=TI
70 IF TI-T<300 THEN GOTO 70
80 S=57344+65*8
90 D=51200+65*8
100 FOR I=0 TO 207
110 POKE D+I,PEEK(S+I)
120 NEXT

325

color memory. Color 2 is stored in the low four bits and color 3
is stored in the high four bits of the register.

You don't notice these colors when the Cody Computer
starts up because the default character set only uses colors 0
and 1, the two colors that are unique to a given screen position.
This works nicely for the character set as we can specify the
foreground and background colors independently for each
position on the screen. However, in more graphical applications
such as games, it helps to have more colors.

To use them, you have to define your own characters. Each
character consists of eight bytes, with each pixel in a character
represented by two bits. Bit combinations 00 and 01 reference
the two screen colors at that location, while bit combinations 10
and 11 reference the common colors in the screen register. Each
character is four pixels wide and eight pixels high, and the data
in character memory is stored from the top of the character to
the bottom. Within each byte, the pixel data goes from the
leftmost pixel in the two highest bits to the rightmost pixel in
the two lowest bits.

To design your own character you work out the bit
combinations for your own 4-by-8 pixel pattern, then POKE
that data somewhere in the current character set. Remember
that characters don't actually have to be characters as such.
They can be any kind of image, including tiles for games or
portions of a background picture. You can even use different
character sets on different screen rows if you need more
unique characters (for example, using one character set for the
user interface and another for the game world itself). This can
even be a substitute for bitmap graphics if used wisely.

326

Example program that defines a new character that consists of
four colored blocks, then fills the screen with it. Two of the new
character's colors are unique to the character itself and stored
in the color memory. The other two are shared by all the
characters on the screen and are stored in the screen colors
register.

RELOCATING CHARACTER MEMORY

Like screen memory and color memory, character memory
can be relocated. Like screen memory, the base location of
character memory is specified in the base register at $D003 or
decimal 53251. The base for character memory is stored in the
low four bits of the register, and the base can be calculated
similar to that for screen and color memory: Subtract the base
address from $A000 or decimal 40960, then divide by 2048
in this case. Character sets take 2 kilobytes and must be
aligned on a 2048-byte boundary, unlike screen and color
memory that take 1000 bytes and must be aligned on a 1024-
byte boundary.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 POKE 53253,1
100 DATA 80,80,80,80,250,250,250,250

327

A program that fills another 2-kilobyte region of memory with
test patterns, then temporarily points the base of character
memory to it. In a real application the character data would be
a new character set, game tiles, or similar. Note the 2-kilobyte
alignment of the character set's start address and division by
2048 for calculating the base.

Relocating character memory becomes very important when
used in combination with row effects, which we'll cover later in
this chapter. Row effects let you specify a different base for the
character set on each character row, allowing you to switch out
character sets within a single video frame.

This technique can be used for video games, for example
using different character sets for the main game area as
opposed to the surrounding graphics and status displays. It's
also how the Cody Computer can display fully-bitmapped
graphics by breaking a bitmap into a series of tiles.

10 A=40960
20 B=(A-40960)/2048
30 FOR I=0 TO 2047
40 POKE A+I,MOD(I,2)*85
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),240),B)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),240),5)

328

WAITING FOR BLANKING

In this section you've been making a lot of changes to the
Cody Computer's video registers. One thing we haven't
discussed yet is what happens if you make changes when the
video hardware is in the middle of drawing a frame. The answer
is that while it won't break anything, there's the chance for
screen tearing, jerky motion, and other weird visual glitches
popping up in the middle of a frame.

One way to avoid those problems is to update the video
registers and the active video memory only when the video
device isn't generating a frame. The blanking register at
$D000, or decimal 53248, indicates the current state. A zero
indicates that the visible area of the screen is being drawn,
while a 1 indicates that the blanking area or top and bottom
borders are being drawn instead.

A common technique is to poll the blanking register until it
transitions from a 0 to 1, then perform any required updates
for the next frame. This usually works better in assembly
language because of its increased speed, but we can still use
the same approach in Cody BASIC as an example.

329

A program that prints a message whenever a new frame
begins, then waits for it to end before repeating. The program
will run forever until you break using the Cody + Arrow key
combination. Note that the program likely won't print on every
frame in reality because of the time required for Cody BASIC
to execute each line.

SCROLLING THE SCREEN

The Cody Computer's Video Interface Device also has
features to support vertical and horizontal scrolling with
hardware assistance. Two types of scrolling exist with different
levels of support. One type of scrolling, fine scrolling, allows
you to adjust the vertical and horizontal position up to a full
column or row. Once you've adjusted it up to that level, you
need to use coarse scrolling, where scrolling occurs at a
column or row basis. Fine scrolling is supported by the scroll

10 IF PEEK(53248)=0 THEN GOTO 10
20 PRINT "NEW FRAME"
30 IF PEEK(53248)=1 THEN GOTO 30
40 GOTO 10
RUN
NEW FRAME
NEW FRAME
NEW FRAME
NEW FRAME
BREAK IN 10

READY.
■

330

register, while coarse scrolling is usually implemented as a
side effect of relocating screen memory.

FINE SCROLLING WITH REGISTERS

Two different registers are involved in fine scrolling. Fine
scrolling is enabled using the control register at $D001 or
decimal 53249. When set to a 1, bit 1 enables vertical scrolling
and bit 2 enables horizontal scrolling. Vertical and horizontal
scrolling can be enabled individually or at the same time.

Enabling scrolling affects the screen dimensions. Vertical
scrolling decreases the displayed vertical screen size by one
row. Horizontal scrolling on decreases the displayed horizontal
screen size by two columns. The actual screen and color
memory layout are unaffected but the space on the screen is
replaced by expanded borders.

Once scrolling has been enabled for a particular direction,
the amount to scroll must be specified in the scroll register at
$D004 or decimal 53252. The horizontal scroll amount is
stored in the higher four bits while the vertical scroll amount is
stored in the lower four bits. Horizontal scrolling supports a
value between 0 and 3 while vertical scrolling supports a value
between 0 and 7. The difference occurs because pixels are
wider than they are tall on the Cody Computer, much like how
a character has 4 horizontal pixels but 8 vertical pixels.

331

A program that lets you experiment with vertical and
horizontal scrolling at the same time. The code accepts vertical
and horizontal scroll values from the user, then turns on
scrolling and pokes the values into the scroll register. At the
end the normal settings are restored.

COMBINED SCROLLING

Fine scrolling works well for simple effects, but to make a
scrolling game it's not enough by itself. For that you need to
combine it with coarse scrolling, where you move the entire
screen by a row or column. Unfortunately, much like its
Commodore inspiration, the Cody Computer has no direct
support for coarse scrolling. Instead, what you do is draw a

10 PRINT "H SCROLL (0-3)";
20 INPUT H
30 IF H<0 THEN GOTO 100
40 PRINT "V SCROLL (0-7)";
50 INPUT V
60 IF V<0 THEN GOTO 100
70 POKE 53249,OR(PEEK(53249),6)
80 POKE 53252,H*16+V
90 GOTO 10
100 POKE 53249,AND(PEEK(53249),249)
110 POKE 53252,0
RUN
H SCROLL? 2
V SCROLL? 4
H SCROLL? -1

READY.
■

332

second screen, then flip to it when you need to scroll, using the
same techniques you learned earlier in this chapter for
relocating the screen and color memory.

That's a lot of memory to draw, and moving that much data
around on a per-frame basis is typically reserved for assembly
language applications. Even then, it's typically an optimized
process where part of the screen and color memory is drawn
behind the scenes during each fine-scrolled frame so that it's
all ready to go. In some respects the Cody Computer makes
this easier because the color memory can also be relocated,
unlike its fixed position on the Commodore 64.

However, just because we can't do it fast enough in Cody
BASIC doesn't mean we can't at least give a simple example of
how it works. The following program demonstrates most of the
techniques needed, but it keeps the screen design simple so
that we only have to generate two example screens at the start.
It also doesn't change the colors so we don't need to do
anything about the color memory.

10 A(0)=40960
20 A(1)=41984
30 B(0)=(A(0)-40960)/1024
40 B(1)=(A(1)-40960)/1024
50 FOR I=0 TO 999
60 C(0)=20
70 C(1)=20
80 IF MOD(I,2)=1 THEN C(0)=194
90 IF MOD(I,2)=0 THEN C(1)=194
100 POKE A(0)+I,C(0)
110 POKE A(1)+I,C(1)
120 NEXT
130 S=0

333

A simple combined scrolling example in Cody BASIC. Two
screens are generated with repeating patterns offset by one
column. Horizontal scrolling is enabled and the screen is fine-
scrolled one pixel on each frame. Every fourth frame the
screen memory is toggled between the two screen regions we
set up to handle the coarse scrolling. When the user presses
the Q key, the program terminates and restores the normal
video configuration.

MOVING GRAPHICS WITH SPRITES

The Cody Computer supports sprites, movable graphical
objects on the screen often used in games. Sprites are
independent of the screen background and hover over it. Each
sprite is 12 pixels wide and 21 pixels tall with a total of three
colors plus a transparent option. Two colors are unique to each
sprite while one is shared by all the sprites on the screen.

140 POKE 53252,0
150 POKE 53249,OR(PEEK(53249),4)
160 M=S/4
170 IF M=0 THEN B(2)=B(0)
180 IF M=1 THEN B(2)=B(1)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53252,MOD(S,4)*16
210 POKE 53251,OR(AND(PEEK(53251),15),B(2)*16)
220 S=MOD(S+1,8)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 160
260 POKE 53251,OR(AND(PEEK(53251),15),9*16)
270 POKE 53249,AND(PEEK(53249),251)
280 POKE 53252,0

334

Sprites can be positoned anywhere on the screen as well as
partially off the screen on both the vertical or horizontal axes.

Sprite data uses a total of 63 bytes of memory, with the
amount being rounded up to 64 as a power-of-two. Each byte
contains four pixels in a multicolor format like those used by
the character memory. Sprite memory is organized from left to
right, with the top-left portion of the sprite beginning at the
first location in memory. Within each byte, the left-most pixel
data is stored in the higher bits and moves to the lower bits.

Each color is represented by two bits, with a value of 0
indicating a transparent pixel. Values of 1 and 2 represent the
two unique sprite colors, while a value of 3 represents the
common color shared by all sprites on the screen. Sprite
memory is organized from left to right, with the top-left
portion of the sprite beginning at the first location in memory.

Programming sprites is somewhat difficult in the beginning.
In addition to the sprite data that defines the image of a sprite,
registers must be programmed to set up the sprite, specify its
location, unique colors, and base address of its image data. In
order to support a large number of sprites on the screen, an
entire page of memory is set aside as sprite register banks,
and this must also be taken into account.

DISPLAYING A SPRITE

To display a single sprite we have to do a few things first. We
need to copy the sprite's image data into a 64-byte-aligned
location in the 16-kilobyte area beginning at $A000. As with

335

similar operations, we also need to ensure that it won't collide
with registers or data already there.

Once we have a location picked out, we need to use it to
calculate the sprite's base pointer, which is calculated in a
similar way to the screen, color, and character memory base
pointers. You subtract your sprite's starting address from the
start of the region at $A000, then divide the result by 64 to
determine the base pointer. Conveniently there are 256
possible locations aligned at 64-byte boundaries, so this value
fits into a single byte.

Once the data is loaded for a sprite, you need to program
the sprite registers to tell the computer how to display it.
Sprite registers begin at location $D080 or 53376 decimal,
and each sprite takes up four consecutive bytes starting at the
beginning. The first byte specifies the sprite's x-position, the
second byte specifies the sprite's y-position, the third byte
specifies the sprite's two unique colors, and the fourth and
final byte specifies the base pointer for the sprite's image data.
(Multiple sprites can reuse the same image data, such as in old
games where the bad guys reused the same picture in
different colors.)

The sprite's position on the screen, notably, does not start at
(0,0) at the top-left corner. Sprites can slide in from the sides
of the screen and be only partially displayed. To support this, a
margin is added to the normal screen dimensions. Because
sprites are 12 pixels wide, a 12 pixel margin is added to either
side of the screen. Likewise, because sprites are 21 pixels tall, a
21 pixel margin is added to the top and bottom. This margin
isn't displayed on the screen, but it allows the sprite to be

336

partially positioned off the screen. This also means that the
first screen location that would fully display the sprite is at
(12,21).

A sprite's unique color data is stored in a format like the
color memory. Two colors are stored in one byte, with sprite
color 1 stored in the lower half of the byte and sprite color 2
stored in the upper half. The common color, color 3, shared by
all sprites is stored in the sprite register at $D006 or decimal
53254, where it's kept in the low half of the byte. The color
codes are the same as those used in color memory.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 IF PEEK(53248)=0 THEN GOTO 140
150 POKE 53376+0,P(0)
160 POKE 53376+1,P(1)
170 P(0)=P(0)+D(0)
180 P(1)=P(1)+D(1)
190 IF P(0)=12 THEN D(0)=-D(0)
200 IF P(0)=160 THEN D(0)=-D(0)
210 IF P(1)=21 THEN D(1)=-D(1)
220 IF P(1)=200 THEN D(1)=-D(1)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230

337

A sprite demo that bounces a balloon sprite around on the
screen. The sprite's data is kept in DATA statements and
POKEd into memory. The sprite's position and velocity are kept
in arrays and updated on each frame. The code waits for the
blanking interval and updates the sprite position using the
numbers from the arrays. Pressing the Q key exits the
program and restores the default settings.

250 GOTO 140
260 POKE 53376+0,0
270 POKE 53376+1,0
280 DATA 0,20,0,1,85,64,5,85
290 DATA 80,5,85,80,21,125,84,21
300 DATA 215,84,21,213,84,21,213,84
310 DATA 21,215,84,5,125,80,5,85
320 DATA 80,5,85,80,13,85,112,12
330 DATA 93,48,12,93,48,3,28,192
340 DATA 3,12,192,3,12,192,0,142
350 DATA 0,0,170,0,0,170,0,131

338

A single sprite in the form of a balloon.

DISPLAYING MULTIPLE SPRITES

Up to eight sprites can be displayed on the same part of the
screen at any one time. You only need to set up the other
sprite registers just as you did the first one in the previous
example. As mentioned before, each sprite is more or less
independent of the screen, and in fact sprites are more or less
independent of each other.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63

339

40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 FOR I=0 TO 7
90 POKE 53376+I*4+2,1*16+(I+7)
100 POKE 53376+I*4+3,B
110 X(I)=13+MOD(RND(),147)
120 Y(I)=22+MOD(RND(),177)
130 U(I)=1
140 V(I)=1
150 IF MOD(RND(),2)=0 THEN U(I)=-U(I)
160 IF MOD(RND(),2)=0 THEN V(I)=-V(I)
170 NEXT
180 IF PEEK(53248)=0 THEN GOTO 180
190 FOR I=0 TO 7
200 POKE 53376+I*4+0,X(I)
210 POKE 53376+I*4+1,Y(I)
220 X(I)=X(I)+U(I)
230 Y(I)=Y(I)+V(I)
240 IF X(I)=12 THEN U(I)=-U(I)
250 IF X(I)=160 THEN U(I)=-U(I)
260 IF Y(I)=21 THEN V(I)=-V(I)
270 IF Y(I)=200 THEN V(I)=-V(I)
280 NEXT
290 IF AND(PEEK(16),1)=0 THEN GOTO 320
300 IF PEEK(53248)=1 THEN GOTO 300
310 GOTO 180
320 FOR I=0 TO 7
330 POKE 53376+I*4+0,0
340 POKE 53376+I*4+1,0
350 NEXT
360 DATA 0,20,0,1,85,64,5,85
370 DATA 80,5,85,80,21,125,84,21
380 DATA 215,84,21,213,84,21,213,84
390 DATA 21,215,84,5,125,80,5,85
400 DATA 80,5,85,80,13,85,112,12
410 DATA 93,48,12,93,48,3,28,192
420 DATA 3,12,192,3,12,192,0,142

340

A program that bounces multiple balloons around the screen.
The program is similar to the previous example except that all
eight sprites in the first sprite bank are in use. Program flow is
largely the same, though loops are added to iterate over each
sprite, its coordinates, and its velocity. Pressing Q will exit the
program.

All eight sprites in use with the same balloon image but
different color values.

Here we only used 8 sprites that can move around the entire
screen. So far we've only been using the first sprite bank that
begins at $D080 and continues for 32 bytes (4 bytes for each
of 8 sprites). Up to 32 sprites can be displayed using sprite

430 DATA 0,0,170,0,0,170,0,131

341

banks and row effects, something covered when we discuss row
effects in more detail.

In those situations, multiple sprite banks with their own
information are swapped in and out by the Video Interface
Device as it draws the frame. The top half of the sprite register
at $D006 is used to select one of the sprite banks, and this
value can be overridden at the start of each subsequent
character row by a row effects setting. However, there can still
only be a maximum of 8 sprites on any row.

DISABLING VIDEO OUTPUT

The VID also allows you to turn off the video display
entirely, for example if you don't want the user to see the
screen slowly being drawn in Cody BASIC. One workaround
would be to relocate the screen and color memory to another
location, but a quicker way is to just shut off the video
temporarily.

This can be done using the control register at $D001 or
decimal 53249. When bit 0 is set to 1, the display output is
turned off and replaced with the current screen border color.
When the bit is cleared back to a 0, screen output returns as
expected.

342

A simple example that turns off the video output for 5
seconds.

Because the VID is implemented inside the Propeller and
uses its internal memory, disabling video output doesn't speed
up the 65C02. Many older computers turned off video
generation to speed up computations as the video hardware no
longer shared the bus, but in the Cody Computer, our system
just doesn't work like that.

ROW EFFECTS

One last feature of the Video Interface Device is its ability to
switch out graphics while the screen is being drawn. Many 8-
bit computers of the past had raster interrupts that notified the
processor when a particular line was drawn on the screen, and
if the computer could respond fast enough, it could actually
swap out some of the data. The Cody Computer has a built-in
way of doing this.

The Cody Computer supports a system of row effects, where
the VID can be programmed to replace the contents of certain
registers on specified character rows. The base register, scroll
register, screen colors register, and sprite register can all be
overridden at any character row boundary using this

10 POKE 53249,1
20 T=TI
30 IF TI-T<300 THEN GOTO 30
40 POKE 53249,0

343

mechanism. Once applied, the change remains for the rest of
the current frame or until another value is specified. On the
next frame the process begins anew with the original register
values.

Using the row effects unlocks the full capacity of the Cody
Computer's graphics system. You can have multiple banks of
sprites on the screen at the same time, so long as they are
partitioned into different rows on the screen. You can change
the shared screen and sprite colors to have a more colorful
output and avoid color attribute clashes. You can have split
scrolling so that a game screen can be scrolled while status
bars remain fixed in place. You can dynamically swap out
character sets and create a very detailed, dynamic screen
without resorting to bitmap mode.

ROW EFFECTS REGISTER BANKS

The mechanism works by having two dedicated row effects
register banks of 32 bytes each. The first bank, starting at
$D040 or decimal 53312, contains the control values for each
row effect. These values tell the VID where to perform the
replacement and what register to replace. The second bank,
starting at $D060 or decimal 53344, specify the replacement
values that should be used.

The control bytes consist of several pieces of information
packed into a single byte. Bits 0 through 5 contain the row
number to begin the replacement on. Bits 6 and 7 contain a
two-bit value specifying the target register to override. The
last bit, bit 8, is an enable bit that must be set to 1 for that

344

specific row effect to be applied. The two-bit destination code
is as follows:

Destination 00 replaces the base register.
Destination 01 replaces the scroll register.
Destination 10 replaces the screen colors register.
Destination 11 replaces the sprite register.

Row effects must also be enabled globally in the control
register at $D001 or decimal 53249. Bit 3 of the control
register must be set to 1 to enable the effects regardless of the
enable bit on each control byte in the row effect bank.

SCREEN COLORS AND ROW EFFECTS

One of the typical uses for row effects is increasing the
number of colors on the screen. As you may recall, each
location on the screen has two unique colors and two shared
colors. With row effects, the shared colors can be swapped for
other colors starting at any character row boundary.

Programs can use this ability to divide the screen into
different shared color regions for different reasons. Games
might use this to have different shared colors in different
areas, for example, different shared colors for sky, ground, and
ocean. Paint programs could use this to permit more colors on
the screen for artwork. And for more detailed graphics, the
same principle applies, allowing more colors to be used in
detailed images or backgrounds than would normally be
possible.

•
•
•
•

345

To do this, we need to select the screen colors register as our
destination using code 10, then ensure that the replacement
value is loaded into the corresponding row effect data register.
The format of the data in the row effect data register is the
same as it would be if directly stored to the screen colors
register.

A modified version of the sample program for defining custom
characters. As in that example a character pattern using four
different colors is programmed in and filled to the entire
screen. Unlike the earlier example, the two common colors on
the characters will be different for each row. This is because we
told the Cody Computer to change the shared screen colors on
each row using row effects.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 FOR I=0 TO 24
100 POKE 53312+I,OR(192,I)
110 POKE 53344+I,MOD(I,16)*16+MOD(I+8,16)
120 NEXT
130 POKE 53249,OR(PEEK(53249),8)
140 DATA 80,80,80,80,250,250,250,250

346

SPRITE COLORS AND ROW EFFECTS

While not as broadly useful, the shared sprite color can also
be changed on a per-row basis using the sprite register row
effect. The sprite register contains both the sprite bank base (in
the high four bits) and the sprite shared color (in the low four
bits).

By using 11 as our destination code to replace the sprite
register, we can target the sprite register for a row effect. To
change only the sprite color, our replacement value in the
corresponding data register would have the sprite bank
register held constant but use a different color code in the low
four bits.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 FOR I=0 TO 24
150 POKE 53312+I,OR(224,I)
160 POKE 53344+I,MOD(I,16)
170 NEXT
180 POKE 53249,OR(PEEK(53249),8)
190 IF PEEK(53248)=0 THEN GOTO 190

347

A modified version of the balloon sprite example. In this
program we have also added row effects to change the
common sprite color on each row. As the balloon travels the
screen the shared color will pulsate and change depending on
the rows the balloon sprite hovers over. Press Q to quit.

SPRITE BANKS AND ROW EFFECTS

As you may have guessed during the above section on sprite
color row effects, the sprite banks can also be changed when
the sprite register is used in a row effect. Different sprite banks
can contain different sprites and the row effects can change the
bank at different rows on the screen. This approach is quite

200 POKE 53376+0,P(0)
210 POKE 53376+1,P(1)
220 P(0)=P(0)+D(0)
230 P(1)=P(1)+D(1)
240 IF P(0)=12 THEN D(0)=-D(0)
250 IF P(0)=160 THEN D(0)=-D(0)
260 IF P(1)=21 THEN D(1)=-D(1)
270 IF P(1)=200 THEN D(1)=-D(1)
280 IF AND(PEEK(16),1)=0 THEN GOTO 310
290 IF PEEK(53248)=1 THEN GOTO 290
300 GOTO 190
310 POKE 53376+0,0
320 POKE 53376+1,0
330 DATA 0,20,0,1,85,64,5,85
340 DATA 80,5,85,80,21,125,84,21
350 DATA 215,84,21,213,84,21,213,84
360 DATA 21,215,84,5,125,80,5,85
370 DATA 80,5,85,80,13,85,112,12
380 DATA 93,48,12,93,48,3,28,192
390 DATA 3,12,192,3,12,192,0,142
400 DATA 0,0,170,0,0,170,0,131

348

powerful as it allows more than eight sprites to be on the
screen at the same time. The only limitation is that only one
sprite bank can be used on any single row.

This technique is very useful in games so long as your game
logic is designed to support it. An arcade game could have up
to 8 airplanes in a sky region, up to 8 tanks on a ground region,
and up to 8 ships in a water region, all on the same screen. A
similar approach could be used for flying versus ground
enemies in a sidescroller. A player sprite that needs to transit
multiple regions can be programmed into multiple banks with
the same information, so that regardless of its current location
it's drawn appropriately on the screen.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 FOR I=0 TO 31
80 POKE 53376+I*4+0,13+18*MOD(I,8)
90 POKE 53376+I*4+1,25+(I/8)*48
100 POKE 53376+I*4+2,9*16+MOD(I,16)
110 POKE 53376+I*4+3,B
120 NEXT
130 FOR I=0 TO 31
140 POKE 53312+I,0
150 NEXT
160 FOR I=0 TO 3
170 POKE 53312+I,OR(224,I*6)
180 POKE 53344+I,I*16
190 NEXT
200 POKE 53249,OR(PEEK(53249),8)
210 IF PEEK(53248)=0 THEN GOTO 210
220 FOR I=0 TO 31

349

A sprite example with multiple sprite banks in use. Based on
the multiple sprite example earlier in the chapter, this
program sets up a total of 32 sprites in four sprite banks. The
sprites are split into four horizontal regions and the first four
row effects registers set up to switch out sprite banks at those
screen-split locations. Pressing Q will quit.

230 T=PEEK(53376+I*4)+1
240 IF T>174 THEN T=0
250 POKE 53376+I*4,T
260 NEXT
270 IF AND(PEEK(16),1)=0 THEN GOTO 300
280 IF PEEK(53248)=1 THEN GOTO 280
290 GOTO 210
300 FOR I=0 TO 31
310 POKE 53376+I*4+0,0
320 POKE 53376+I*4+1,0
330 NEXT
340 DATA 0,20,0,1,85,64,5,85
350 DATA 80,5,85,80,21,125,84,21
360 DATA 215,84,21,213,84,21,213,84
370 DATA 21,215,84,5,125,80,5,85
380 DATA 80,5,85,80,13,85,112,12
390 DATA 93,48,12,93,48,3,28,192
400 DATA 3,12,192,3,12,192,0,142
410 DATA 0,0,170,0,0,170,0,131

350

A total of 32 sprites on the screen thanks to row effects. Note
how each group of eight sprites exists in its own horizontal
region on the screen.

SCROLLING WITH ROW EFFECTS

Row effects can also be used to set different fine-scroll
amounts on different parts of the screen. The contents of the
scroll register can be overridden using destination code 01 and
the new value of the scroll register in the corresponding row
effect data register. Horizontal or vertical scrolling must be
enabled in the control register separately.

This approach can be useful for games that require a split-
screen effect. Many games include a static status area with

351

health/life, timer, inventory, or other information while the
main game area scrolls along. Splitting the screen into
multiple scroll areas can help with this, and the split can even
be combined with the double-buffering approach mentioned
in the earlier section on fine and coarse scrolling.

An example of split-screen scrolling. The row effects registers
are cleared and then set up to have two different horizontal
scrolling values, zero for the first three rows and a changing
amount for the remainder of the screen. Horizontal scrolling
and row effect are switched on and the main loop updates the
scroll amount. Pressing the Q key ends the program and shuts
off the extra effects.

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 FOR I=0 TO 31
50 POKE 53312+I,0
60 NEXT
70 POKE 53312+0,OR(160,0)
80 POKE 53344+0,0
90 POKE 53312+1,OR(160,3)
100 POKE 53249,12
110 S=0
120 IF PEEK(53248)=0 THEN GOTO 120
130 POKE 53344+1,S*16
140 S=MOD(S+1,4)
150 IF AND(PEEK(16),1)=0 THEN GOTO 180
160 IF PEEK(53248)=1 THEN GOTO 160
170 GOTO 120
180 POKE 53249,0

352

RELOCATIONS USING ROW EFFECTS

The base register can be updated when the destination code
is set to 00. This can be used to update the base of screen
memory on the fly, but in general is going to be used to
change the character set base portion of the register instead.
Doing this allows more than 256 characters to be used on the
screen at the same time.

The format used for the row effect's data register is the
same as that used for the register itself. For example, to
change the character set, keep the same screen memory base
but use a different character set base.

This can be useful in games. For example, imagine a full
character set used as tiles for the game world, and a separate
character set used for the text and user interface at the top and
bottom of the screen.

353

Using row effects to change the base address of the character
set in the middle of a frame. A test pattern from a previous
example is programmed into a second character set, then
switched out in the middle of the frame using a row effect. The
Q key will quit the program.

BITMAPPED GRAPHICS

The Cody Computer also supports a limited form of bitmap
graphics. In this mode, each byte in screen memory is
expanded to eight bytes containing the bit pattern to draw at
the location. The layout of each eight-byte section is exactly
the same as in character memory, and the same color
limitations apply as in the normal character graphics mode.
This also expands the size of video memory from 1000 bytes

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 A=40960
50 B=(A-40960)/2048
60 FOR I=0 TO 2047
70 POKE A+I,MOD(I,2)*85
80 NEXT
90 FOR I=0 TO 31
100 POKE 53312+I,0
110 NEXT
120 POKE 53312,OR(128,12)
130 POKE 53344,9*16+B
140 POKE 53249,8
150 IF AND(PEEK(16),1)=1 THEN GOTO 150
160 POKE 53249,0

354

to 8000 bytes. Bitmap mode is enabled by bit 4 of the video
control register at $D001 or decimal 53249.

In many respects the bitmap mode is more of a hybrid mode
between character graphics and a fully-bitmapped screen. The
first eight bytes represent the first 4x8 tile, the next eight
bytes represent the second 4x8 tile, and so on for the
remainder of the screen. While this makes the implementation
easier within the Cody Computer's firmware (and also more
faithful to how things actually worked on the Commodore
computers), it does make plotting pixels more difficult.

To find where to plot a pixel, it's necessary to begin with the
(x,y) coordinate on the screen's 160x200 grid. First divide the
y-coordinate by 8 (the number of lines in a character)
rounding down, then multiply by 320 (the number of bytes in
a row of 40 tiles). Then divide the x-coordinate by 4 (the
number of columns in a character) rounding down, then
multiply by 8 (the number of bytes in a character). This gets us
to the beginning of the bytes for that section of the screen. We
add the remainder from the earlier division of the y-
coordinate to get the final byte we need to update.

To select the actual pixel within that byte, however, we still
have a bit of work to do. We need to mask out the portion of
the byte we want to change and replace it with the color we
want to draw. Just like in character memory, each byte is
represented by two bits, with the highest two bits representing
the leftmost dot in the line of pixels. This means that we'll
need a two-bit mask that we shift right the appropriate
number of two-bit increments, and we'll need to do the same
with the color value we'll insert.

355

It's not an easy operation, though once you've walked
through the steps, it'll become clearer. It also means that it's a
lot more time-consuming than just updating a single byte to
change an entire tile on the screen. Bitmapped graphics have
their place, but for things like video games, many of the most
action-intense ones will need to rely on the character graphics
mode over the bitmapped mode: A slow retro-style system
like the Cody Computer just isn't going to push that many
pixels.

Below we have a Cody BASIC program that demonstrates
the bitmap mode by setting it up and randomly plotting some
pixels. We have to relocate our screen memory so that we have
enough space for the bigger memory, clear out the memory,
set up our colors, and finally enter a loop where we randomly
plot pixels into the screen area. The complicated calculation
discussed above is implemented as a subroutine in Cody
BASIC to make it a little easier to follow.

10 FOR I=40960 TO 48960
20 POKE I,255
30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()
60 NEXT
70 POKE 53253,1
80 POKE 53250,224
90 POKE 53251,5
100 POKE 53249,OR(PEEK(53249),16)
110 X=MOD(RND(),160)
120 Y=MOD(RND(),200)
130 C=MOD(RND(),4)
140 GOSUB 300
150 IF AND(PEEK(16),1)=0 THEN GOTO 200

356

Plotting random pixels in bitmap mode. It will take a little
while to run as it clears out screen memory before beginning
to plot pixels. When ready to exit, press the Q key and the
screen will be restored to character graphics mode.

160 GOTO 110
200 POKE 53253,22
210 POKE 53250,231
220 POKE 53251,149
230 POKE 53249,AND(PEEK(53249),15)
240 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/4*8
330 P=P+MOD(Y,8)
340 M=192
350 C=C*64
360 R=MOD(X,4)
370 IF R=0 THEN GOTO 420
380 M=M/4
390 C=C/4
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN

357

INTRODUCTION

The Cody Computer supports sound and music through the
Sound Interface Device or "SID," a copy of the famous SID from
the Commodore 64. The Cody Computer's SID supports many,
but not all, of the same features as its predecessor. It's
intended as a simplified sound generator suitable for the
curious hobbyist or casual user, but with a significant degree of
compatibility. Like the Cody Video Interface Device, the Cody
SID is implemented as a software peripheral in the Propeller.

Like the original SID, the Cody SID relies on principles of
digital audio synthesis to generate sounds. Unlike modern
computers which essentially play back raw audio data (often
after processing the signal in some way), the SID generates
sound mathematically. Counters and mathematical formulas
are used to produce sound-like waves and combine them
together, with the exact characteristics of these waves under
the control of the programmer.

The Cody SID supports up to three voices, or independent
sounds, at the same time. Each voice can generate a sound at a
different frequency, and each sound can consist of either a
triangle wave, a sawtooth wave, a pulse wave, and white noise.
These are combined with another wave called an envelope,
which determines how loud the sound gets, how quickly, and
how slowly it fades away when turned off.

The envelope is defined using attack (how fast the sound
reaches a peak volume), decay (how long the sound drops to
its normal value after the peak), sustain (how loud the sound

359

stays), and release (how long the sound takes to fade out).
This ADSR envelope shapes the underlying sound for each
voice and is capable of mimicking many instruments and
sound effects.

The original SID chips in the Commodore 64 family had
other features, including filters that let the programmer
emphasize certain high-frequency, low-frequency, or middle
portions of each sound. Filters could vary greatly between SID
chips, and in order to keep the Cody Computer a fun learning
tool, filters aren't supported by the Cody Computer's SID.
Some sounds and songs, even if ported to work on the Cody
Computer, won't sound quite right as a result, but most results
are at least passable. Also unlike the Commodore SID, the
Cody SID doesn't permit the user to select multiple waveforms
for the same voice: you have to pick one, and only one, type of
sound for each voice at any one time.

MAKING A SOUND

To program sounds, you poke values into memory registers.
Each voice has seven registers, and there are a total of three
voices, starting at memory location $D400 (decimal 54272).
Global settings for the SID, including volume, are controlled by
a handful of other registers immediately following the voice
registers.

For each voice, the registers are organized in the same order.
The first two registers contain the low and high bytes for the
voice's sound frequency as a number from 0 to 65535 (these
map, more or less, to a range between 0 and 4 kilohertz as

360

audio frequencies). Following those are two registers only used
for pulse waveforms, containing the low and high bytes of the
pulse wave's duty cycle (how long it is on relative to how long
it is off). The pulse value can range from 0 to 4095, with a zero
being off all the time and 4095 being on all the time. (If you're
curious, the more limited range of the pulse width occurs
because the top half of the pulse wave's high byte is unused,
just as it was on the C64.)

After that, the fifth register, the control register, allows you
to select the type of sound you want to produce. The high four
bits contain the type of sound while the lower four bits contain
other control information, including turning the voice on and
off. Bit 4 selects a triangle wave, bit 5 selects a sawtooth wave,
bit 6 selects a pulse wave, and bit 7 selects a white noise wave.
The lowest bit, bit 0, is the gate bit that turns the voice itself on
and off. (The other bits are used for more advanced features
that we'll cover later.)

The sixth and seventh registers define the ADSR (attack-
decay-sustain-release) envelope that was mentioned in the
introduction. The attack and decay are set by the sixth register.
The attack value (how long the sound takes to reach maximum
volume ater it starts) is stored in the top half of the sixth
register. The decay value (how long the sound takes to
decrease from its maximum to its sustain level) is stored in the
bottom half. Both range from 0 to 15 but cover different time
ranges. The attack range covers between 0 and 8 seconds while
the decay range covers between 0 and 24 seconds. The
relationship is not linear, so you need to consult the table
below to find the exact value.

361

The seventh and final voice register contains the other part
of the ADSR envelope, the sustain and release values. The
sustain value (the volume the voice stays at after the decay
phase) is stored in the top half of the register. The release
value (the time it takes the sound to fade out after it's turned
off) is stored in the bottom half. The sustain value ranges from
0 to 15 and represents a volume level. The release value also
ranges from 0 to 15 but represents a time value, with its
possibilities being the same as those for the decay value.

Value (dec) Value (hex) Attack (ms) Decay/Release (ms)

0 $0 2 6

1 $1 4 24

2 $2 16 48

3 $3 24 72

4 $4 38 114

5 $5 58 168

6 $6 68 204

7 $7 80 240

8 $8 100 300

9 $9 250 750

10 $A 500 1500

11 $B 800 2400

12 $C 1000 3000

13 $D 3000 9000

14 $E 5000 15000

362

Value (dec) Value (hex) Attack (ms) Decay/Release (ms)

15 $F 8000 24000
The attack, decay, and release values and their rates. Note
that sustain values are not included in the table because the
sustain setting is a volume, not a time constant.

In many respects, sound programming can be more difficult
than video programming. While video programming has many
complicating factors to get a picture on the screen, the overall
concepts of pixels, characters, and sprites are usually
somewhat familiar. Sound programming, absent any personal
experience with musical instruments or signal processing, can
take longer to understand.

For that reason, we'll start with a simple example. The
following BASIC program will generate a triangle wave at 440
hertz, which is common in music as the A note above middle C.
This particular frequency is used as a standard to tune
instruments, and we'll use it here to get started.

363

A program that plays an A note on voice 1. The SID registers
are reset to 0, then the values for a note on voice 1 are poked
into memory. A brief delay occurs before the sound is turned
off.

The program begins by clearing out all the SID registers.
This is very important in any case, as you may have noticed
earlier in the book when running one program messes up the
environment for a later one. For the SID it's particularly
important so that any existing sounds or settings get cleared
out.

After the SID is cleared out, the program sets the volume to
maximum. The volume is poked into the lower half of the main
volume control register at $D418 or decimal 54296. The 440
Hz frequency is converted to its corresponding SID value, 7382,
and then poked into the frequency registers at $D400
(decimal 54272) and $D401 (decimal 54273). (To calculate the
frequency value to poke in, an old formula for the Commodore
SID can be used, dividing the desired frequency by 0.0596. If

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,AND(7382,255)
60 POKE 54273,7382/256
70 POKE 54277,2*16+4
80 POKE 54278,14*16+6
90 POKE 54276,16+1
100 T=TI
110 IF TI-T<120 THEN GOTO 110
120 POKE 54276,16

364

you forget that, a reasonable approximation can be made by
recalling that the range of frequencies goes from 0 to about
4000, and the register value goes from 0 to 65535; you won't
get the exact value, but you can solve it like any other
proportion.)

The attack and decay values are poked into register $D405
or decimal 54277. Relatively small values are used for this
example, with an attack value of 2 corresponding to a mere 16
milliseconds. The decay value of 4 isn't much bigger,
corresponding to about 114 milliseconds. Sustain and release
values are then poked into the following register at $D406 or
decimal 54278. A relatively high sustain volume of 14 is poked
along with a relatively short decay value of 6 (corresponding
to around 204 milliseconds).

To start the sound, the program pokes the voice 1 control
register at $D404. Bit 4 is set to enable the triangle wave
sound, while bit 0 is also set to begin the sound. A timer loop
waits for about two seconds, and then the control register is
poked with bit 0 turned off to end the sound.

CREATING SOUNDS WITH NUMBERS

This may be the first time you're hearing of triangle waves,
sawtooth waves, pulse waves, so we'll go over a brief example
of each one. The exact values, including the frequencies and
ADSR values, aren't the main focus here. The intent is to give
you an idea of how the different sounds actually sound.

365

TRIANGLE WAVES

A triangle wave is basically what it sounds like. The wave
goes up to a maximum in a straight line, peaks, goes down to a
minimum in a straight line, and then repeats. Triangle waves
are enabled by setting bit 4 in a voice's control register.

The triangle wave is also special in that it's the closest the
SID can produce to an actual sine wave. Because of its audio
characteristics, it can be described as sounding like something
between a square wave (or pulse) and a sine wave.

A Cody BASIC program that produces a triangle wave. The
exact SID register values were taken from an emudev.de article
on the Commodore 64's sounds.

SAWTOOTH WAVES

A sawtooth wave is kind of like a triangle wave with special
characteristics. Instead of going up and down in a linear
fashion, it goes up to a maximum, then immediately drops to
its minimum. This produces a waveform that looks a lot like the

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,22
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,17

366

teeth on a saw blade. Sawtooth waves are enabled with bit 5 in
a voice's control register.

Sawtooth waves tend to sound very harsh and sharp. They
can be made to sound similar to a buzzer in many situations.
Yet when set up with the appropriate characteristics, they can
also be very useful for other sound effects and even music.

An example of a sawtooth wave. The exact SID register values
were taken from an emudev.de article on the Commodore 64's
sounds.

PULSE WAVES

A pulse wave may be what most people think of as an
electronically-generated sound. It goes immediately to its
maximum, stays there for a particular time, and then drops to
its minimum, staying there for a while until the process
repeats. A pulse wave has a duty cycle that indicates how long
the wave is on compared to how long it is off: For example, a
wave with a duty cycle of 75% is at its maximum three times
longer than its minimum. A square wave is just a special case

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,195
60 POKE 54273,10
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,33

367

of the pulse wave with a duty cycle of 50%. Pulse waves are
enabled using bit 6 in a voice's control register.

In addition to being useful to generate very electronic beeps
and blips, different duty cycles for each wave can produce a
variety of unique sounds. On the SID the pulse wave is unique
in that in addition to the frequency value, the pulse is also
programmable using some of the voice's registers.

An example of a pulse wave. The exact SID register values
were taken from an emudev.de article on the Commodore 64's
sounds.

NOISE

Noise is similar to the white noise that you may have heard
from a white noise sound machine. Different techniques can be
used to generate noise, but one of the most common is to use
what is called a linear feedback shift register. It's similar to a
normal shift register, but it has taps at different places along
the shift register's path to obtain output or feed back into the

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54274,15
80 POKE 54275,15
90 POKE 54277,105
100 POKE 54278,252
110 POKE 54276,65

368

circuit. Noise output is enabled using bit 7 of a voice's control
register.

Noise is useful for a variety of sound effects, but it can also
be used in various musical sounds. Nor should noise be
considered as something to be used for static in sound effects.
Consider that a white noise sound with the appropriate
frequency, fade-in, and fade-out, could be used to mimic the
sound of the ocean.

An example of noise output. The exact SID register values were
taken from an emudev.de article on the Commodore 64's
sounds.

EXPERIMENTING WITH DIFFERENT VALUES

Now that you've heard how the Cody Computer can
generate sounds, try the following program to see what other
kinds of sounds can be produced. Instead of writing many
different programs with different settings, you can use the one
below to enter different values and hear the results
immediately. This won't work as an exhaustive example of

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,129

369

every sound the Cody Computer can make using its SID, but it
gives you a place to begin.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 PRINT "AVAILABLE SOUNDS:"
50 PRINT "1. TRIANGLE"
60 PRINT "2. SAWTOOTH"
70 PRINT "4. PULSE"
80 PRINT "8. NOISE"
90 PRINT "SOUND (1, 2, 4, OR 8)";
100 INPUT C
110 PRINT "FREQUENCY (0-65535)";
120 INPUT F
130 W=0
140 IF C<>4 THEN GOTO 170
150 PRINT "PULSE WIDTH (0-4095)";
160 INPUT W
170 PRINT "ATTACK RATE (0-15)";
180 INPUT A
190 PRINT "DECAY RATE (0-15)";
200 INPUT D
210 PRINT "SUSTAIN LEVEL (0-15)";
220 INPUT S
230 PRINT "RELEASE RATE (0-15)";
240 INPUT R
250 PRINT "OVERALL VOLUME (0-15)";
260 INPUT V
270 POKE 54296,V
280 POKE 54272,AND(F,255)
290 POKE 54273,F/256
300 POKE 54274,AND(W,255)
310 POKE 54275,W/256
320 POKE 54277,A*16+D
330 POKE 54278,S*16+R
340 PRINT "PRESS ENTER TO PLAY";
350 INPUT X$
360 POKE 54276,C*16+1

370

A tool for experimenting with simple SID sounds. On each loop
the user is prompted for some SID values, and the program
plugs them into the SID registers for voice 1.

To use the program you just need to load and run it. You
specify the type of sound you want to generate by entering a
number corresponding to the voice settings in the top half of
the control register. After that you enter the raw values for the
frequency, attack, decay, sustain, and release, along with the
overall volume. If you're trying out a pulse wave you'll also be
prompted for the pulse's duty cycle. The program doesn't do
any error checking, so if you enter an invalid value, you'll get
some strange results.

You should experiment with different values to see how they
sound, but below are some examples from a 1984 edition of
the Commodore 64 User's Manual. One table contains the
suggested values to resemble the sounds of different musical
instruments. Another table shows a subset of the musical
scale, giving you one octave's worth of constants to try out
different notes.

Instrument Sound Pulse Attack Decay Sustain Release

Piano 4 225 0 9 0 0

370 PRINT "PRESS ENTER TO STOP";
380 INPUT X$
390 POKE 54276,C*16
400 PRINT "AGAIN (Y/N)";
410 INPUT X$
420 IF X$="N" THEN END
430 PRINT ""
440 GOTO 10

371

Instrument Sound Pulse Attack Decay Sustain Release

Flute 1 0 0 6 0 0

Harpsichord 2 0 0 9 0 0

Xylophone 1 0 0 0 15 0

Accordion 1 0 6 6 0 0

Trumpet 2 0 6 0 0 0

Noise 4 0 0 0 0 0
A table of settings copied from a 1984 edition of the
Commodore 64 User's Manual. Each is intended to be a rough
first approximation of a musical instrument.

The exact sound values you use are largely the result of
experimentation, and the above table is only a beginning. As
Commodore's own data sheet for the SID noted long ago, the
exact characteristics of an instrument are vital when
determining what values to plug in. A violin often builds up
somewhat slowly when bowed and reaches an intermediate
volume before fading out. As a first guess, one might try a
somewhat slow attack, a middle-range sustain volume, and a
shorter decay and longer release time. A percussion
instrument, on the other hand, generally reaches a peak
volume suddenly, then goes away entirely. In the end, the
correct values to plug in are those that sound best for the song
or effect that one is trying to achieve.

Along with the ADSR settings, however, is the frequency. We
discussed before that you can calculate the frequency value by
dividing the frequency in hertz by 0.0596, and it helps to use
this formula when you need to. Below is a brief table of notes

372

and their corresponding frequency register values for the
fourth octave, including the 440 hertz A note you played
earlier.

Note Frequency (Hz) Value (dec) Value (hex)

C4 261.63 4389 $1125

D4 293.66 4927 $133F

E4 329.63 5530 $159A

F4 349.23 5859 $16E7

G4 392.00 6577 $1981

A4 440.00 7382 $1CD6

B4 493.88 8286 $205E
A subset of the musical note frequency values from the
Commodore SID 6581 data sheet. Values for the fourth octave
(excluding sharps) are included as an example.

Don't limit yourself to trying to play musical sounds. The
SID can be used for a variety of sound effects as well. Also try
to familiarize yourself with how the different settings work in
practice. Listen for a faster or slower buildup as you adjust the
attack rate, and note how the decay and sustain portions of the
sound change as you alter their values. Try different release
values to learn how a sound can quickly or slowly fade off.

PLAYING A SIMPLE SONG

The same approach can be used to play simple songs in
Cody BASIC. To play an entire song, however, the musical notes
and their lengths need to be taken into account. A musical note

373

is just a frequency, so the corresponding frequency register
value can be used to represent each note at a low level. The
time for each note can be represented as a time constant of
some sort.

To play a note, a program would load the instrument data
from the above table, load the frequency value for the note to
play, and then start playing by setting the gate bit to 1. The
program then waits for a time associated with the length of a
note before turning the note off and moving on to the next one.

In music, a common standard for timing is 4/4 time, in which
a whole note lasts for an entire portion of a song called a
measure. The rest of the system is fractional, with a half-note
lasting for half of a measure, a quarter note lasting for one-
fourth of a measure, and so on. A corresponding symbol, the
whole rest, indicates that no note should be played for the
entire measure. These also have fractional divisions such as the
half-rest and quarter-rest. These concepts can easily be
represented on a computer.

To see how this could work, we'll look at an introductory
example from one edition of the Commodore 64 User's
Manual as translated to the Cody Computer. In it, a simple
program of POKEs, FOR/NEXT statements, and DATA
statements is used to play a portion of the chorus from the
American folk song "Tom Dooley."

10 S=54272
20 FOR Z=S TO S+24
30 POKE Z,0
40 NEXT
50 POKE S+24,15

374

A modified program from the 1984 edition of the Commodore
64 User's Manual. It clears the SID registers and then plays a
portion of the American folk song "Tom Dooley."

As in the earlier example, the SID registers are all reset to
zero. The configuration data is then POKEd into voice 1 on the
SID before the song is played. The song data is kept in DATA
statements at the end of the program, with each set of three
numbers representing a note: The first number is the high byte
of the frequency value, the second number is the low byte of
the frequency value, and the third number is the note's length.

60 POKE S+2,255
70 POKE S+3,0
80 POKE S+5,9
90 POKE S+6,0
100 READ H,L,D
110 PRINT H," ",L," ",D
120 IF H=0 THEN END
130 POKE S,L
140 POKE S+1,H
150 POKE S+4,65
160 FOR Z=1 TO D*4
170 NEXT
180 POKE S+4,64
190 FOR Z=1 TO 400
200 NEXT
210 GOTO 50
220 DATA 18,104,250,18,104,500,18,104,250
230 DATA 20,169,500,24,146,500,30,245,1000
240 DATA 30,245,1000,18,104,250,18,104,500
250 DATA 18,104,250,20,169,500,24,146,500
260 DATA 27,148,2000,18,104,250,18,104,500
270 DATA 18,104,250,20,169,500,24,146,500
280 DATA 27,148,1000,27,148,1000,27,148,250
290 DATA 27,148,500,30,245,250,24,146,500
300 DATA 20,169,500,24,146,1500,0,0,0

375

A value of 1000 represents a whole note, 500 represents half-
note and 250 a quarter-note.

To play the song, the three pieces of data are read in a loop.
Just as in the C64 example, an inner loop counts down for the
length of the note. The note is then turned off and a brief delay
occurs between notes for a folk-song feel. When a sequence of
zero values is read at the end of the music data, the program
stops.

There are, of course, many improvements that could be
made to even a simple program such as this. Storing the notes
and their delays as values for a loop worked well on the C64,
but on the Cody Computer we have to make adjustments
because the simpler Cody BASIC interpreter loops faster. The
notes could instead be encoded using some other scheme, and
the delays could be implemented by looking at the TI variable
to determine elapsed time as in our graphics examples.
However, the example serves its purpose, and it also
demonstrates the level of compatibility between the Cody SID
and the real SID of the Commodore 64.

Keep in mind that this is a simple example that only uses
one voice and doesn't show the best approach to playing
music. On the Commodore 64, music was often written as self-
contained programs called SID files, which were loaded into
memory and called on a periodic basis to play a song.

Many of the simpler or earlier SIDs are playable on the
Cody Computer, though there are also many incompatible
ones because of differences in memory layouts and system
features. Compute! magazine's SIDPLAYER, similar to a real

376

MIDI-like computer music system, would likely be a better fit
for the Cody Computer.

A simple SID player for PSID files, CodySID, is included
as an assembly language example program later in the
book. While not perfect, it does show how to load a SID file
and play it in memory, and some recommended SID files
that are known to work with it are mentioned. Writing a
player for the MIDI-like SIDPLAYER system is left for the
future or as an exercise for the reader.

SOUND EFFECTS

The SID can also be used for a variety of sound effects. In
addition to the more obvious ones, it's also possible to update
the values in the SID registers themselves to make even more
interesting sounds. Many music players did exactly this, and
games also took advantage of the ability to control sound
parameters on top of what the SID was already doing. (On the
Cody SID, however, you'll want to be a bit more careful. If you
change values in the Cody SID registers too quickly, the sound
system may not pick up there was a change.)

The best way to come up with sound effects for your
programs is to play around and come up with some yourself.
There's no exact science to the process. Additionally, given that
the C64 was at one point one of the most popular computers in
the world, you'll find many resources on SID sounds that can

377

be easily ported to the Cody Computer. A few examples are
provided below to get you started.

AN EXPLOSION

The following program makes a quick explosion-like sound
using the noise output from the Cody SID. The sound's attack
and decay values are set to zero to produce an immediate
effect, and the sustain level is set to a reasonably high value of
11. A release value of 10 ensures that the explosion sound
takes a little while to fade away.

A short Cody BASIC program that makes an explosion-like
sound. Something like this could be used for a depth charge
dropped on a submarine or a photon torpedo hit against a
starship.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,0
80 POKE 54278,186
90 POKE 54276,129
100 T=TI
110 POKE 54276,128
120 IF ABS(TI-T)<90 THEN GOTO 120
130 POKE 54276,0

378

AN ALERT SIREN

This example produces a sound like an alert or siren. To get
a sharp, Klaxon-like sound, a sawtooth wave is used as the
basis for the sound generation. ADSR values suitable for a
siren were also plugged in. Also, because sirens or alerts go
from high to low and back again, the program contains a FOR
loop that turns the sound on and off three times as it plays.
Brief delays during each part of the sound guarantee that the
user will hear both the attack and release stages.

This program produces an alert or siren-like sound. Something
like this could call a ship's crew to general quarters, or perhaps
set the mood aboard a distressed space station.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,176
80 POKE 54278,249
90 FOR I=1 TO 3
100 POKE 54276,33
110 T=TI
120 IF ABS(TI-T)<60 THEN GOTO 120
130 POKE 54276,32
140 T=TI
150 IF ABS(TI-T)<60 THEN GOTO 150
160 NEXT

379

AN ENERGY BEAM

This program makes a sound suitable for use in games as an
energy beam on a far-off spaceship defending the frontier, or
perhaps a deranged robot trying to zap the player in a
sidescrolling platformer. It uses a pulse wave for the sound but
randomly changes the low byte of the frequency value while
the sound is playing.

A short Cody BASIC program that makes a laser-beam or
energy-beam sound effect.

A COMMODORE 64 EXAMPLE

Also remember that the Cody SID is essentially a simplified
version of the SID chip used in the Commodore 64. Not
everything will be completely compatible, but a lot of it will be,

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54273,40
60 POKE 54275,8
70 POKE 54276,0
80 POKE 54277,0
90 POKE 54278,192
100 POKE 54276,65
110 T=TI
120 POKE 54272,RND()
130 IF ABS(TI-T)<60 THEN GOTO 120
140 POKE 54276,0

380

even if you have to make some minor changes to a program. To
demonstrate that, let's take a look at the program below.

This program is a translation of another program from the
Commodore 64, this one a sound effects program used to
show off the C64 and SID's capabilities to new users. It will
play one of six possible sounds in a loop, allowing you to
select a new one when it's done. When done, break out of the
program using the Cody and Arrow key combination.

10 PRINT "WHICH SOUND EFFECT:"
20 PRINT "1. WAILING"
30 PRINT "2. SHOOTING"
40 PRINT "3. SIREN"
50 PRINT "4. ROCKET"
60 PRINT "5. CRASH"
70 PRINT "6. MACHINE GUN"
80 INPUT X
90 S=54272
100 FOR I=S TO S+24
110 POKE I,0
120 NEXT
130 K=-1
140 T=TI
150 GOSUB 1000+X*100
160 POKE S+2,P(2)
170 POKE S+3,P(1)
180 POKE S+5,A(1)
190 POKE S+6,A(2)
200 POKE S+1,N(1)
210 POKE S,N(2)
220 IF Q=2 THEN Q=3
230 IF Q<>2 THEN GOTO 260
240 POKE S+1,64
250 POKE S,188
260 POKE S+4,W(1)
270 IF Q<>1 THEN GOTO 360

381

280 FOR I=1 TO 40
290 N(2)=200-I*5
300 POKE S,N(2)
310 NEXT
320 FOR I=1 TO 30
330 N(2)=150-I*5
340 POKE S,N(2)
350 NEXT
360 L=15
370 POKE S+24,L
380 IF L=V THEN GOTO 440
390 IF X=4 THEN GOTO 440
400 L=L+K
410 FOR I=1 TO D
420 NEXT
430 GOTO 370
440 POKE S+4,W(2)
450 IF ABS(TI-T)>300 THEN GOTO 10
460 IF Q<>3 THEN GOTO 200
470 Q=2
480 GOTO 230
1100 V=15
1105 N(1)=65
1110 N(2)=0
1115 W(1)=65
1120 W(2)=64
1125 P(1)=9
1130 P(2)=255
1135 A(1)=15
1140 A(2)=0
1145 D=1
1150 Q=1
1155 RETURN
1200 V=0
1205 N(1)=40
1210 N(2)=200
1215 W(1)=129
1220 W(2)=128
1225 P(1)=0
1230 P(2)=0
1235 A(1)=15

382

1240 A(2)=15
1245 D=1
1250 Q=0
1255 RETURN
1300 V=0
1305 N(1)=36
1310 N(2)=85
1315 W(1)=33
1320 W(2)=32
1325 P(1)=0
1330 P(2)=0
1335 A(1)=136
1340 A(2)=129
1345 D=350
1350 Q=2
1355 RETURN
1400 V=0
1405 N(1)=25
1410 N(2)=100
1415 W(1)=129
1420 W(2)=128
1425 P(1)=0
1430 P(2)=0
1435 A(1)=9
1440 A(2)=129
1445 D=50
1450 Q=0
1455 RETURN
1500 V=0
1505 N(1)=5
1510 N(2)=251
1515 W(1)=129
1520 W(2)=128
1525 P(1)=0
1530 P(2)=0
1535 A(1)=129
1540 A(2)=65
1545 D=50
1550 Q=0
1555 RETURN
1600 V=15

383

The sound effects example from the Commodore 64 manual,
updated to run on Cody Basic. While not the easiest program
to follow, even in its original C64 version, it demonstrates the
variety of sound effects possible even in simple BASIC
programs.

The vast majority of the program consists of the values to
plug in for different sounds. You can look at the initial register
values by reading the appropriate lines in the program (a
GOSUB branches to the setup code for a particular sound). A
collection of POKE, FOR, and IF statements take the values and
use them to generate the selected sound.

The code for playing a sound is actually quite complicated,
mostly because like the original program it uses the same
code for playing all six sounds. Some values are changed on
different loops, which adds to the complexity. For a particular
sound in the example, it's best to just follow the code path to
understand what it does. You can then use a similar approach
in your own programs.

1605 N(1)=34
1610 N(2)=75
1615 W(1)=129
1620 W(2)=128
1625 P(1)=0
1630 P(2)=0
1635 A(1)=8
1640 A(2)=1
1645 D=50
1650 Q=0
1655 RETURN

384

A PRACTICAL SOUND PROGRAM

Sound effects aren't just for games. In addition to creating
music, sound effects can be used in a variety of more serious
applications. Sounds can provide cues in a program, tell the
user when something happened, or even be the main output of
a program. Below is a simple Morse code generator that takes
an input string and generates the corresponding dots and
dashes.

The program uses many of the things you've learned in
previous chapters on Cody BASIC. It accepts input from the
user, processes each character in the input string, and uses IF
statements to look up the corresponding sequence of dots and
dashes for each character. In addition to printing out the dots
and dashes, it uses sound effects to play short and long tones
corresponding to each part of the translated Morse code
output.

100 REM MORSE CODE GENERATOR
110 U=10
120 GOSUB 700
130 PRINT "MESSAGE";
140 INPUT M$
150 PRINT
160 GOSUB 200
170 PRINT
180 GOTO 110
200 REM SEND MESSAGE
210 IF M$="" THEN RETURN
220 A=ASC(M$)
230 M$=SUB$(M$,1,LEN(M$))

385

240 REM CHECK DELAY BETWEEN WORDS
250 IF A<>32 THEN GOTO 300
260 PRINT "<SPACE>"
270 D=7
280 GOSUB 800
290 GOTO 200
300 REM PROCESS NEXT LETTER
310 PRINT CHR$(A),TAB(20);
320 GOSUB 600
330 IF C$<>"" THEN GOTO 360
340 PRINT "NO CODE"
350 GOTO 520
360 REM SEND DOTS AND DASHES
370 B=ASC(C$)
380 C$=SUB$(C$,1,LEN(C$))
390 PRINT CHR$(B);
400 POKE 54276,65
410 IF B=45 THEN D=3
420 IF B=46 THEN D=1
430 GOSUB 800
440 POKE 54276,0
450 REM DELAY BETWEEN BEEPS
460 D=1
470 GOSUB 800
480 IF C$<>"" THEN GOTO 360
490 REM DELAY BETWEEN LETTERS
500 D=3
510 GOSUB 800
520 PRINT
530 GOTO 200
600 REM GET MORSE
601 IF A>=97 THEN A=A-32
602 C$=""
603 IF A=65 THEN C$=".-"
604 IF A=66 THEN C$="-..."
605 IF A=67 THEN C$="-.-."
606 IF A=68 THEN C$="-.."
607 IF A=69 THEN C$="."
608 IF A=70 THEN C$="..-."
609 IF A=71 THEN C$="--."
610 IF A=72 THEN C$="...."

386

611 IF A=73 THEN C$=".."
612 IF A=74 THEN C$=".---"
613 IF A=75 THEN C$="-.-"
614 IF A=76 THEN C$=".-.."
615 IF A=77 THEN C$="--"
616 IF A=78 THEN C$="-."
617 IF A=79 THEN C$="---"
618 IF A=80 THEN C$=".--."
619 IF A=81 THEN C$="--.-"
620 IF A=82 THEN C$=".-."
621 IF A=83 THEN C$="..."
622 IF A=84 THEN C$="-"
623 IF A=85 THEN C$="..-"
624 IF A=86 THEN C$="...-"
625 IF A=87 THEN C$=".--"
626 IF A=88 THEN C$="-..-"
627 IF A=89 THEN C$="-.--"
628 IF A=90 THEN C$="--.."
629 IF A=48 THEN C$="-----"
630 IF A=49 THEN C$=".----"
631 IF A=50 THEN C$="..---"
632 IF A=51 THEN C$="...--"
633 IF A=52 THEN C$="....-"
634 IF A=53 THEN C$="-...."
635 IF A=54 THEN C$="--..."
636 IF A=55 THEN C$="---.."
637 IF A=56 THEN C$="----."
638 IF A=57 THEN C$="....."
639 RETURN
700 REM SET UP SOUND
705 FOR I=0 TO 6
710 POKE 54272+I,0
715 NEXT
720 POKE 54296,14
725 POKE 54272,0
730 POKE 54273,30
735 POKE 54275,8
740 POKE 54276,0
745 POKE 54277,0
750 POKE 54278,192
755 RETURN

387

This program generates Morse code for an input string,
displaying the dots and dashes on the screen as the
corresponding sounds are played.

The provided Morse code example printing the codes for the
word 'RADIOACTIVITY'. Note that when run you'll also hear the
dots and dashes.

800 REM DELAY
810 T=TI
820 L=D*U
830 IF ABS(TI-T)<L THEN GOTO 830
840 RETURN

388

RING MODULATION

Ring modulation modifies one voice using the output of
another voice, allowing the programmer to construct a variety
of interesting sounds. In addition to producing sound effects,
bell-like or gong-like sounds can also be generated using this
approach.

Ring modulation on the Cody SID, like the original SID,
requires two voices and has some important limitations. Only
triangle waves are supported, so the primary voice must be set
to output a triangle wave along with the ring modulation bit
(bit 2) in the control register. Also unlike real ring modulation,
ring modulation for the SID only relies on multiplying the
signs of the signals, rather than a full multiplication as in true
ring modulation.

The secondary voice that supplies the other input for ring
modulation must also be set up with a frequency for any of
this to work. Other settings on the secondary voice are ignored
and otherwise has no effect on the ring modulation. The
corresponding voice used for the secondary voice in ring
modulation is hardwired: Voice 1 uses voice 3, voice 2 uses
voice 1, and voice 3 uses voice 2.

For an example of ring modulation, see the following Cody
BASIC example that generates a somewhat-technological
humming sound. In addition to the typical ADSR envelope, it
uses voice 1 and voice 3 together. Voice 1 is set up as a triangle
wave with ring modulation turned on, and voice 3 is set up with
a separate frequency to modulate voice 1's output.

389

A program that produces a low, fading hum. A sound like this
could be used for some kind of futuristic machinery or perhaps
a teleport between game levels.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,40
70 POKE 54277,160
80 POKE 54278,251
90 POKE 54286,0
100 POKE 54287,10
110 POKE 54276,21
120 T=TI
130 IF ABS(TI-T)<120 THEN GOTO 130
140 POKE 54276,20
150 T=TI
160 IF ABS(TI-T)<120 THEN GOTO 160

390

INTRODUCTION

The Cody Computer has multiple input and output devices
built into it. Using the Propeller it has two UARTs for serial
communication, one connected to the Prop Plug port and the
other to the expansion port on the back. Another chip, the
65C22 Versatile Interface Adapter, implements two 8-bit I/O
ports along with some miscellaneous signals and a
programmable shift register.

Some of these capabilities are already in use by the Cody
Computer. For example, Port A on the 65C22 I/O chip is used
to read the keyboard matrix and joystick ports, while port A's
control signals are used to check if a cartridge is plugged into
the expansion port. Port B, on the other hand, is connected
directly to the expansion port for use in your own programs
and projects.

Being able to connect your own circuits and peripherals to
the Cody Computer opens up many new options and projects.
You could write your own machine-language games and store
them on a cartridge, effectively turning the Cody Computer
into an 8-bit game machine. You could implement modern
protocols for communicating with other chips, such as I2C or
SPI, and use them to interface with the outside world. Projects
requiring simple serial communications (such as reading
NMEA sentences from a GPS) could be built with either of the
Cody Computer's UARTs, provided the external devices can
support the Cody Computer's slower (by modern standards)
speeds. And for projects that require extra capabilities, you

392

could even wire another microcontroller to the expansion port
to extend the base system.

Wiring stuff into the expansion slot or ports is one of
the few ways that you could easily destroy your Cody
Computer. While modern electronics aren't as brittle or
likely to fry as they once were, incorrect connections or
voltages could still result in doom. Also be aware that
while the Cody Computer's chips can drive 3.3-volt digital
signals, you'll want to follow good design practices when
connecting up motors, relays, and higher voltages or
currents. Think through what you're doing and refer to the
65C22 and Propeller data sheets as well as the Cody
Computer's schematics.

KEYBOARD AND JOYSTICK INPUT

We covered the Cody Computer's keyboard in chapter 2,
including a discussion of the keyboard matrix and how the
joystick ports are actually treated as the last two rows of the
keyboard. The keyboard is wired to the 65C22 I/O chip's Port
A, which scans the keyboard and joystick using three of its
pins. The three pins are decoded into one of eight rows by a 1-
of-8 decoder chip, with the five pins for that row or joystick
port read back into the 65C22.

In assembly language programs you will have to scan the
keyboard and joystick by communicating with the 65C22's
Port A directly. However, in your Cody BASIC programs this is

393

handled automatically by the BASIC interpreter. It has an
interrupt in the background that scans the keyboard and
joystick matrix many times per second, updating a portion of
memory with the data. You can access the values with a PEEK
statement.

Memory locations $10 (decimal 16) through $15 (decimal
21) are populated with the scanned key rows. Memory
locations $16 (decimal 22) and $17 (decimal 23) store the
scans for joystick ports 1 and 2. Because of the Cody
Computer's keyboard wiring, the bits are actually inverted,
meaning that a 0 indicates a key or button that is pressed,
while a 1 indicates that it's not pressed.

To see this in action, try the below Cody BASIC program. It
loops over the values in the memory region we just mentioned,
then prints out each bit as well as the entire number. You can
press keys on your keyboard or use your joystick, then watch
as the bits change. The program isn't particularly fast,
particular as it has a nested loop that calculates each bit and
prints it to the screen.

394

A Cody BASIC program that prints out the current state of the
keyboard and joystick matrix.

Once you've played around with the program, try comparing
the results you get to the Cody Computer's keyboard
schematic (available online or in Chapter 2 of this book). You
should be able to match up the key you're pressing with a
position in the keyboard matrix, then see the corresponding
bits for that row on the screen.

Your own programs don't need to perform the per-bit
calculations or display anything at all. The most common use
case for reading the keyboard or joystick like this is in a game
where you want to determine particular keypresses or joystick
actions. For that, you will want to just check the relevant
memory locations and bits.

This is particularly relevant for reading the joystick. Even in
a BASIC game you may want to read the joystick to move a

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR A=0 TO 7
40 D=PEEK(16+A)
50 M=128
60 FOR B=0 TO 7
70 N=0
80 IF AND(D,M)>0 THEN N=1
90 PRINT N;
100 M=M/2
110 NEXT
120 PRINT " (",D,")"
130 NEXT
140 GOTO 20

395

player around on the screen, and the following example will
help get you started. It reads from the last of the memory
locations, $16 and $17, then examines each bit to determine
what position the joystick has and whether the fire button is
being pushed.

A Cody BASIC program that reads the joysticks and prints out
the current joystick position and fire button status.

In an assembly language program, however, you'll have to
scan the keyboard and joystick yourself. Cody BASIC won't be
able to help you. However, the techniques you learn in Cody
BASIC can make it easier. For example, learning how to map
the keyboard and joystick values to the keyboard matrix and
computer schematic will give you a head start on

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR I=1 TO 2
40 PRINT "JOY ",I,": ";
50 D=PEEK(16+5+I)
60 PRINT TAB(10);
70 IF AND(D,16)=0 THEN PRINT "FIRE";
80 PRINT TAB(16);
90 IF AND(D,8)=0 THEN PRINT "RIGHT";
100 PRINT TAB(22);
110 IF AND(D,4)=0 THEN PRINT "LEFT";
120 PRINT TAB(28);
130 IF AND(D,2)=0 THEN PRINT "DOWN";
140 PRINT TAB(34);
150 IF AND(D,1)=0 THEN PRINT "UP";
160 PRINT
170 NEXT
180 GOTO 20

396

understanding how to program them. You can also rely on the
existing code within the Cody BASIC interpreter as a place to
start writing your own.

SERIAL INPUT AND OUTPUT

The Cody Computer also has two UART (Universal
Asychronous Receiver Transmitter) peripherals implemented
using the Propeller. These allow the Cody Computer to
communicate with other systems over a serial port, with some
restrictions. In most respects the Cody Computer UARTs serve
a similar function to the 6551 Asynchronous Communications
Interface Adapter (ACIA) used in many 6502-based
computers, but in reality they're quite different to program.

The Cody Computer UARTs are specific to the needs of the
Cody Computer, so they only support a standard 8-N-1 serial
configuration with 8 data bits, no parity bit, and one stop bit.
It's also entirely polling-based, which means you have to check
them on a regular basis from within your program. On the
other hand, they have ring buffers for transmitting and
receiving bytes, which means you don't have to check them as
often. Each UART has a total of 23 registers, almost all of them
related to the ring buffer.

A ring buffer is a data structure commonly used for
communications, and it consists of a range of memory devoted
to storing data. Along with the data are two values indicating
the start and the end of the data in the buffer, the head and the
tail. When data enters the buffer it's stored at the head
position, which is then moved forward. When data is removed

397

from the buffer it's taken from the tail position, which is then
moved forward as well. However, the positions actually roll
around from the end of the buffer back to the start, hence the
term "ring buffer." (This also means that to determine when
the buffer is full, we have to either store a count or look at the
distance between the head and tail.)

To actually program a UART, you'll need to POKE and PEEK
its registers just like you have for the other peripherals. UART
1, connected to the Propeller Plug port, resides at $D480
(decimal 54400). UART 2 is part of the expansion port on the
back and resides at $D4A0 (decimal 54432). From either of
those positions, the offsets to a particular register are the
same, just shifted by the base address for the UART you're
talking to.

The first UART register, register $0, is the control register. It
sets the baud rate to use when sending or receiving data. The
baud rate goes into the lower half of the register, with the
current half of the register currently being unused. Similar to
the Cody SID, you'll need to look up the matching baud rate
for each number in the following table. The values are actually
taken from the 6551's baud rate options and do not follow any
standard progression.

Value (dec) Value (hex) Bit Rate

0 $0 Invalid

1 $1 50

2 $2 75

3 $3 110

4 $4 135

398

Value (dec) Value (hex) Bit Rate

6 $6 300

7 $7 600

8 $8 1200

9 $9 1800

10 $A 2400

11 $B 3600

12 $C 4800

13 $D 7200

14 $E 9600

15 $F 19200
The Cody Computer's UART baud rate table. Inspired by the
6551's baud rate options, these values cover the common
baud rates for systems of a particular vintage.

The second UART register, register $1, is the command
register. It consists of a single bit at bit 0 that turns the UART
on and off. Setting it to 1 turns the UART on, while setting it to
0 resets the UART. After you turn the UART on or off, you need
to check the UART's status register to ensure it has processed
the command. (We'll cover that in a minute.)

The third UART register, at $2, is the status register. It
provides a window into what the UART is currently doing. Bit 0
is unused. Bit 1 is set to 1 if a framing error has occurred,
indicating that a stop bit wasn't received as expected. Bit 2 is
set to 1 if an overrun has occurred, meaning that more data was
coming into a receive buffer than there was room to store it.
Bits 3 and 4 indicate if data is currently received or

399

transmitted, respectively. Bit 6 indicates whether or not the
UART is running and should be polled when the UART is
turned on or off to wait until the UART is in the proper mode.

The fourth register at $3 is reserved. The next two registers,
$4 and $5, contain the head and tail positions for the UART's
receive buffer. The UART will update the head position as data
is received, while you must update the tail position as you read
from it.

A similar situation exists for registers $6 and $7, the
transmit ring buffer head and tail positions. Because you are
putting data to be sent into the buffer, you will be the one to
update the head position. The UART will update the tail
position as it sends the data.

The remaining registers consist of the receive and transmit
ring buffers. The receive buffer starts at $8 and goes on for 8
bytes. The transmit buffer starts immediately after at $10 and
goes on for an additional 8 bytes. Because of the nature of the
ring buffer implementation used by the Cody Computer, only
seven bytes can be in use at any one time. This is because to
store a full eight bytes, the head and tail positions would be
equal, a case indistinguishable from an empty buffer without
additional information (such as a count). Rather than make the
implementation more complicated, to keep things simple the
maximum capacity is limited by one byte.

TRANSMITTING DATA

Now that we've had a bit of theory on the UART, consider the
following example Cody BASIC program. It will collect some

400

information from you, including a string to send over the serial
port. It then turns the UART on, waits for it to start up,
configures it and sends the string as ASCII values. It also has to
poll the ring buffer as it empties to fill it up with the rest of the
data you're trying to send.

To run the program you should be able to use the same
serial program you've been using to communicate with the
Cody Computer until now. You'll just need to set it up to
receive with the baud rate you select, and then begin sending
data to it using this program.

10 REM UART TRANSMIT EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 PRINT "TEXT";
90 INPUT S$
100 REM STRING TO BYTES
110 L=LEN(S$)
120 I=0
130 IF I=L THEN GOTO 180
140 S(I)=ASC(S$)
150 S$=SUB$(S$,1,LEN(S$)-1)
160 I=I+1
170 GOTO 130
180 REM CONFIGURE UART
190 POKE A+1,0
200 IF AND(PEEK(A+2),64)>0 THEN GOTO 200
210 POKE A+0,B
220 POKE A+6,0
230 POKE A+1,1
240 IF AND(PEEK(A+2),64)=0 THEN GOTO 240
250 REM TRANSMIT LOOP

401

A short example in Cody BASIC that shows how to send data
by low-level programming of a UART. In practice these
operations would be done either by the BASIC interpreter
itself or from within an assembly language program.

There are a few key parts of this program. Note how the
UART base address is selectable. Also note how the program
breaks the string you enter into a series of numbers to send via
the UART. Regarding the actual UART programming, the
program turns the UART off and waits for the status register to
update. It then sets up the baud rate and configures the UART
before turning it back on, again waiting for the status register.

For the main loop, it uses an approach common to working
with a ring buffer. It checks the head and tail positions, then
performs a quick subtraction to see if the buffer is full. If not, it
adds another character to send, then increments the head
position so that the UART knows to pick it up. Because the
values wrap around, there are some additional things the
program does, such as using modular arithmetic when
incrementing a value or an absolute value when performing a
subtraction.

In a real program, it would be a good idea to shut the UART
off when it's done. To keep this example as minimal as

260 FOR I=0 TO L-1
270 H=PEEK(A+6)
280 T=PEEK(A+7)
290 IF ABS(H-T)>6 THEN GOTO 270
300 POKE A+16+H,S(I)
310 POKE A+6,MOD(H+1,8)
320 PRINT "SENDING CHR '",CHR$(S(I)),"' (",S(I),")"
330 NEXT

402

possible, that's not done here. In a lower level program written
in assembly language, constantly polling and busy-waiting
would also leave much to be desired. In that situation, it's
better to perform the polling on a periodic basis, or to
interleave a quick check of the UART into the main loop of your
program.

RECEIVING DATA

The UART also receives data when turned on. The baud rate
option set into the control register is used for receive and
transmit and both operations occur simultaneously (the UART
is "full duplex" rather than "half duplex"). The receive ring
buffer is populated with the incoming data and the UART
automatically updates the receive buffer head register as new
data arrives. The programmer is responsible for reading data
from the buffer and updating the tail register, exactly the
opposite as what happens when transmitting via the UART.

The following Cody BASIC program sets up the UART to
receive data. You can run it in the same manner as the transmit
example above but using your serial program to send
characters to the Cody Computer instead. Note that because
the entire program is written in Cody BASIC, it runs very
slowly compared to assembly language, and there's significant
overhead. While it can support even the highest available baud
rates for the UART, you will likely need to insert a per-
character delay inside your serial program to communicate
without overrunning the buffer. Otherwise this little program
just won't be able to keep up.

403

A Cody BASIC example of receiving data from a UART at a low
level. This is only an example that unfortunately runs quite
slowly. In actual usage the program would likely be written in
assembly language if the existing Cody BASIC input routine
was insufficient.

10 REM UART RECEIVE EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 REM CONFIGURE UART
90 POKE A+1,0
100 IF AND(PEEK(A+2),64)>0 THEN GOTO 100
110 POKE A+0,B
120 POKE A+5,0
130 POKE A+1,1
140 IF AND(PEEK(A+2),64)=0 THEN GOTO 140
150 REM RECEIVE LOOP
160 E=PEEK(A+2)
170 IF AND(E,2)>0 THEN GOTO 260
180 IF AND(E,4)>0 THEN GOTO 280
190 H=PEEK(A+4)
200 T=PEEK(A+5)
210 IF H=T THEN GOTO 160
220 C=PEEK(A+8+T)
230 POKE A+5,MOD(T+1,8)
240 PRINT "RECEIVED CHR '",CHR$(C),"' (",C,")"
250 GOTO 160
260 PRINT "FRAMING ERROR"
270 END
280 PRINT "OVERRUN ERROR"
290 END

404

The overall program flow is very similar to the transmit
example. It obtains the configuration data from the user, turns
the UART off to reset it, turns it back on and waits for it to come
up, sets the UART up, and begins listening. Each time a new
character is found in the buffer, it's removed from the buffer
and an update message is printed to the screen.

Unlike the transmit example, this example checks the status
register for the UART's two error modes, both of which only
show up when receiving. A framing error (bit 1 in the status
register) indicates that the UART didn't read a stop bit when
expected, meaning that something was out of whack (perhaps
different baud rates between sender and receiver, or perhaps
the sender wasn't sending 8-N-1). An overrun error (bit 2 in
the status register) means that the program couldn't read data
out of the buffer as fast as it was coming in, and the UART ran
out of room to store more data.

The examples show transmit and receive separately, but
keep in mind that the Cody UARTs can do both at the same
time. Setting up the UARTs is exactly the same, but both the
receive and transmit buffers would need to be checked and
updated to support simultaneous transmit and receive.

It's not a particularly difficult task, but it's one best left to
low-level programs in assembly language. For high-speed
communication using the UARTs in Cody BASIC, you're best
off using the OPEN statement to redirect INPUT and PRINT
statements to the serial port. This topic is covered in Chapter 6
while discussing how to read and write text files over a serial
link, but the same technique can be used for general text-
based serial input and output. (Even binary data could be sent

405

across if a hex or other encoding is used, albeit with some
additional overhead.)

GENERAL-PURPOSE INPUT AND
OUTPUT

Aside from the UART and some of the special 65C22 pins
(such as its built-in shift register), most of the pins on the
Cody Computer's expansion port are not dedicated to any
particular use. These can be configured either as inputs or
outputs by setting the 65C22's Data Direction Register B at
address $9F02 (decimal 40706). By default, each bit is zero
and configured as an input, but setting the bit to 1 makes it an
output instead. Output values for each pin can be specified by
writing to IO Data Register B at address $9F00 (decimal
40704), while reading the same register will return the input
values for the input pins.

As a simple example we'll use one of the pins to blink an
LED. To build this circuit you will need a small breadboard.
Expansion port pin 1 (counting from the rightmost side when
looking down on the Cody Computer) should be connected to
the ground row, pin 2 should be connected to the positive
voltage row, and pin 12 should be connected to an LED through
a current-limiting resistor. The LED's anode (long lead) should
be connected to the resistor's other terminal, with its cathode
(the short lead) connected to ground. The Cody Computer's
expansion port is not designed to be hot-plugged, so turn the
computer off when wiring to it, then turn it back on when
you're finished.

406

The simple breadboard circuit at left blinks an LED under the
Cody Computer's control.

Once wired up, the following Cody BASIC program can be
used to blink the LED on and off for a few cycles. It clears the
data register then sets up output pin 1 as an output by writing
to the data direction register. After that, bit 1 of the data
register is toggled off and on in a loop with a brief delay,
blinking the LED.

407

A program to blink an LED.

Each pin can also be used as an input when the
corresponding bit in the data direction register is turned off. In
this case, the input bits can be read by reading from the port B
data register as mentioned above.

A simple circuit based on the LED circuit can be used to show
this. The LED and resistor are no longer needed, and the wire
connected to pin 12 of the expansion port can instead be
plugged into the 3.3 volt or ground buses for an input value of
1 or 0 respectively. However, you should be careful when
rewiring the circuit and running the program below, as you
don't want to plug the pin into one of the buses when set up in
output mode. Instead, as before, wire up the circuit when the
computer is off, then turn the computer on.

10 POKE 40704,0
20 POKE 40706,1
30 FOR I=0 TO 9
40 POKE 40704,1
50 T=TI
60 IF TI-T<60 THEN GOTO 60
70 POKE 40704,0
80 T=TI
90 IF TI-T<60 THEN GOTO 90
100 NEXT
110 POKE 40706,0

408

An even more simple circuit can be used to drive an input pin
using either the 3.3V and ground lines.

The following Cody BASIC program will read the input pin
and display its current value. The data direction register is set
to zero, then the data register itself is read in a loop. The value
for pin 1 is selected using an AND function (unconnected input
pins can flap between 0 and 1 so bit-masking the value we
want makes the output clearer to read). When the program is
running, you can move the input wire back and forth between
the 3.3 volt and ground lines to produce a 1 or 0 input.

409

A program to read and display a single input bit.

SPECIAL PINS AND SHIFT REGISTERS

The 65C22 also has two handshaking ports consisting of two
pins each. The pins for port A CA1 and CA2, are already in use
as a cartridge-detect mechanism for the Cody Computer. The
others, CB1 and CB2, are free for use in your own projects.
While these pins can be used to implement a handshaking
mechanism for 8-bit data transfer across port B as discussed in
the 65C22's data sheet, there are also other possibilities.

One possibility is to use the pins as an interrupt input. This
would allow external devices to signal that something has
occurred and have an interrupt handler run in an assembly
language program. Another interesting option is to configure
the pins as a shift register, letting you clock data in or out on a
periodic basis.

None of these scenarios are trivial, so if you intend to do
something like this in your own projects, you'll want to refer to
the 65C22 data sheet. It's also difficult to come up with good
examples of more advanced features without having some
other parts around that can use them, so by necessity this
section is somewhat limited. We can demonstrate the shift

10 POKE 40706,0
20 I=PEEK(40704)
30 PRINT AND(I,1)
40 GOTO 20

410

register function using an LED, but to follow along, it would be
helpful to have access to an oscilloscope or other means of
seeing the actual signal.

First you'll need a circuit. For those without any kind of
oscilloscope or logic analyzer tool, you'll want a circuit very
similar to the LED circuit earlier in this chapter. However, in this
case, instead of connecting the LED's resistor to expansion port
pin 12, you'll connect it to expansion port pin 3. Expansion port
pin 3 is wired to the 65C22's CB2 pin, which has the actual
data coming out of the shift register.

An LED circuit connected to the expansion port's CB2 pin. The
LED brightness changes depending on the data sent out of the
shift register. Here it glows a dull red because few of the bits in
the data sequence are ones.

411

The 65C22 supports various shift register modes for both
input and output using different clock signal sources. Most of
the configuration happens through the 65C22's Auxiliary
Control Register at address $9F08 (decimal 40715). For this
example, we're going to be setting it up as a simple output
controlled by the 65C22's Timer 2 internal clock. This means
that bits through 2 through 4 of that register need to be set to
binary 100 according to the data sheet.

We also need to set up 65C22 timer 2 to generate the clock
signal. Each time the Cody Computer's system clock ticks,
Timer 2 will decrement by one. We give the timer a value to
count down from, and the time it takes to count to zero ends up
being the time for one phase of the clock. The timer 2 counter
is a 16-bit value with the low byte at address $9F08 (decimal
40712) and the high byte at address $9F09 (decimal 40713).
We write the low byte followed by the high byte, with the
writing of the high byte triggering the timer's clock to restart
with the new timer value.

The shift register's output is kept in a register at address
$9F0A (decimal 40714). The value written there continues to
be reused until a new value is programmed in. Other registers
or interrupts can be used to determine when the shift register
needs to be fed new data, but for our simple example, we're
fine with the value wrapping around.

You can see all this put together in a small Cody BASIC
program. It prompts you for a value to write to the shift
register, then sets up the shift register and timer 2 with the
longest possible delay in this mode. Counting down from
65535 with a 1-megahertz system clock means that the shift

412

register sends out a new bit about every .07 seconds, which is
too fast to see without some way to capture the actual signal.

A program to send a pattern out of the shift register.

However, different patterns will change the brightness of the
connected LED because it will be on or off for different periods
of time. For example, a value of 255 is all ones, which means
the LED will be at maximum brightness, while a value of 0 is all
zeroes, so the LED will be off. A decimal value of 170
corresponds to a binary 10101010, while a decimal value of 136
corresponds to 10001000. Try different values and see their
results.

If you do have an oscilloscope around, you can actually see
the individual zeroes and ones. The 65C22's CB1 pin is
connected to expansion port pin 4 and acts as the shift
register's clock. The 65C22's CB2 pin is connected to
expansion port pin 3 and actually sends (or receives) the data.
Connect your first oscilloscope probe to expansion port pin 4,
your second oscilloscope probe to expansion port pin 3, and
set up your oscilloscope to trigger on the first probe.

You should see a square wave for the clock signal and a
sequence of highs and lows for the data signal corresponding
to whatever number you typed in. This isn't purely an

10 INPUT I
20 POKE 40714,I
30 C=OR(AND(PEEK(40715),227),16)
40 POKE 40715,C
50 POKE 40712,255
60 POKE 40713,255

413

academic exercise, as you might end up having to do pretty
much the same thing to track down bugs when bit-banging
various protocols out of the expansion port. A logic analyzer
would also suffice.

Watching the shift register's clock and data pins using an
oscilloscope. The yellow trace shows the shift register's clock
and the purple trace shows the shift register's data output. The
clock will always be the same but the data will change based
on what's being shifted out.

Remember that the shift register isn't just used for output. It
can also be used for input from an external device. It's just a
matter of wiring it up and then writing the appropriate
software in Cody BASIC or assembly language to talk to it.

414

Note that the 65C22 shift register is not compatible
with SPI communications, though there are some hacks to
work around it for one particular SPI mode (the
Steckschwein retrocomputer actually does this to
implement an SPI master). For this reason the Cody
Computer implements SPI in software, as you'll learn in
the next section. However, the 65C22's CB pins can do a
lot, and you should refer to the 65C22 data sheet to learn
more about them. And for your own Cody Computer
peripherals, you can do it your way.

SPI COMMUNICATION AND
CARTRIDGES

The Cody Computer's expansion port is a relatively general-
purpose device. With the few exceptions noted above, every
pin is programmable as an input or an output and can be
directly controlled from either BASIC or assembly language.
By themselves or with minimal additional hardware they can
even implement more modern data protocols such as Inter-
Integrated Circuit (I2C) or the Serial Peripheral Interface (SPI).

In fact, some of the general-purpose pins also have a
designated special use to load programs from cartridges. Like
many computers of the 8-bit era, the Cody Computer supports
program cartridges that can be plugged directly into the
expansion port. If one is detected using the CA lines, the Cody

415

Computer's ROM will load the program from the cartridge
over SPI and run that program instead of Cody BASIC.

This topic is complex enough to warrant a separate
discussion. More details are provided in Chapter 11, Cartridges
and SPI.

416

INTRODUCTION

In this chapter we'll provide some examples of programming
the Cody Computer in 65C02 assembly language. The chapter
isn't an introduction to the 65C02's assembly language in
itself. If you haven't worked with it before, you're better off
learning the basics using an online emulator before digging
into these examples. The 6502 family, while decades old, was
one of the most popular microprocessor families in existence.
Documentation, both historical and modern, is plentiful online.

Regarding the chip itself, the 65C02 is essentially an
updated 6502 with some additional instructions added and
invalid ones removed. It has a very small number of registers
—an accumulator (A), two index registers (X and Y), and some
additional registers for stack and CPU flag management. It
supports most of the addressing modes typical for a chip of its
era, including direct addressing, indexed addressing, and some
forms of indirect addressing. It also uses a range of 256 "zero-
page" addresses that, while stored in main RAM rather than
the processor, can be viewed as being a huge bank of low-cost
registers.

In its day it was the affordable alternative to more expensive
microprocessor or microcontroller families. Many of the most
popular 8-bit computers utilized the 6502 family for their
main processor, and 16-bit variants of the family went on to be
used in later computers, add-ons, and game consoles. The
same efficiency and elegance that made the chip so popular in
prior decades is also put to good use by the Cody Computer.

418

This chapter introduces two small assembly language
programs. The first is a SID player that can play many, but not
all, Commodore 64 SID music files. The second is a simple
game demo inspired by 1980s platformers to show some of
the Cody Computer's sound and graphics capabilities. The
programs are not too complicated, but without a basic grasp of
65C02 assembly programming, they can be a bit much to
digest. If you've programmed in another assembly language
but haven't worked with the 65C02, you'll probably be able to
at least follow along. Having a 65C02 reference will be handy.

Just as with Cody BASIC, the assembly language programs
are written using 64tass, a 6502-family assembler for the
Commodore computers that can also generate generic 65C02
code. This assembler is both open-source and freely
downloadable, so installing or building a copy should not be
difficult on any of today's major computing platforms.

THE CODYSID MUSIC PLAYER

A simple SID player is a good project for assembly
language. It requires low-level programming, including
reading a SID file over the UART, loading it into memory, and
calling its functions on a regular basis to play the song. SID
files have some unique characteristics that make it easier to
write a player, yet these same characteristics also make it less
likely that any particular SID file will play on the Cody
Computer.

At its core a SID file is just a program with a load address
and some functions to call. One of the functions is the INIT

419

routine that sets up the SID file. Another is a PLAY routine that
plays the current portion of the song when called on a regular
basis by the player. Everything else, including the way the
music data is stored, is under the control of the person who
wrote the SID.

This is very different from more traditional music formats
such as MIDI that contain structured data about the song.
Because a SID file is a program, each SID has its own unique
expectations about where it will be loaded, how it will be
called, the memory layout of the system, and what peripherals
(including interrupts and timers) are present.

While the Cody Computer has a rudimentary SID built in,
it's not a Commodore 64. As a result many perfectly valid SID
files will fail to play on it. However, many of them will,
particularly if we constrain ourselves to a certain subset of SID
file types and carefully look at their sizes and load addresses.
For now, we'll limit ourselves to PSID files of version 2, then
prepare ourselves for a certain amount of disappointment.

Even some incompatible SIDs might work after running
them through a relocator tool such as Linus Akesson's
sidreloc. Another option would be to write a player for
Compute! Magazine's MUS file format, which is more
MIDI-like and has fewer hardware dependencies. We won't
be covering any of that in this book.

420

THE PSID FILE FORMAT

There are several versions of the SID file format. PSID files
are less platform-specific and more amenable to playing them
without full C64 compatibility. RSID files, on the other hand,
generally require a full emulator or real C64. We'll limit
ourselves to PSID files, and within that category, we'll only
support version 2 of the format. This still leaves us with many
songs to try out.

The file begins with a header containing some information
about the song. Much of this we don't care about at all. A few
parts of it, such as the song name, author, and other related
information, are nice to know but not necessary for playing it.
A few pieces of information related to function addresses
within the SID file are required, so we'll have to get those from
the header. We'll also need to take into account that the
header is in a big-endian format but the 65C02 works as a
little-endian system.

After the header comes the actual SID data. Because of the
assumptions we've made, we can expect the SID data will begin
with the load address for the SID itself. This tells us where to
copy it into memory, and we hope that it won't conflict with our
own unique memory layout. (There's actually a field for this in
the header, but it's usually not populated and we ignore it for
our purposes.)

Once the SID is loaded starting at its load address, we have
to set up a periodic timer interrupt to call the song's code and
play it. The SID itself needs us to call its INIT function before

421

each time we play, then call its PLAY routine on each timer
interrupt to keep the song playing. (It's actually possible for a
SID to contain multiple songs, something we handle when
calling the INIT function.)

As far as the actual music data, it's just contained
somewhere within the SID code and data we loaded. We don't
know how it's stored, what it does, or much of anything about it
without reverse-engineering the file itself. In many respects
writing a SID player is more like writing a program loader, and
it's one of the reasons this project is relatively straightforward.

You can find many references online to the SID file format if
you're interested in the details. For what we're going to write,
this is sufficient to begin going through the code. Any little
details we haven't covered here will be mentioned as we go
through the CodySID program.

THE CODYSID PROGRAM

The CodySID source code starts with constant definitions
referring to various memory addresses that will be used by the
program. Many of these you've already heard of in earlier
chapters, such as the UART 1 and 65C22 VIA register
addresses. We'll need the UART to load the SID files, while we
need the VIA to scan the keyboard and run a timer. Other
addresses include the base addresses of the current screen
memory and the SID.

ADDR = $0300 ; The actual loading address of the program

SCRRAM = $C400 ; Screen memory base address
SIDBASE = $D400 ; SID register base address

422

Constants for many of the peripherals' register locations.

The program will also need some places to put its data.
These include STRPTR to loop through text strings, SCRPTR for
the current location in screen memory, and SIDPTR to point to
the beginning of the loaded SID data. Other data includes
SONGNUM for the current SID song, a PLAYBIT flag indicating
if a song is playing, and several KEYROW variables containing
the current keyboard matrix as of the last scan. (Because we
need to register our own interrupt service routine on top of the
one built into Cody BASIC, we also define ISRPTR to know
where the ISR address needs to go.)

UART1_BASE = $D480 ; Register addresses for UART 1
UART1_CNTL = UART1_BASE+0
UART1_CMND = UART1_BASE+1
UART1_STAT = UART1_BASE+2
UART1_RXHD = UART1_BASE+4
UART1_RXTL = UART1_BASE+5
UART1_TXHD = UART1_BASE+6
UART1_TXTL = UART1_BASE+7
UART1_RXBF = UART1_BASE+8
UART1_TXBF = UART1_BASE+16

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

423

Assorted zero-page variables for memory locations, song
status, and keyboard matrix status.

Many of the constants are dedicated to the SID header. Our
program will load the header into a fixed address at $0200 as
denoted by the SIDHEAD constant. From there we have offsets
into the header portions our program might actually need,
such as the init routine address (SIDINIT), play routine address
(SIDPLAY), and song information (SIDNAME for the name,
SIDAUTH for the author, SIDRELE for the release/copyright
info, and SIDSNUM for the number of songs).

Offsets within the SID header.

Two 16-bit values define the program header for the Cody
Computer. When Cody BASIC tries to load a machine language
program, it needs to know where to put it and how long it is.
This means that each program begins with a load address and

ISRPTR = $08 ; Pointer to the ISR address zero page variable

STRPTR = $D0 ; Pointer to string (2 bytes)
SCRPTR = $D2 ; Pointer to screen (2 bytes)
SIDPTR = $D4 ; Pointer to SID load address (2 bytes)
SONGNUM = $D8 ; Song number
PLAYBIT = $D9 ; Play bit (are we playing a song?)
KEYROW0 = $DA ; Keyboard row 0
KEYROW1 = $DB ; Keyboard row 1
KEYROW2 = $DC ; Keyboard row 2
KEYROW3 = $DD ; Keyboard row 3
KEYROW4 = $DE ; Keyboard row 4
KEYROW5 = $DF ; Keyboard row 5

SIDHEAD = $0200 ; Page to store the SID file header
SIDLOAD = SIDHEAD+$08
SIDINIT = SIDHEAD+$0A
SIDPLAY = SIDHEAD+$0C
SIDNAME = SIDHEAD+$16
SIDAUTH = SIDHEAD+$36
SIDRELE = SIDHEAD+$56
SIDSNUM = SIDHEAD+$0E

424

an ending address. We can calculate these using the ADDR
constant and LAST label we define. We also tell the 64tass
assembler to start generating code starting at our load
address using the .LOGICAL directive.

Creating the program header and telling the assembler where
our program will start.

On startup, control begins in the MAIN routine right at the
load address. In our case it performs all the initial setup, such
as enabling our interrupt service routine, turning on the timer,
and preparing to scan the keyboard. After that it tries to load a
SID file, then enters the program's main loop. User input from
the keyboard is mapped to the menu options, and as the user
makes selections, the program branches to the corresponding
code.

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the SID player. Responsible for initialization, information display,
; and menu selection.
;
MAIN SEI
 STZ PLAYBIT ; Not playing by default

 LDA #$07 ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
 STA VIA_DDRA

 LDA #<TIMERISR ; Set up timer ISR location
 STA ISRPTR+0
 LDA #>TIMERISR
 STA ISRPTR+1

 LDA #<20000 ; Set up VIA timer 1 to emit ticks for timing purposes
 STA VIA_T1CL

425

 LDA #>20000
 STA VIA_T1CH

 LDA #$40 ; Set up VIA timer 1 continuous interrupts, no outputs
 STA VIA_ACR

 LDA #$C0 ; Enable VIA timer 1 interrupt
 STA VIA_IER

 CLI ; Turn on interrupts

 JSR CMDLOAD ; Always start by loading and playing a song

_MENU JSR SHOWMENU ; Always print the menu just in case

_SCAN JSR SHOWREGS

 LDA KEYROW0 ; Pressed Q for quit?
 AND #%00001
 BNE _QUIT

 LDA KEYROW1 ; Pressed L for load?
 AND #%10000
 BNE _LOAD

 LDA KEYROW2 ; Pressed N for next?
 AND #%01000
 BNE _NEXT

 LDA KEYROW5 ; Pressed P for previous?
 AND #%10000
 BNE _PREV

 BRA _SCAN ; Repeat main loop

_QUIT JSR STOPSID ; Shut off SID

 SEI ; Disable interrupts

 RTS ; Return to BASIC and hope it works

_LOAD JSR CMDLOAD ; Run the load command
 BRA _MENU

_NEXT LDA KEYROW2 ; Wait for N key to be released
 BNE _NEXT

 JSR STOPSID ; Stop playing music

 LDA SONGNUM ; Increment song number if within range, else play
 INC A
 CMP SIDSNUM
 BEQ _PLAY

 STA SONGNUM ; Update song number and play
 BRA _PLAY

_PREV LDA KEYROW5 ; Wait for P key to be released
 BNE _PREV

 JSR STOPSID ; Stop playing music

 LDA SONGNUM ; If song number at zero, just play the song
 BEQ _PLAY

 DEC SONGNUM ; Otherwise decrement song number and then play
 BRA _PLAY

426

CodySID's main routine. It begins by setting up the Cody
Computer, loading the first SID, and then entering the main
loop to handle menu selections.

Two routines act as a bridge between the CodySID program
and the SID's own routines. STARTSID starts the SID using the
current song number and calling its init address. STOPSID
stops playing of the SID by clearing the play flag and resets
the SID's registers. Note how interrupts are disabled during
certain parts as we don't want the SID to play in the middle of
making these kinds of changes.

Routines for starting and stopping SID file playback. The
PLAYBIT variable is a flag indicating the current play status.

_PLAY JSR SHOWINFO
 JSR STARTSID
 BRA _MENU

;
; STARTSID
;
; Begins playing the SID by calling its INIT function.
;
STARTSID SEI ; Initialize and start playing the SID file
 LDA SONGNUM
 JSR _CALLINIT
 LDA #1
 STA PLAYBIT
 CLI
 RTS
_CALLINIT JMP (SIDINIT)

;
; STOPSID
;
; Stops the currently playing SID.
;
STOPSID SEI
 STZ PLAYBIT
 CLI

 LDA #0
 LDX #0
_LOOP STA SIDBASE,X
 INX
 CPX #25
 BNE _LOOP
 RTS

427

We need a routine to load a SID when the user requests it.
The CMDLOAD routine handles this by displaying an
appropriate message on the screen, then loading a SID using
the LOADHEAD and LOADDATA routines. After the file is
loaded some quick byte-swaps are done to convert certain
addresses from big-endian to little-endian. Before returning,
the load routine starts playing the SID.

;
; CMDLOAD
;
; Implements the menu option to load a SID file over the UART connection.
;
CMDLOAD JSR STOPSID ; Stop the current song and clear the SID registers

 JSR SHOWSCRN ; Clear screen

 LDX #0 ; Display message about waiting to receive SID file
 LDY #3
 JSR MOVESCRN

 LDX #MSG_RECEIVE
 JSR PUTMSG

 JSR UARTON ; Receive the SID file
 JSR LOADHEAD
 JSR LOADDATA
 JSR UARTOFF

 LDA SIDINIT+0 ; Swap INIT address bytes (big-endian in PSID header)
 PHA
 LDA SIDINIT+1
 STA SIDINIT+0
 PLA
 STA SIDINIT+1

 LDA SIDPLAY+0 ; Swap PLAY address bytes (big endian in PSID header)
 PHA
 LDA SIDPLAY+1
 STA SIDPLAY+0
 PLA
 STA SIDPLAY+1

 LDA SIDSNUM+0 ; Swap song count address bytes (big endian in PSID header)
 PHA
 LDA SIDSNUM+1
 STA SIDSNUM+0
 PLA
 STA SIDSNUM+1

 STZ SONGNUM ; Always start at first song

 JSR SHOWSCRN ; Clear screen

 JSR SHOWINFO ; Display the info of the SID file we read

 JSR STARTSID ; Start playing the current SID and song

428

The CMDLOAD routine handles SID file loading at a high level.

Support routines include the KEYSCAN routine for scanning
the keyboard matrix and the TIMERISR routine for handling
timer interrupts. Both of these are very similar to routines in
the Cody BASIC interpreter except for the SID specific
behavior. TIMERISR calls KEYSCAN to update the keyboard
variables scanned by the main routine, and it also calls the
SID's play routine when a song is playing.

A simple routine for scanning the keyboard matrix and storing
the results into the KEYROW zero-page variables.

 RTS ; All done

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Read the keys for the current row from the VIA port
 EOR #$FF
 LSR A
 LSR A
 LSR A
 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #6 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

;
; TIMERISR
;
; A timer interrupt handler that scans the keyboard and calls the SID's play routine.

429

The SID player's TIMERISR updates the keyboard variables and
plays the next part of the song if playing.

Loading of the SID data is handled by the LOADHEAD and
LOADDATA routines. These are called once the UART is turned
on and rely on various UART helper routines to read incoming
bytes. Because we have no specific end-of-file for the
incoming SID data, we rely on a timeout instead. This could be
a problem over an unreliable serial link, but relatively low
baud rates over modern communications are generally
reliable. If you find yourself having intermittent problems,
check your connections and cables.

;
TIMERISR BIT VIA_T1CL ; Clear 65C22 interrupt by reading

 PHA ; Preserve registers
 PHX
 PHY

 JSR KEYSCAN ; Scan the keyboard

 LDA PLAYBIT ; Are we playing?
 BEQ _DONE

 JSR _CALLPLAY ; Call the play routine

_DONE PLY ; Restore registers
 PLX
 PLA

 RTI ; All done

_CALLPLAY JMP (SIDPLAY)

;
; LOADHEAD
;
; Loads a SID file header into the SIDHEAD page. Assumes PSID version 2.
;
LOADHEAD LDX #0

_READ JSR UARTGET
 BCC _READ

 STA SIDHEAD,X
 INX

 CPX #$7C
 BNE _READ

430

LOADHEAD and LOADDATA copy the SID's contents from the
UART into the Cody Computer's memory.

Important information in the SID header is shown to the user
when the file is playing. In CodySID this is handled in the
SHOWINFO routine, which moves to certain positions on the
screen and prints the SID's name, author, copyright
information, song numbers, and code addresses.

 RTS

;
; LOADDATA
;
; Loads the SID file data into memory. The routine assumes the load address
; must be read from the file (not included in the SID header).
;
LOADDATA

_READ1 JSR UARTGET
 BCC _READ1
 STA SIDPTR+0

_READ2 JSR UARTGET
 BCC _READ2
 STA SIDPTR+1

 LDX #$FF

_READ3 DEX
 BEQ _DONE

 JSR UARTGET
 BCC _READ3

 LDX #$FF ; Reset counter

 STA (SIDPTR) ; Store data

 INC SIDPTR+0 ; Increment load address
 BNE _READ3
 INC SIDPTR+1
 BRA _READ3

_DONE RTS

;
; SHOWINFO
;
; Displays SID information on the screen. This includes the song name,
; author, release/copyright, load/init/play addresses, and song number.
;
SHOWINFO LDX #0 ; Move to song name position
 LDY #3
 JSR MOVESCRN

431

 LDX #0 ; Print song name from header
_NAME LDA SIDNAME,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _NAME

 LDX #0 ; Move to song author position
 LDY #4
 JSR MOVESCRN

 LDX #0 ; Print song author from header
_AUTH LDA SIDAUTH,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _AUTH

 LDX #0 ; Move to song release/copyright position
 LDY #5
 JSR MOVESCRN

 LDX #0 ; Print song release/copyright information
_RELE LDA SIDRELE,X
 JSR PUTCHR
 INX
 CPX #32
 BNE _RELE

 LDX #0 ; Print song load address from header
 LDY #7
 JSR MOVESCRN

 LDX #MSG_LOAD
 JSR PUTMSG

 LDA SIDLOAD+1
 JSR PUTHEX
 LDA SIDLOAD+0
 JSR PUTHEX

 LDX #0 ; Print song init address from header
 LDY #8
 JSR MOVESCRN

 LDX #MSG_INIT
 JSR PUTMSG

 LDA SIDINIT+1
 JSR PUTHEX
 LDA SIDINIT+0
 JSR PUTHEX

 LDX #0 ; Print song play address from header
 LDY #9
 JSR MOVESCRN

 LDX #MSG_PLAY
 JSR PUTMSG

 LDA SIDPLAY+1
 JSR PUTHEX
 LDA SIDPLAY+0
 JSR PUTHEX

 LDX #0 ; Print song number in SID
 LDY #10
 JSR MOVESCRN

432

The SHOWINFO routine displays the song's header
information.

While the song is playing, the SID's registers are being
updated constantly by the code in the SID file itself. To show
the user what's going on, we periodically display the current
contents of the SID registers. This is handled by the
SHOWREGS routine, which displays the registers broken down
by voice register bank and filter/volume register. This routine
is itself called from within the main loop to keep the screen up
to date.

 LDX #MSG_SONGNUM
 JSR PUTMSG

 LDA SONGNUM
 INC A
 JSR PUTHEX

 LDX #MSG_SONGOF
 JSR PUTMSG

 LDA SIDSNUM+0
 JSR PUTHEX

 RTS ; All done

;
; SHOWREGS
;
; Displays the SID register values as hex numbers on the screen.
;
SHOWREGS LDX #3 ; Print register column headings
 LDY #12
 JSR MOVESCRN

 LDX #MSG_REGS
 JSR PUTMSG

 LDX #0 ; Print voice 1 registers
 LDY #13
 JSR MOVESCRN

 LDX #MSG_V1
 JSR PUTMSG

 LDX #0
_V1 LDA SIDBASE+0,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR

433

SHOWREGS is responsible for displaying the current SID
register values on the screen. This is a common feature in
many SID players.

Small helper routines are used to display other parts of the
user interface. SHOWMENU displays the menu at the bottom
of the main screen while SHOWSCRN clears the screen and
prints the CodySID banner at the top.

 INX
 CPX #7
 BNE _V1

 LDX #0 ; Print voice 2 registers
 LDY #14
 JSR MOVESCRN

 LDX #MSG_V2
 JSR PUTMSG

 LDX #0
_V2 LDA SIDBASE+7,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #7
 BNE _V2

 LDX #0 ; Print voice 3 registers
 LDY #15
 JSR MOVESCRN

 LDX #MSG_V3
 JSR PUTMSG

 LDX #0
_V3 LDA SIDBASE+14,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #7
 BNE _V3

 LDX #27 ; Print filter and volume registers
 LDY #13
 JSR MOVESCRN

 LDX #0
_FV LDA SIDBASE+21,X
 JSR PUTHEX
 LDA #20
 JSR PUTCHR
 INX
 CPX #4
 BNE _FV

 RTS

434

Helper routines for displaying a new CodySID player screen
and the menu.

A total of three routines exist to handle communications
over the UART. UARTON turns UART 1 on with a baud rate of
19200. UARTGET checks to see if any data is in the receive
buffer, and if so, removes it. If not, the routine returns
immediately so that the program doesn't block. (Code using
the routine can check if anything was read by looking at the
65C02's carry flag.) When the program is done reading a SID
file, it calls UARTOFF to turn off UART 1. This code is
conceptually similar to the UART code in the Cody BASIC

;
; SHOWMENU
;
; Shows the menu text at the bottom of the screen.
;
SHOWMENU LDX #0
 LDY #20
 JSR MOVESCRN

 LDX #MSG_MENU
 JSR PUTMSG
 RTS

;
; SHOWSCRN
;
; Shows the CodySID banner at the top of the screen.
;
SHOWSCRN JSR CLRSCRN

 LDX #16
 LDY #0
 JSR MOVESCRN

 LDX #MSG_CODYSID
 JSR PUTMSG

 LDX #6
 LDY #1
 JSR MOVESCRN

 LDX #MSG_SUBTITLE
 JSR PUTMSG

 RTS

435

interpreter as well as the UART examples written in BASIC in
the previous chapter.

;
; UARTON
;
; Turns on UART 1.
;
UARTON PHA
 PHY

_INIT STZ UART1_RXTL ; Clear out buffer registers
 STZ UART1_TXHD

 LDA #$0F ; Set baud rate to 19200
 STA UART1_CNTL

 LDA #01 ; Enable UART
 STA UART1_CMND

_WAIT LDA UART1_STAT ; Wait for UART to start up
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF PHA

 STZ UART1_CMND ; Clear bit to stop UART

_WAIT LDA UART1_STAT ; Wait for UART to stop
 AND #$40
 BNE _WAIT

 PLA

 RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET PHY

 LDA UART1_STAT ; Test no error bits set in the status register
 BIT #$06
 BNE _ERR

 LDA UART1_RXTL ; Compare current tail to current head position
 CMP UART1_RXHD
 BEQ _EMPTY

 TAY ; Read the next character from the buffer
 LDA UART1_RXBF,Y

436

UART routines used when a SID file is being loaded over the
serial port.

Some additional utility routines are present to help with
displaying content on the screen. MOVESCRN moves the
current output location to a particular x and y coordinate on
the screen, while CLRSCRN clears the screen entirely by filling
the memory with whitespace characters.

 PHA ; Increment the receiver tail position
 INY
 TYA
 AND #$07
 STA UART1_RXTL
 PLA

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_ERR LDX #MSG_ERROR
 JSR PUTMSG

_DONE JMP _DONE

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 INY ; Increment pointer for each row
_LOOPY CLC
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1
 DEY
 BNE _LOOPY

 CLC ; Add position on column
 TXA
 ADC SCRPTR+0
 STA SCRPTR+0
 LDA SCRPTR+1

437

The MOVESCRN and CLRSCRN routines set the current screen
location or clear the screen entirely.

Other utility routines include those for displaying content
on the screen. PUTMSG prints a message string (defined by
one of the MSG_ constants) at the current location. PUTCHR
puts a single character at the current location. PUTHEX is
similar to PUTCHR but displays the current value as a two-
digit hex number. All advance the screen location while
printing.

 ADC #0
 STA SCRPTR+1

 RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 LDA #20 ; Clear screen by filling with whitespaces

 LDY #25 ; Loop 25 times on Y

_LOOPY LDX #40 ; Loop 40 times on X for each Y

_LOOPX STA (SCRPTR) ; Store zero

 INC SCRPTR+0 ; Increment screen position
 BNE _NEXT
 INC SCRPTR+1

_NEXT DEX ; Next X
 BNE _LOOPX

 DEY ; Next Y
 BNE _LOOPY

 RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG PHA
 PHY

438

 LDA MSGS_L,X ; Load the pointer for the string to print
 STA STRPTR+0
 LDA MSGS_H,X
 STA STRPTR+1

 LDY #0

_LOOP LDA (STRPTR),Y ; Read the next character (check for null)
 BEQ _DONE

 JSR PUTCHR ; Copy the character and move to next
 INY

 BRA _LOOP ; Next loop

_DONE PLY
 PLA

 RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR STA (SCRPTR) ; Copy the character

 INC SCRPTR+0 ; Increment screen position
 BNE _DONE
 INC SCRPTR+1

_DONE RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX PHA
 PHX
 TAX
 JSR HEXTOASCII
 PHA
 TXA
 LSR A
 LSR A
 LSR A
 LSR A
 JSR HEXTOASCII
 PHA
 PLA
 JSR PUTCHR
 PLA
 JSR PUTCHR
 PLX
 PLA
 RTS
HEXTOASCII AND #$F
 CLC
 ADC #48
 CMP #58
 BCC _DONE
 ADC #6

439

Utility routines for putting strings and hex numbers on the
screen.

The messages that can be displayed on the screen are
defined by set of constants. Each is prefixed with MSG_ and
relates to a particular location in the program's message table.

The messages that may be displayed by the CodySID program.

The string themselves are defined just below as null-
terminated C strings.

_DONE RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYSID = 0
MSG_SUBTITLE = 1
MSG_LOAD = 2
MSG_INIT = 3
MSG_PLAY = 4
MSG_REGS = 5
MSG_V1 = 6
MSG_V2 = 7
MSG_V3 = 8
MSG_MENU = 9
MSG_RECEIVE = 10
MSG_SONGNUM = 11
MSG_SONGOF = 12
MSG_ERROR = 13

440

The actual strings corresponding to each message ID.

To map the constants to the strings, the strings' addresses
are kept in a table of low bytes and high bytes. Each constant
represents an index into the table. When a particular string is
needed it's easy for the PUTMSG routine to find the string
pointer based on the index within the table.

Splitting the table into low and high bytes is a common trick
in 8-bit code. The program can use the same index register
value to look up both bytes without any other incrementing.

;
; The strings displayed by the program.
;
STR_CODYSID .NULL "CodySID!"
STR_SUBTITLE .NULL "The Cody Computer SID Player"
STR_LOAD .NULL "Load $"
STR_INIT .NULL "Init $"
STR_PLAY .NULL "Play $"
STR_REGS .NULL "FL FH PL PH CL AD SR CL CH FR MV"
STR_V1 .NULL "V1 "
STR_V2 .NULL "V2 "
STR_V3 .NULL "V3 "
STR_MENU .NULL "(L)oad (Q)uit (P)rev (N)ext"
STR_RECEIVE .NULL "Send PSID V2 file and wait for end..."
STR_SONGNUM .NULL "Song $"
STR_SONGOF .NULL " of $"
STR_ERROR .NULL "ERROR!"

;
; Low bytes of the string table addresses.
;
MSGS_L
 .BYTE <STR_CODYSID
 .BYTE <STR_SUBTITLE
 .BYTE <STR_LOAD
 .BYTE <STR_INIT
 .BYTE <STR_PLAY
 .BYTE <STR_REGS
 .BYTE <STR_V1
 .BYTE <STR_V2
 .BYTE <STR_V3
 .BYTE <STR_MENU
 .BYTE <STR_RECEIVE
 .BYTE <STR_SONGNUM
 .BYTE <STR_SONGOF
 .BYTE <STR_ERROR

;
; High bytes of the string table addresses.

441

The low-byte and high-byte portions of the message table.

The program's source code is ended with some boilerplate.
The LAST label is used to indicate the end of the program. This
is used when calculating the program length and end address
for the program header, as you may remember from the
beginning of the walkthrough. The .ENDLOGICAL assembly
directive ends the .LOGICAL directive used at the beginning of
the program to emit code for a particular load address.

Boilerplate at the end of the program.

BUILDING AND RUNNING CODYSID

Building CodySID with tass64 is straightforward. You only
need the codysid.asm file and your installed tass64
assembler. Just run the same command as in the previous
example, but for CodySID: 64tass --mw65c02 --nostart -o
codysid.bin codysid.asm.

;
MSGS_H
 .BYTE >STR_CODYSID
 .BYTE >STR_SUBTITLE
 .BYTE >STR_LOAD
 .BYTE >STR_INIT
 .BYTE >STR_PLAY
 .BYTE >STR_REGS
 .BYTE >STR_V1
 .BYTE >STR_V2
 .BYTE >STR_V3
 .BYTE >STR_MENU
 .BYTE >STR_RECEIVE
 .BYTE >STR_SONGNUM
 .BYTE >STR_SONGOF
 .BYTE >STR_ERROR

LAST ; End of the entire program

.ENDLOGICAL

442

Assembling CodySID into a binary file.

Once you have the binary, you can load it from the Cody
Computer like any other. Run LOAD 1,1 to begin a load
operation from the Prop Plug, then send the newly-generated
binary over as you did in the previous example.

Once the program has started, it will prompt you to send a
SID file over. You can send this from your terminal program
just like you did the program itself. When the SID file has been
received, the player will automatically begin playing the first
song in the SID. The screen contents will update with the
current song and SID register information as the song is
played. (If the SID is incompatible, however, anything could
happen and you may have to restart the Cody Computer.)

You can use the on-screen options to load a different file,
quit the program, or go back and forth to the previous or next
song in the file (if any). Just press the key on your keyboard
corresponding to the menu option.

% 64tass --mw65c02 --nostart -o codysid.bin codysid.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file: codysid.asm
Output file: codysid.bin
Data: 1126 $0000-$0465 $0466
Passes: 2

443

The CodySID program playing a SID file of AC/DC's Highway
to Hell. Note how the current SID register values are updated
as the song plays.

SUGGESTED SID FILES

The High-Voltage Sid Collection contains the largest single
repository of SID files. Many, but not all, of these can be used
on the Cody Computer. During development a subset of these
were found to work reasonably well and were used for testing.
A list of many of these high-quality known working files is
given below.

Agent USA by Tom Snyder (1984).•

444

Axel F by Barry Leitch (1986).
The Blackadder Theme by Joachim Wijnhoven (2002).
The Blues Brothers soundtrack by Paul Tankard (1991)
contains multiple songs. It clobbers the screen memory
but is otherwise playable.
Ducktales by Vincent Voois (1990).
Electricity by Pawel Wieczorek (1994).
Ghostbusters by Etienne Muson (1985).
Highway to Hell by Benjamin Dibbert (2022).
Jingle Bells by Richard Bayliss (2002).
The Mayhem in Monsterland soundtrack by Steve
Rowlands (1993) contains multiple songs and sound
effects.
The Mohican in the Gael by Zack Maxis (2024).
The Murder on the Mississippi soundtrack by Ed Bogas
(1986) contains over a dozen brief songs.
Popcorn by Sami Sepp (1980).
Radioactivity by Sami Louko (2022).
The Railroad Works by John Wentworth (1984) plays
correctly but clobbers the default character set. Restart
the computer after playing.
Seahorses by Ed Bogas (1984) contains multiple songs
and sound effects from Sea Horse Hide'n Seek.
Starman by Sami Sepp (2015).
Star Trek - The Rebel Universe by David Dunn (1989) is a
rendition of the TV theme for the game of the same name.
Summer Games (1984) from Epyx contains the national
anthems and event songs from the game.
Take My Breath Away by Steven Diemer (1991).

•
•
•

•
•
•
•
•
•

•
•

•
•
•

•

•
•

•

•

445

THE "CODY BROS." DEMO

Games are often written in assembly language because of
its better performance. This is particularly the case for any
kind of game with fast action such as arcade games. We won't
be writing an entire game in this section, but we are going to
write a simple demo reminiscent of Super Mario Brothers,
Great Giana Sisters, and other platform games. It's a good
oppportunity to show how some of the Cody Computer's
features can be used together to make a game in assembly
language.

We'll keep the game and its graphics simple so we don't
need other tools to make it, instead just writing the relevant
data as constants and tables in a simple assembly language
program. To keep things very simple, our game will have a
game world that is 64 tiles wide by 25 tiles high. We'll also
only have a handful of tile types and only a single sprite.

All control will occur by reading the joystick periodically.
When moving around in the game, the world willscroll
horizontally from side to side. The player will have a single
sprite under their control, and we'll be able to move the sprite
left and right. Moving up on the joystick will produce a simple
animation and sound effect, while pulling down on the joystick
will change the sprite's color. The fire button will exit the game
and return to Cody BASIC.

Because it's a computer named after a dog, our sprite will be
a stylized Pomeranian. And because the demo is inspired by a
particular Nintendo classic, we'll have his outfits be red or

446

green. Lastly, for an animation and sound effect, we'll make
him bark rather than jump or shoot fireballs. Once you've
mastered the basics, there's no reason you can't use what you
learn here to make a real game.

THE CODYBROS PROGRAM

As with the CodySID player, the program starts with a
variety of constant definitions and memory locations that we'll
be using throughout the program. Some of these relate to the
memory locations used for double-buffering of graphics.
Because it's not possible to redraw an entire screen during the
interval between frames, we have to render the next screen to
another buffer. When the drawing is done, we switch them out
between frames. This means that unlike many programs, we
have two different screen memory and color memory
locations.

Some of the most important memory locations we'll be using.
This includes the double-buffers for the screen and color
memory.

We'll be reading from the joystick, so the constants for the
65C22 VIA addresses are also included.

ADDR = $0300 ; The actual loading address of the program

SCRRAM1 = $A000 ; Screen memory locations for double-buffering
SCRRAM2 = $A400

COLRAM1 = $A800 ; Color memory locations for double-buffering
COLRAM2 = $AC00

SPRITES = $B000 ; Sprite memory locations

447

The memory locations for the 65C22 VIA's registers.

The program will need to read and update several video
register locations, so those also need to be included
somewhere in the program. Just like for the others, we'll define
constants instead of using magic numbers.

Memory locations for the registers in the Cody Computer's
video interface device.

We'll only have a single sprite in our program, and we'll
place it at the beginning of the first sprite bank. This keeps the
number of constants we need to define to a minimum.

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

VID_BLNK = $D000 ; Video blanking status register
VID_CNTL = $D001 ; Video control register
VID_COLR = $D002 ; Video color register
VID_BPTR = $D003 ; Video base pointer register
VID_SCRL = $D004 ; Video scroll register
VID_SCRC = $D005 ; Video screen common colors register
VID_SPRC = $D006 ; Video sprite control register

448

The sprite registers used in the demo. There are many more
for other sprites, but we're only using the first sprite in the first
sprite bank.

The game won't have music, but it will have a sound effect.
That means we'll need to know where the SID registers are in
memory. In particular, we'll be using voice 1 for our sound
effect, so we'll need those registers, along with a control
register for setting the global volume. The SID, of course, has
two other voices that we won't be using.

The SID registers we'll be using in the program. The focus is on
voice 1, which we'll use for a bark-like sound effect.

We'll also need to track the player's x and y coordinates
along with the corner x and y position on the map. The player's
y coordinate won't be used much for our demo, but the x
coordinate is needed to determine where the player is on the
screen. Because the player can move in per-pixel increments
but the tile map is along character boundaries, we'll have to
convert back and forth at times in the program.

SPR0_X = $D080 ; Sprite X coordinate
SPR0_Y = $D081 ; Sprite Y coordinate
SPR0_COL = $D082 ; Sprite color
SPR0_PTR = $D083 ; Sprite base pointer

SID_BASE = $D400 ; SID registers (mostly for voice 1)
SID_V1FL = SID_BASE+0
SID_V1FH = SID_BASE+1
SID_V1PL = SID_BASE+2
SID_V1PH = SID_BASE+3
SID_V1CT = SID_BASE+4
SID_V1AD = SID_BASE+5
SID_V1SR = SID_BASE+6
SID_FVOL = SID_BASE+24

449

In our simple demo, the player can move up to 256 pixels
because the x-coordinate is stored in a single byte. This is also
the reason our game world is limited to 64 horizontal tiles
(recall that each character on the screen is four pixels wide). In
a real game you would probably want to have a larger game
world, so you would either need to use a 16-bit number or
keep track of per-character offsets in a separate variable.

Variables in zero-page used for the player's location and
corners.

When we draw the game screen we'll need pointers to the
game map and to the video device's screen and color memory.
These will be typical 16-bit variables like you've already seen
in other assembly programs.

Pointer variables used when drawing the game screen.

We also have a few remaining flag variables. One tells us
which of the two screen and color memory buffers to use, as
we'll need to toggle between them on each frame. Another
tells us whether the game sprite is moving forward or
backward in the game world. We'll also need a temporary
variable for some of our calculations, so it's declared here as
well.

PLAYERX = $D0 ; Player coordinates
PLAYERY = $D1

CORNERX = $D2 ; Screen top-left corner coordinates
CORNERY = $D3

MAPPTR = $D4 ; Memory pointers for drawing the screen
SCRPTR = $D6
COLPTR = $D8

450

Miscellaneous zero-page variables used by the program.

After our definitions are in place, we start with the beginning
of the program. This program header is the same as in the
other assembly language example. We also use the same
assembly directive as before to generate our code relative to
the program's load address.

The program header containing the start and end addresses of
the program. Cody BASIC's program loader needs this
information to be able to load and run the program.

Immediately after the program header is the start of the
program, in our case a MAIN routine. It begins by setting up
some of the variables in the game world, along with
configuring the SID, VID, and VIA peripherals.

BUFFLAG = $DA ; Flag indicating what buffer is being used
FWDREV = $DB ; Flag indicating player direction (forward or reverse)

TEMP = $DC ; Temporary variable

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL ADDR ; The actual program gets loaded at ADDR

451

Initial setup in the MAIN routine.

After the initial setup is done the program needs to
populate the game world. Part of that involves copying the
sprite data for our sprite into locations in sprite memory. It
also has to copy a set of characters into character memory, as
these characters are the custom tiles that make up the game
world itself. (For our example we'll just copy them into the
beginning of the normal character memory location, but in
your own games, you could even move the character memory
itself to a different location.)

;
; MAIN
;
; The starting point of the demo. Performs the necessary setup before the demo runs.
;
MAIN STZ PLAYERX ; Reset player position
 LDA #183
 STA PLAYERY

 STZ FWDREV ; Player moving forward by default

 STZ BUFFLAG ; Clear double buffer flag

 LDA #$07 ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
 STA VIA_DDRA

 LDA #$06 ; Set VIA to read joystick 1
 STA VIA_IORA

 LDA #$01 ; Sprite bank 0, white as common color
 STA VID_SPRC

 LDA VID_COLR ; Set border color to black
 AND #$F0
 STA VID_COLR

 LDA #$E0 ; Store shared colors (light blue and black)
 STA VID_SCRC

 LDA #$04 ; Enable horizontal scrolling
 STA VID_CNTL

452

Setting up the characters (game tiles) and sprites for the
demo.

At this point the program enters the game loop. On each
loop we have to convert the player's location to the screen
coordinates, draw the screen, and then handle any user input
via the joystick. Some of the details are handled by
subroutines, but the main loop organizes most of it.

The first part of the main loop calculates the screen location,
taking into account the bounds of the game world. Ordinarly
we want the game world centered on the player's current
location, but at the beginning and end, we need to do a special
check instead. We don't want the player to be able to move
outside of the game world.

Once that's taken care of, the program calls DRAWSCRN to
draw the screen for this frame. As part of drawing the screen,
the program waits for a vertical blank to update the video
registers before returning. As soon as it returns, the program
calls DRAWSPRT to update the sprite in its correct location
while the vertical blank is still occurring.

 LDX #0 ; Copy game map tiles into character memory
_COPYCHAR LDA CHARDATA,X
 STA $C800,X
 INX
 CPX #80
 BNE _COPYCHAR

 LDX #0 ; Copy sprite data into video memory
_COPYSPRT LDA SPRITEDATA,X
 STA SPRITES,X
 INX
 CPX #255
 BNE _COPYSPRT

 LDA #$D8 ; Initial sprite color
 STA SPR0_COL

453

Code for calculating the current frame's coordinates before
drawing it.

The rest of the main loop processes the joystick input. It
reads VIA port A and then checks the bits to see if any buttons
or switches are pressed. The fire button will exit the program,
while right and left joystick movements move the player one
pixel for that frame. Pushing the joystick up calls BARK, which
displays a simple animation and sound effect. Pushing the
joystick down calls SWAPCOLOR, which toggles the sprite's
clothing color between green and red.

LOOP LDA PLAYERX ; Calculate coarse scroll position
 LSR A
 LSR A

 CMP #21
 BCC _TOOLO

 CMP #46
 BCS _TOOHI

 SEC
 SBC #21
 STA CORNERX

 BRA _DRAW

_TOOLO STZ CORNERX
 BRA _DRAW

_TOOHI LDA #25
 STA CORNERX
 BRA _DRAW

_DRAW JSR DRAWSCRN ; Draw the screen and sprite
 JSR DRAWSPRT

 LDA VIA_IORA ; Read joystick
 LSR A
 LSR A
 LSR A

 BIT #16 ; Fire button?
 BEQ _FIRE

 BIT #8 ; Joystick right?
 BEQ _RIGHT

454

The final portion of the MAIN routine. This code handles the
user input from the joystick and fire button.

The BARK routine handles the sound and animation when
the player moves the joystick up. It starts by configuring the
SID to play a sawtooth wave, then enters an inner loop,
_WOOF. In the _WOOF loop, the program increases the
frequency of the sound slightly while moving the sprite
upward on the screen. At the end the sound is shut off and the
sprite moved back to its normal y-coordinate.

 BIT #4 ; Joystick left?
 BEQ _LEFT

 BIT #2 ; Joystick down to swap colors?
 BEQ SWAPCOLOR

 BIT #1 ; Joystick up to bark?
 BEQ BARK

 BRA LOOP

_FIRE RTS ; Exit on fire button

_LEFT LDA #1 ; Move left
 STA FWDREV

 LDA PLAYERX
 BEQ _NEXT

 DEC PLAYERX
 BRA _NEXT

_RIGHT STZ FWDREV ; Move right

 LDA PLAYERX
 CMP #232
 BEQ _NEXT

 INC PLAYERX

_NEXT JMP LOOP

;
; BARK
;
; Handles a barking sound/animation for the sprite, then jumps back to the
; main loop.
;
BARK LDA #$0F ; Set main volume
 STA SID_FVOL

 LDA #<2400 ; Set starting frequency
 STA SID_V1FL

455

The BARK routine makes a bark-like sound while moving the
game sprite up and down quickly. As a first approximation, it
simulates a barky agitated or excited Pomeranian.

The other player action (other than movement) is handled
by SWAPCOLOR. Those of you who have played the original
Super Mario Brothers may have noted that Mario and Luigi
were basically the same sprite, just with red or green colors.
Our demo does a similar thing, with the player sprite starting
out green. When toggled, we switch out the sprite's color
register so that the green color is red. And when toggled again,
it switches back to green, and so on.

 LDA #>2400
 STA SID_V1FH

 LDA #$50 ; Attack/decay
 STA SID_V1AD

 LDA #$F0 ; Sustain/release
 STA SID_V1SR

 LDA #$21 ; Begin playing
 STA SID_V1CT

 LDX #0 ; Loop counter

_WOOF JSR WAITBLANK ; Wait for the next frame

 DEC SPR0_Y ; Decrement sprite Y for dog hop

 CLC ; Increment frequency for next loop
 LDA SID_V1FL
 ADC #100
 STA SID_V1FL

 LDA SID_V1FH
 ADC #0
 STA SID_V1FH

 INX ; Increment for next loop
 CPX #10
 BNE _WOOF

 LDA #0 ; Stop playing
 STA SID_V1CT

 LDA PLAYERY ; Move sprite back to original y
 STA SPR0_Y

 JMP LOOP

456

SWAPCOLOR toggles the player sprite between green and
red.

Drawing the screen is handled by the DRAWSCRN routine. It
sets up a pointer into the map data, then iterates over the data
to populate the screen and color memory for the next frame.
Because it takes so long to draw a screen, all the drawing is
done offscreen in a technique known as double-buffering. At
the end, the routine waits for a vertical blank, then switches the
video registers to point to the new screen and color memory
areas. We flip back and forth between them on each call to
DRAWSCRN so one is being shown while the other is being
drawn.

This isn't quite how the drawing would be done in a real
game. In a real game, the screen would only be fully updated
every fourth frame. The scroll registers would be used to

;
; SWAPCOLOR
;
; Swaps the sprite color (red/green or green/red) and jumps back to the main
; loop.
;
SWAPCOLOR LDA SPR0_COL ; Check current sprite colors
 CMP #$D8
 BEQ _RED

_GRN LDA #$D8 ; Make sprite wear green
 STA SPR0_COL
 BRA _WAITJOY

_RED LDA #$28 ; Make sprite wear red
 STA SPR0_COL
 BRA _WAITJOY

_WAITJOY LDA VIA_IORA ; Read joystick
 LSR A
 LSR A
 LSR A

 BIT #2 ; Wait for joystick release
 BEQ _WAITJOY

 JMP LOOP ; All done

457

slowly slide the current screen across while the new screen is
being drawn (roughly one-quarter of it on each frame). When
the scroll wraps around, the new screen would be ready and
swapped in.

That approach is more complex but it allows a better frame
rate than our demo. What we have here is intended to be an
example of double-buffering without additional complications.
It does mean that we're doing extra work redrawing the entire
screen on each call, but the result is suitable to show the
basics. Just be aware that there are better ways of doing this in
real life.

Much of the drawing (or more accurately, copying) is done
in the COPYROWS routine. It takes a single parameter in the X
register, the number of rows to copy. This is because, again, in
a real application only a subset of screen rows may be copied
between frames (rather than slowing down the whole
application to draw the whole thing each time). We just use a
value of 25 to draw all the rows.

;
; DRAWSCRN
;
; Draws the current visible of the screen. This routine uses double-buffering
; so that the new screen and colors are drawn to a different location, and the
; screens/colors are switched out during the vertical blanking interval.
;
; In a real application the screen may need to be drawn (offscreen) in sections
; to keep up with a high game frame rate. For an example this works well enough
; to avoid glitches or tearing during scrolling.
;
DRAWSCRN LDA #<MAPDATA ; Start map pointer at beginning of map
 STA MAPPTR+0
 LDA #>MAPDATA
 STA MAPPTR+1

 CLC ; Adjust map position based on player position
 LDA MAPPTR+0
 ADC CORNERX
 STA MAPPTR+0
 LDA MAPPTR+1
 ADC #0
 STA MAPPTR+1

458

DRAWSCRN handles most of the high-level operations
involved in rendering a new screen and color memory area
based on the current map location.

The screen and color memory is updated by the
COPYROWS routine. As mentioned, it will update a variable
number of rows on each call, specified by the value in the X
register. It also assumes that the MAPPTR is pointed to the

 LDA BUFFLAG ; Determine what buffer to draw to
 TAX

 LDA SCRRAMS_L,X ; Start screen pointer at beginning of buffer
 STA SCRPTR+0
 LDA SCRRAMS_H,X
 STA SCRPTR+1

 LDA COLRAMS_L,X ; Start color pointer at beginning of buffer
 STA COLPTR+0
 LDA COLRAMS_H,X
 STA COLPTR+1

 LDX #25 ; For now, try drawing everything
 JSR COPYROWS

 JSR WAITBLANK ; Wait for the blanking interval to make changes

 LDA BUFFLAG ; Determine what buffer to flip to
 TAX

 LDA BASEREGS,X ; Update base register for screen memory
 STA VID_BPTR

 LDA COLREGS,X ; Update color register for color memory
 STA VID_COLR

 LDA BUFFLAG ; Toggle buffer flag
 EOR #$01
 STA BUFFLAG

 LDA PLAYERX ; Update fine scroll position if needed

 CMP #(4*21)
 BCC _DONE

 CMP #(4*46)
 BCS _DONE

 AND #$03
 ASL A
 ASL A
 ASL A
 ASL A
 STA VID_SCRL

_DONE RTS ; All done

459

current source row in the map data, while SCRPTR and COLPTR
point to the current destination rows in scren and color
memory.

Screen data is copied directly from the map data. Color data
is obtained by using the tile value as an index into a lookup
table, COLORDATA, that has the character-specific colors for
each tile. (For many games this technique is actually not that
optimal, as tiles may be drawn in a variety of colors, but for
this example it works nicely.)

Each row consists of 40 characters written to the screen and
color memory locations. Index registers are used to reference
particular memory locations relative to the pointers, but after
each row, they need to be updated to move to the next row. For
COLPTR and SCRPTR they need to be incremented by 40
because screen and color memory are 40 characters wide. For
MAPDATA the pointer needs to be incremented by 64 because
the game world is 64 tiles wide.

;
; COPYROWS
;
; Copies a number of rows from the game map into the screen and color memory. The
; number of rows to copy is stored in the X register.
;
COPYROWS

_XLOOP PHX
 LDY #0

_YLOOP LDA (MAPPTR),Y ; Copy the character (game tile) into screen memory
 STA (SCRPTR),Y

 TAX ; Copy the color into color memory
 LDA COLORDATA,X
 STA (COLPTR),Y

 INY ; Next loop for Y
 CPY #40
 BNE _YLOOP

 CLC ; Increment map pointer to next row
 LDA MAPPTR+0
 ADC #64

460

The COPYROWS routine updates a certain number of rows in a
screen and color memory location with the data from the game
map.

The sprite also needs to be updated on each frame. This is
handled by the DRAWSPRT routine. It looks at the current
player position in the game world and determines where the
sprite should be drawn on the screen. In most situations the
sprite should be drawn in the middle of the screen, but at the
beginning and end of the game world the behavior is different.
In those cases, scrolling stops, so the sprite has to move
instead.

Our sprite also has a total of four frames, two walking
forward and two walking backward. To specify the correct sprite
image, the program examines the value in FWDREV set by the
main loop to determine whether the player's moving forward
(right) or backward (left). Once that's decided, the current
player X coordinate is used to pick one of the two walk frames

 STA MAPPTR+0
 LDA MAPPTR+1
 ADC #0
 STA MAPPTR+1

 CLC ; Increment screen pointer to next row
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1

 CLC ; Increment color pointer to next row
 LDA COLPTR+0
 ADC #40
 STA COLPTR+0
 LDA COLPTR+1
 ADC #0
 STA COLPTR+1

 PLX ; Next loop for X
 DEX
 BNE _XLOOP

 RTS ; All done

461

for each direction. Even values use one sprite and odd ones the
other.

This routine gets called immediately after DRAWSCRN
because we want to make the sprite register updates during
the vertical blank as well. When drawing the screen the
program waits until a vertical blank to update the video
registers, and so calling this immediately after means the code
can run in the same vertical blank.

;
; DRAWSPRT
;
; Draws the sprite in the correct location for this frame. Note that the sprite
; isn't "drawn" so much as its registers updated so that it appears correctly.
; This should be called after drawing the screen because we want to sneak in
; during the vertical blank.
;
DRAWSPRT LDA PLAYERX ; Calculate new sprite location
 CMP #(21*4)
 BCC _LO

 CMP #(46*4)
 BCS _HI

 LDA #(21*4)
 BRA _SPRX

_LO BRA _SPRX

_HI SEC
 SBC #((46*4)-84)
 BRA _SPRX

_SPRX ADC #12 ; Update sprite X
 STA SPR0_X

 LDA PLAYERY ; Update sprite Y
 STA SPR0_Y

 LDA FWDREV ; Update sprite base pointer (different frames)
 ASL A
 STA TEMP
 CLC
 LDA PLAYERX
 AND #$02
 LSR A
 ADC TEMP
 ADC #(4096/64)
 STA SPR0_PTR

462

DRAWSPRT updates the sprite on the screen based on the
current game state.

WAITBLANK handles the actual waiting for a vertical blank.
First it waits for the blanking register to have a zero value,
indicating that the screen is actively being displayed by the
video hardware. After detecting a zero, it waits for a transition
to a 1, meaning that we went from drawing to the blanking
interval. Just checking for a 1 won't do as we might be in the
middle or at the end of the interval, which isn't necessarily
what we want.

The Commodore 64, like many computers of its day,
had an interrupt that would fire on particular screen lines.
That could be used to handle this in an interrupt rather
than having to poll for a changed value. Many other
computers, including the Commodore VIC-20, didn't have
such an interrupt, so polling was the only option. The Cody
Computer falls into this latter category.

 RTS

463

The WAITBLANK routine waits for a transition between
drawing the visible screen (0) and blanking (1). Code that
updates video registers should run in the blanking interval if
possible.

The game map is defined in MAPDATA, a sequence of 25
rows of 64 bytes. This is the source for drawing the screen, and
each byte represents a particular tile type. In real games, some
kind of map editor is usually used to make the game map. The
data is exported to an assembly file to include in your
program. In earlier times, the game map may have actually
been designed on graph paper before such tools were
common. For a simple example like this, we can just pop
numbers into the program as follows.

;
; WAITBLANK
;
; Waits for the vertical blank signal to transition from drawing to not drawing, then
; returns. Used to sync up screen/register updates so they don't occur in the middle
; of the screen.
;
WAITBLANK

_WAITVIS LDA VID_BLNK ; Wait until the blanking is zero (drawing the screen)
 BNE _WAITVIS

_WAITBLANK LDA VID_BLNK ; Wait until the blanking is one (not drawing the screen)
 BEQ _WAITBLANK

 RTS

;
; The game map.
;
; 0 = Sky
; 1 = Brick
; 2 = Cloud left
; 3 = Cloud middle
; 4 = Cloud right
; 5 = Hills left
; 6 = Hills middle
; 7 = Hills right
; 8 = ?
; 9 = ?
;

464

MAPDATA is a sequence of bytes that represent the game
world.

The tiles themselves are represented as characters. When
the video hardware draws the screen, the "characters" it draws
will actually be the game world's tiles. The MAIN routine
copies these characters over the first 10 characters in the
default character memory at startup. We can use them in the
game just by putting the matching number into screen
memory.

MAPDATA

 .BYTE 0,2,3,4,0
 .BYTE 0,2,3,3,3,3,3,4,0
 .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0
 .BYTE 0,0,2,3,3,3,3,4,0
 .BYTE 0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0
 .BYTE 0,2,3,4,0,2,3,4,0,0,0,0,0,0
 .BYTE 0,0
 .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,2,3,4,0,0,0,0
 .BYTE 0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0
 .BYTE 0,1,1,0,0,1,1,0
 .BYTE 0,1,1,0,0,1,1,0
 .BYTE 0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
 .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,5
 .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,5,6,7,0,5,6
 .BYTE 0,5,6,6,6,7,0,5,7,0,0,5,6,6
 .BYTE 0,5,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,0,5,6,6,7,5,6,6,6
 .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,0,5,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6
 .BYTE 0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,5,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6
 .BYTE 0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,7,0,0,0,0,0,5,6,6,6,6,6,6,6,6,1,1
 .BYTE 0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,5,6,6,6,6,6,6,6,6,7,0,0,0,5,6,6,6,6,6,6,6,6,6,1,1
 .BYTE 1,1
 .BYTE 1,1

;
; The game's character tiles (used to draw the map).
;
CHARDATA

 .BYTE %11111111 ; Sky
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111
 .BYTE %11111111

 .BYTE %01010101 ; Brick

465

 .BYTE %01000000
 .BYTE %01000000
 .BYTE %01000000
 .BYTE %01010101
 .BYTE %00000001
 .BYTE %00000001
 .BYTE %00000001

 .BYTE %11111100 ; Cloud left
 .BYTE %11000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %11000000
 .BYTE %11111100

 .BYTE %00000000 ; Cloud middle
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

 .BYTE %00111111 ; Cloud right
 .BYTE %00000011
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000011
 .BYTE %00111111

 .BYTE %11111100 ; Hills left
 .BYTE %11111100
 .BYTE %11110001
 .BYTE %11110000
 .BYTE %11000100
 .BYTE %11000000
 .BYTE %00010000
 .BYTE %00000001

 .BYTE %00000000 ; Hills middle
 .BYTE %00010000
 .BYTE %00000000
 .BYTE %01000000
 .BYTE %00000100
 .BYTE %00000000
 .BYTE %01000000
 .BYTE %00000001

 .BYTE %00111111 ; Hills right
 .BYTE %00111111
 .BYTE %00001111
 .BYTE %01001111
 .BYTE %00000011
 .BYTE %00010011
 .BYTE %00000000
 .BYTE %01000100

 .BYTE %00000000 ; Unused
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

466

The CHARDATA for the game tiles. This is copied into the first
10 entries in character memory on startup.

There is no connection between tiles and their colors. Color
memory is separate from screen memory, and each tile could
in theory be drawn in a variety of colors. For our demo,
however, each tile only needs one particular set of colors.
Rather than have an entire map just for colors, we can make a
small lookup table to find the color memory value for each
game tile. COLORDATA is exactly such a lookup table.

COLORDATA contains the color memory value for each game
tile.

The last portion of data needed for the program is the data
for the Pomeranian sprite the player can control on the screen.
As mentioned earlier in the book, sprites are 12 pixels by 21

 .BYTE %00000000
 .BYTE %00000000

 .BYTE %00000000 ; Unused
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000
 .BYTE %00000000

;
; The color date to copy for each tile type.
;
COLORDATA

 .BYTE $00 ; Sky (no colors)
 .BYTE $09 ; Brick (black and brown)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $F1 ; Clouds (gray and white)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $D5 ; Hills (light green and green)
 .BYTE $00 ; Unused
 .BYTE $00 ; Unused

467

pixels in size and have a layout very similar to C64 multicolor
sprites. Each sprite fits in 63 bytes with one blank byte
rounding up to an even 64 bytes.

For the demo we have a total of four sprites, two of the
Pomeranian walking forward to the right and two of the
Pomeranian walking backward to the left. This is a total of 256
bytes, all of which are copied to video memory and used as
sprite graphics during the game. The actual copying is done by
the MAIN routine with the sprite registers being updated on
each call to DRAWSPRT.

;
; The sprite data for the Pomeranian sprite on the screen.
;
SPRITEDATA

 .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 0
 .BYTE %00010000,%00001101,%11110000
 .BYTE %00010000,%00001101,%01111111
 .BYTE %01010100,%00000101,%01010000
 .BYTE %01010100,%00110101,%01110000
 .BYTE %01010100,%10110101,%01010101
 .BYTE %01010100,%10111001,%01010111
 .BYTE %01010111,%10101110,%01010100
 .BYTE %01010111,%10101110,%01010000
 .BYTE %01010111,%10101110,%10100000
 .BYTE %00010110,%11101110,%10100000
 .BYTE %00011010,%11101110,%10100000
 .BYTE %00001010,%11101110,%10000000
 .BYTE %00001010,%10111010,%10000000
 .BYTE %00010110,%10111001,%01010000
 .BYTE %00010101,%01000001,%01010000
 .BYTE %01010101,%00000000,%01010000
 .BYTE %01010000,%00000000,%01010000
 .BYTE %01010000,%00000000,%01010000
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00000000

 .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 1
 .BYTE %00010000,%00001101,%11110000
 .BYTE %00010000,%00001101,%01111111
 .BYTE %01010100,%00000101,%01010000
 .BYTE %01010100,%00110101,%01110000
 .BYTE %01010100,%10110101,%01010101
 .BYTE %01010100,%10111001,%01010111
 .BYTE %01010111,%10101110,%01010100
 .BYTE %01010111,%10101110,%01010000
 .BYTE %01010111,%10101110,%10100000
 .BYTE %00010110,%11101110,%10100000
 .BYTE %00011010,%11101110,%10100000
 .BYTE %00001010,%11101110,%10000000
 .BYTE %00001010,%10111010,%10000000

468

SPRITEDATA consists of four sprite graphics, two of a
Pomeranian walking to the right and two of a Pomeranian
walking to the left.

The program ends with some lookup table used as part of
double-buffering. We have two different screen/color memory

 .BYTE %00000110,%10111001,%01000000
 .BYTE %00010101,%01000001,%01000000
 .BYTE %00010101,%00000101,%00000000
 .BYTE %00000101,%00000101,%00000000
 .BYTE %00010101,%00000101,%00000000
 .BYTE %01010100,%00000001,%01000000
 .BYTE %01010000,%00000001,%01000000
 .BYTE %00000000

 .BYTE %00000001,%01000000,%00000000 ; Pomeranian reverse 0
 .BYTE %00001111,%01110000,%00000100
 .BYTE %11111101,%01110000,%00000100
 .BYTE %00000101,%01010000,%00010101
 .BYTE %00001101,%01011100,%00010101
 .BYTE %01010101,%01011110,%00010101
 .BYTE %11010101,%01101110,%00010101
 .BYTE %00010101,%10111010,%11010101
 .BYTE %00000101,%10111010,%11010101
 .BYTE %00001010,%10111010,%11010101
 .BYTE %00001010,%10111011,%10010100
 .BYTE %00001010,%10111011,%10100100
 .BYTE %00000010,%10111011,%10100000
 .BYTE %00000010,%10101110,%10100000
 .BYTE %00000101,%01101110,%10010100
 .BYTE %00000101,%01000001,%01010100
 .BYTE %00000101,%00000000,%01010101
 .BYTE %00000101,%00000000,%00000101
 .BYTE %00000101,%00000000,%00000101
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00010100,%00000000,%00010100
 .BYTE %00000000

 .BYTE %00000001,%01000000,%00000000 ; Pomeranian reverse 1
 .BYTE %00001111,%01110000,%00000100
 .BYTE %11111101,%01110000,%00000100
 .BYTE %00000101,%01010000,%00010101
 .BYTE %00001101,%01011100,%00010101
 .BYTE %01010101,%01011110,%00010101
 .BYTE %11010101,%01101110,%00010101
 .BYTE %00010101,%10111010,%11010101
 .BYTE %00000101,%10111010,%11010101
 .BYTE %00001010,%10111010,%11010101
 .BYTE %00001010,%10111011,%10010100
 .BYTE %00001010,%10111011,%10100100
 .BYTE %00000010,%10111011,%10100000
 .BYTE %00000010,%10101110,%10100000
 .BYTE %00000001,%01101110,%10010000
 .BYTE %00000001,%01000001,%01010100
 .BYTE %00000000,%01010000,%01010100
 .BYTE %00000000,%01010000,%01010000
 .BYTE %00000000,%01010000,%01010100
 .BYTE %00000001,%01000000,%00010101
 .BYTE %00000001,%01000000,%00000101
 .BYTE %00000000

469

buffers that need to be swapped in and out. To make it easy to
do that, lookup tables contain the base addresses of each
along with the corresponding register values needed to update
them. When swapping, we can just read a value in the table
corresponding to the BUFFLAG variable.

Lookup tables used to simplify double-buffering operations.

The program itself ends as our CodySID music player
example. We have a LAST label used to calculate the end
address of the program. This is followed by an assembler
directive closing the one our program started with.

;
; Lookup tables for screen and color memory locations. Used to quickly
; switch between the double buffer during an update.
;
SCRRAMS_L

 .BYTE <SCRRAM1
 .BYTE <SCRRAM2

SCRRAMS_H

 .BYTE >SCRRAM1
 .BYTE >SCRRAM2

COLRAMS_L

 .BYTE <COLRAM1
 .BYTE <COLRAM2

COLRAMS_H

 .BYTE >COLRAM1
 .BYTE >COLRAM2

BASEREGS

 .BYTE $05
 .BYTE $15

COLREGS

 .BYTE $20
 .BYTE $30

470

The same boilerplate at the end of the program.

BUILDING AND RUNNING CODY BROS.

You build and run the demo the same way as you did the
CodySID music player. First you'll need to run the code
through the 64tass assembler on your PC. Just run 64tass --
mw65c02 --nostart -o codybros.bin codybros.asm and check
the output:

Building the codybros demo using the 64tass assembler.

Once you have the binary, you run LOAD 1,1 on the Cody
Computer and send the file over a serial link. The program will
start up automatically. To use the program you'll need to have
an Atari-compatible joystick to plug into joystick port 1.
Moving the joystick left and right will move the player on the

LAST ; End of the entire program

.ENDLOGICAL

% 64tass --mw65c02 --nostart -o codybros.bin codybros.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file: codybros.asm
Output file: codybros.bin
Data: 2448 $0000-$098f $0990
Passes: 2

471

screen, moving the joystick up runs the "bark" animation, and
moving the joystick down changes the sprite color. To return to
Cody BASIC just press the fire button.

If you don't have an Atari-compatible joystick available,
cheap ones are available online or at many retro electronics or
video game stores in larger cities. The design is quite simple,
so you can even find plans online to make your own: Unlike
Nintendo controllers that required at least some logic chips, an
Atari joystick is literally just switches wired to a connector.

If all else fails, you can also change the program to accept
keyboard input rather than joystick input. In the main loop
where the joystick row is read, change the row to one of the
rows on the keyboard matrix, then check for pressed keys
instead of pressed switches on the joystick. Look up the keys
you would need to press for that row and use those for the
controls instead. (You'll need the keyboard schematic and
perhaps the CodySID or input-output examples to help you in
doing that.)

472

A Pomeranian sprite moving around in a very Mario-like or
Giana-like game world. You can use something like this as a
starting point for a full game.

473

INTRODUCTION

The Cody Computer also supports cartridges that can be
plugged into the expansion port. If a cartridge is detected, a
binary program from the cartridge is loaded into memory and
executed instead of booting to Cody BASIC. The program is
contained inside the cartridge with a memory chip that
supports the Serial Peripheral Interface (SPI) protocol, and
certain pins on the expansion port are repurposed to
implement SPI.

Cartridges are not necessary to use the Cody Computer.
Assembly language programs can be loaded over a serial port
just like Cody BASIC programs. Even if you plan not to use
cartridges, examples in this chapter may be helpful if you plan
to implement the SPI protocol with the Cody Computer.

SPI is probably the simplest data transfer protocol in
common use. It's a three-wire protocol often used to
communicate between microcontrollers and their peripherals.
One line transmits data, one line receives data, and one line
acts as a clock. A fourth line not involved in the actual
communication acts as a chip select, telling a chip when an SPI
data transaction is about to begin.

An SPI transaction begins by bringing the SPI chip select
low. From there, data is clocked out on the output pin while
data is read from the input pin, using the SPI clock pin for the
clock signal. One or more bytes are transferred in this way.
Often a command of some kind is clocked out first, with

475

subsequent clocks used to read in the result of the command.
The exact behavior depends on the device itself.

There are actually four different SPI modes. Each mode can
differ based on the SPI clock signal's polarity, either being
idle-high or idle-low. Each mode can also differ based on the
clock phase when data is transmitted or received. This is one of
the reasons it's preferable to bit-bang the SPI protocol using
the 65C22's general-purpose I/O pins rather than relying on
a limited subset of modes that can be supported by the built-
in shift register.

The Cody Computer's cartridges are built around the SPI
protocol with some extra modifications to support cartridge
detection and size determination. The 65C22's CA1 and CA2
handshaking pins on expansion port pins 13 and 14 are used as
a cartridge detect. If a cartridge is detected, expansion port pin
8 is used to read if the cartridge is 64K or smaller (0) or larger
(1) based on the cartridge's configuration.

Once set up to read from a cartridge, expansion port pin 12
is connected to the SPI clock, pin 11 is connected to the SPI
master output/slave input, pin 10 is connected to the master
input/slave output, and pin 9 is connected to the SPI chip
select. This pin configuration is used to implement the SPI
protocol and load the program.

CARTRIDGE DESIGN

The Cody Computer cartridge is a relatively simple design,
consisting at heart of an SPI EEPROM, a decoupling capacitor,
and a connector to plug into the Cody Computer. It's really no

476

more than a standardized pinout to interface an SPI EEPROM
into the system's expansion port.

Schematic of the Cody Cartridge. Note that depending on
assembly choices, the board can be either a programmer or
just a cartridge.

The cartridge's interface is a 20-pin male header that
connects to the female socket on the Cody Computer's
expansion port. Most of the pins are unused, but several are in
use and directly wired to pins on the SPI EEPROM. These are
the SPI clock, MISO (master-in-slave-out), MOSI (master-out-
slave-in), and inverted chip select.

Some other pins are used to support the Cody Computer's
loading of cartridge data. Two pins are connected to each other
on the cartridge itself, making it possible for the Cody
Computer to detect a cartridge because the connection is
closed when a cartridge is seated. Another pin is used to tell

477

the Cody Computer whether the SPI EEPROM is a small
EEPROM (a low value indicates a size of 64 kilobytes or less)
or a large EEPROM (a high value indicates a size of over 64
kilobytes). This is necessary because the smaller EEPROMs
only accept a two-byte address while the larger ones require a
three-byte address in their SPI transmissions.

The standard Cody Computer cartridge design is interesting
in that it can be used to build either a cartridge or a
programmer for the SPI EEPROMs used in cartridges. Instead
of two versions of the board, there's just one version, but
different jumper connections can be used to configure it. For a
programmer, jumper wires can be replaced with pin headers
and jumpers/shunts, thereby letting the user change the
behavior just by moving the jumper blocks around.

For development purposes we'll start by building a board
for programming purposes. We'll cover building a board for a
normal cartridge later in the chapter, along with a walkthrough
of the mechanical assembly for the case.

CARTRIDGE PROGRAMMER ASSEMBLY

To build a cartridge's PCB as a programmer, header pins are
soldered into the board instead of using wires. Jumpers can be
used to toggle the different possibilities for the programmer's
setup. They can also be used for testing cartridges after
they're programmed. A socket is used to (more or less) easily
insert and remove the SPI EEPROMs being programmed.

This circuit is actually simple enough that you could build it
using point-to-point wiring on a protoboard, as long as the

478

protoboard will fit into the Cody Computer's expansion port
hole in the back. Prototypes of the cartridge were built in
exactly such a way during the Cody Computer's development.

A cartridge programmer PCB alongside its hand-wired
prototype on protoboard.

However, the rest of the chapter assumes that you have
printed circuit boards available.

INSTALLING THE EXPANSION CONNECTOR

The programmer, like the cartridges themselves, has a 20-
pin right angle .100" male connector. This matches up with the
female connector on the Cody Computer's expanson port when
the cartridge is connected.

479

For this step you'll need the following:

1 20-pin male .100" right-angle header pin

For this step you need to place the header pins into J1, then
solder the connector. It's very important that the headers go on
at a right angle so they will correctly line up with the
expansion port's socket.

Insert the header into J1. Ensure the pins are at a right-
angle to the board.
Solder the header to J1.

The board with the connector pins soldered at a right angle.

•

1.

2.

480

INSTALLING THE SOCKET AND CAPACITOR

Once the connector is soldered on, it's time to add an 8-pin
socket and decoupling capacitor for the SPI EEPROM. The
socket makes it easier to insert and remove the IC to be
programmed, while the decoupling capacitor serves the same
purpose as it does for ICs on the Cody Computer's main PCB.
You'll need the following:

1 8-pin DIP socket
1 0.1µF ceramic capacitor (KEMET C315C104K1R5TA or
equivalent)

For this step you need to solder the IC socket and the
capacitor. The IC socket should have a small notch or other
mark at the top, and it should align with the notch on the PCB's
silkscreen for the part. The decoupling capacitor is not
polarized and can be soldered in either direction.

Solder the capacitor to C1.
Solder the IC socket to U1.

•
•

1.
2.

481

The board with the socket and capacitor added. Note the mark
on the IC socket.

INSTALLING THE HEADERS

In this step we'll add some pin headers to the various
jumper positions on the board. This makes it possible to
reconfigure the cartridge programmer, whereas for an actual
cartridge you could just solder them with jumper wire. This
requires the following:

2 3-pin male .100" headers, vertical
1 2-pin male .100" header, vertical

•
•

482

Soldering the header pins is relatively straightforward:

Solder a 3-pin male header to JP1.
Solder a 3-pin male header to JP2.
Solder the 2-pin male header to JP3.

The board with the jumper headers added.

1.
2.
3.

483

INSERTING THE IC AND JUMPERS

Now we can add the EEPROM IC and jumpers. These steps
assume that a 128-kilobyte 25LC1024 SPI EEPROM is being
used, so the jumpers will be configured appropriately.

1 25LC1024 128-kilobyte SPI EEPROM or equivalent
(DIP-8)
3 2-pin jumpers/shunts (Harwin M7583-46 or
equivalent)

The IC must be carefully inserted without bending the pins.
Sliding the jumpers into position is often easier with a pair of
tweezers or forceps.

Place a jumper on JP1 connecting WR PROT and WP OFF.
Place a jumper on JP2 connecting CART SIZE and LARGE.
Place a jumper on JP3 connecting only one of the two
pins.
Insert the 25LC1024 into the socket so that the pin marks
align.

•

•

1.
2.
3.

4.

484

The programmer as configured to program a 25LC1024 SPI
EEPROM.

SPI PROGRAMMING IN BASIC

Now that you have a board set up to program a cartridge, it's
time to learn how to program it. In order to program the SPI
EEPROM you'll need to understand some of the key concepts
about SPI programming, but you'll also need to understand
how the 25LC21024 works when communicating over SPI. To
help with that, we'll write some simple Cody BASIC programs
before moving on to a more fully-featured programmer in
assembly language.

485

SIMPLE SPI COMMUNICATION

Whenever you're attempting to use SPI to communicate
with a device, it's a good idea to start with a simple example
and work from there. SPI has four different modes related to
clock edges, and on top of that, not every device is without its
own quirks. For our first example, we'll try to read an ID value
from the 25LC1024 built into the cartridge as it's a relatively
simple operation.

The following Cody BASIC program sends the 25LC1024 an
RDID command (decimal 171), which wakes up the chip and
reads its built-in ID. This is probably the easiest place to begin
with the chip, as the expected ID value is a known quantity
from the datasheet. Obtaining it from the chip will tell us that
our external hardware is correctly connected and that our
program is working as expected.

486

A program that reads the RDID from a 25LC1024 SPI EEPROM.

For this to work you'll need to have the cartridge connected
to the expansion port. It's a good idea to turn the Cody
Computer off, plug in the cartridge, and then power it on again.

10 REM READ EEPROM RDID
20 GOSUB 1000
30 O=171
40 FOR N=1 TO 5
50 GOSUB 2000
60 NEXT
70 GOSUB 3000
80 PRINT "RDID ID: ",I
90 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN

487

The expansion port is not intended to be hot-pluggable, and
connecting some pins before others could potentially cause
unexpected behavior or even damage.

When run, the program reads the RDID value from the
25LC1024 EEPROM and prints the received value:

Output from the program reporting the RDID value as 41
decimal.

A TEST PROGRAM

Now that we can talk to the EEPROM, we'll want to have
some data to send into it. Because we're also trying to use this
as an example of how cartridges work on the Cody Computer's
expansion port, we'll put together a small program to store in
the EEPROM's memory.

Below is a very short assembly language program that
prints a short message on the screen. For this example, all we
care about is that we can assemble this code into some data
we'll program into the EEPROM.

RUN
RDID ID: 41

READY.

;
; codycart.asm
;
; An example assembly language program for the Cody Computer. The program
; pokes the message "Cody!" into the default screen memory location after
; starting up, then loops forever.
;
; You can assemble the program with 64tass using the following command:

488

A simple assembly language program to store in an EEPROM.

You can assemble this program just like the ones the
previous chapter. Assembled into a binary file, the program is
only 26 bytes long. It can be represented as a sequence of 26
numbers (0, 48, 21, 48, 162, 0, 189, 16, 48, 240, 6, 157, 0, 196,
232, 128, 245, 76, 13, 48, 67, 111, 100, 121, 33, and 0). We'll rely
on this knowledge to program it into the EEPROM chip for our
example cartridge.

WRITING TO THE EEPROM

Now that you have a program to put into the EEPROM, you'll
need a way to actually write it. Another Cody BASIC program

;
; 64tass --mw65c02 --nostart -o codycart.bin codycart.asm
;

ADDR = $3000 ; The actual loading address of the program
SCRRAM = $C400 ; The default location of screen memory

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

;
; The actual program.
;

.LOGICAL ADDR ; The actual program gets loaded at ADDR

MAIN LDX #0 ; The program starts running from here

_LOOP LDA TEXT,X ; Copies TEXT into screen memory
 BEQ _DONE

 STA SCRRAM,X

 INX
 BRA _LOOP

_DONE JMP _DONE ; Loops forever

TEXT .NULL "Cody!" ; TEXT as a null-terminated string

LAST ; End of the entire program

.ENDLOGICAL

489

very similar to the previous one can do this. Again, it's only an
example, but it can write the values from DATA statements into
the EEPROM's memory over SPI.

There are some details that need to be covered for this to
work. In particular, the 25LC1024 is broken up into a sequence
of 256-byte pages. While this is good for the EEPROM
(because write cycles are limited to certain subsets of the
whole memory), it's less good for us. It means that we can't
just start at memory address 0 and count our way through as
we write to the chip. Instead, we have to stop our current write
transaction and begin a new one at the end of each page.

Another complication is that the chip itself can take some
time to write a byte. We don't need to worry about this in Cody
BASIC because our program runs so slow, but in a better
EEPROM writer, you would want to check the chip's internal
registers to ensure the write cycle had completed.

On the 25LC1024, writes require two steps. We first send the
WREN (write enable) command (decimal 6), followed by the
actual WRITE (decimal 2) with the starting address to write to.
We then just loop over our data until we reach the end, making
sure that we stop the current transaction and start over at the
end of each page.

10 REM WRITE EEPROM DATA
20 A=0
30 REM BEGIN NEW PAGE
40 GOSUB 1000
50 O=6
60 GOSUB 2000
70 GOSUB 3000
80 REM WRITE OPERATION

490

90 GOSUB 1000
100 O=2
110 GOSUB 2000
120 O=0
130 GOSUB 2000
140 O=A/256
150 GOSUB 2000
160 O=AND(A,255)
170 GOSUB 2000
180 READ N
190 IF N<0 THEN GOTO 260
200 O=N
210 GOSUB 2000
220 A=A+1
230 IF AND(A,255)>0 THEN GOTO 180
240 GOSUB 3000
250 GOTO 30
260 REM END OF DATA
270 GOSUB 3000
280 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8

491

A program that writes data into a 25LC1024 SPI EEPROM.

READING THE EEPROM

Now that we've programmed the cartridge we should verify
its contents. Fortunately we have another Cody BASIC program
that reads from the cartridge instead of writing to it. it's very
similar to the previous two SPI programs, particularly with
respect to the various subroutines used for the actual SPI
operations. Where it differs it that it's set up to run the READ
command (decimal 3), which reads the data stored in the
EEPROM. The READ operation is simpler as we only need to
provide the starting address (0 in our case) and then keep
reading data one byte at a time.

3020 RETURN
4000 REM DATA TO PROGRAM
4010 DATA 0,48,21,48,162,0,189,16
4020 DATA 48,240,6,157,0,196,232,128
4030 DATA 245,76,13,48,67,111,100,121
4040 DATA 33,0,-1

10 REM READ EEPROM DATA
20 A=0
30 GOSUB 1000
40 O=3
50 GOSUB 2000
60 FOR N=1 TO 3
70 O=0
80 GOSUB 2000
90 NEXT
100 FOR N=1 TO 16
110 GOSUB 2000

492

A program that reads the stored data from a 25LC1024 SPI
EEPROM.

If you run the program you should see the same numbers
that were in the DATA statements in the previous program:

120 PRINT A,TAB(10),I
130 A=A+1
140 NEXT
150 PRINT
160 PRINT "MORE (Y/N)";
170 INPUT S$
180 IF S$="Y" THEN GOTO 100
190 GOSUB 3000
200 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN

493

Reading the first bytes from the EEPROM.

BOOTING THE CARTRIDGE

Because the cartridge has been programmed, you can also
boot from it and run the program it contains. Turn off the Cody
Computer and reaffix jumper JP2 so that the cartridge
detection is enabled on the cartridge side. Then power the
Cody Computer back on.

If everything works as expected, the words "Cody" will
appear at the top of the screen. It's as simple as that.

When you're done, shut off the Cody Computer and
disconnect JP2, placing the header back on a single pin so that

RUN
0 0
1 48
2 21
3 48
4 162
5 0
6 189
7 16
8 48
9 240
10 6
11 157
12 0
13 196
14 232
15 128

MORE (Y/N)?

494

it doesn't get lost. This way the cartridge is ready to be
programmed next time.

A PROGRAM FOR PROGRAMMING

It would be possible to write a cartridge programmer in
Cody BASIC, but it would also run slower than you would
probably prefer. Like we talked about in earlier chapters, you
could write parts of your program in assembly language and
call them from BASIC to speed them up. But it's probably
better to just write a dedicated assembly language program in
this case, so in this section that's what we're going to do.

What will our program need to do? Once loaded, the user
must be able to send a binary file to the Cody Computer.
Because our serial communications don't have any checks on
them, we'll actually require the file to be sent twice. We can
verify the contents are the same on both transmissions before
proceeding. After that we'll want to program the SPI EEPROM
with the data, then read back from the SPI EEPROM to make
sure everything was copied over correctly.

We already know how to program SPI from the previous
section and the provided Cody BASIC examples. We also have
code in the Cody BASIC interpreter itself that can handle SPI
communications so that cartridges can be loaded. In the
chapter on assembly language, we wrote an assembly
language program that received a binary file over the UART, in
that case to play a SID file. So you've probably seen all the
parts, just not assembled in quite this way.

495

THE CODYPROG PROGRAM

Like our other assembly language programs, this one starts
out with a bunch of definitions that we get out of the way in a
hurry. Many of them, such as those for screen memory
addresses, 65C22 VIA addresses, and UART addresses, have
been used in other programs earlier in the book.

Some common definitions at the start of the program.

The zero page variables we use are very similar to those in
other programs. We also have some variables for a pointer, a
top pointer, and a length of the program we're going to burn
into the cartridge. Our SPI routines also need a couple of
temporary variables we'll define here.

ADDR = $0300 ; The actual loading address of the program

SCRRAM = $C400 ; Screen memory base address

UART1_BASE = $D480 ; Register addresses for UART 1
UART1_CNTL = UART1_BASE+0
UART1_CMND = UART1_BASE+1
UART1_STAT = UART1_BASE+2
UART1_RXHD = UART1_BASE+4
UART1_RXTL = UART1_BASE+5
UART1_TXHD = UART1_BASE+6
UART1_TXTL = UART1_BASE+7
UART1_RXBF = UART1_BASE+8
UART1_TXBF = UART1_BASE+16

VIA_BASE = $9F00 ; VIA base address and register locations
VIA_IORB = VIA_BASE+$0
VIA_IORA = VIA_BASE+$1
VIA_DDRB = VIA_BASE+$2
VIA_DDRA = VIA_BASE+$3
VIA_T1CL = VIA_BASE+$4
VIA_T1CH = VIA_BASE+$5
VIA_SR = VIA_BASE+$A
VIA_ACR = VIA_BASE+$B
VIA_PCR = VIA_BASE+$C
VIA_IFR = VIA_BASE+$D
VIA_IER = VIA_BASE+$E

STRPTR = $D0 ; Pointer to string (2 bytes)

496

Zero-page variables used by the program.

We also define the start of our buffer for the binary data at
$1000. Other new definitions include the pins we'll use to talk
to the SPI EEPROM inside the cartridge. The expansion port
pins we're interested in are wired to 65C22 VIA port B. These
constants define the bits that correspond to each pin in its
register.

Other constants required by the program.

Our code contains the same preamble as the other assembly
language programs:

SCRPTR = $D2 ; Pointer to screen (2 bytes)
PRGPTR = $D4 ; Pointer to the start of the program data
PRGTOP = $D6 ; Pointer to the end of the program data
PRGLEN = $D8 ; Length of the program in memory

KEYROW0 = $DA ; Keyboard row 0
KEYROW1 = $DB ; Keyboard row 1
KEYROW2 = $DC ; Keyboard row 2
KEYROW3 = $DD ; Keyboard row 3
KEYROW4 = $DE ; Keyboard row 4
KEYROW5 = $DF ; Keyboard row 5

SPIINP = $E0 ; SPI input byte
SPIOUT = $E1 ; SPI output byte

PRGMEM = $1000 ; Start of the program to burn into the EEPROM

CART_CLK = $01 ; Bit masks for 65C22 port B cartridge pins
CART_MOSI = $02
CART_MISO = $04
CART_CS = $08
CART_SIZE = $10

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1) ; Ending address (so we know when we're done loading)

; The actual program goes below here

497

The program's header containing the start and end addresses.

The MAIN routine is very similar to the CodySID program's
main routine. It has fewer things to do and less to initialize, but
the overall pattern is similar. We initialize some variables,
draw the screen, and then scan the keyboard for menu item
selections. If a menu item is selected, we branch to that
command and call the appropriate routine.

The actual start of the program.

The KEYSCAN routine is also very similar. Again, we don't
do any keyboard debouncing because for our particular use

.LOGICAL ADDR ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the programmer. Responsible for initialization, information display,
; and menu selection.
;
MAIN STZ PRGLEN ; Clear program length
 STZ PRGLEN+1

 JSR SHOWSCRN

_LOOP JSR KEYSCAN ; Scan the keyboard

 LDA KEYROW0 ; Pressed Q for quit?
 AND #%00001
 BNE _QUIT

 LDA KEYROW1 ; Pressed L for load?
 AND #%10000
 BNE _LOAD

 LDA KEYROW5 ; Pressed P for program?
 AND #%10000
 BNE _PROG

 BRA _LOOP ; Repeat main loop

_QUIT RTS ; Return to BASIC

_LOAD JSR CMDLOAD ; Run the load command
 BRA _LOOP

_PROG JSR CMDPROG ; Run the program command
 BRA _LOOP

498

case, we don't need it. For general-purpose input, however, it
would be a necessity.

The keyboard-scanning routine.

The menu commands are significantly simpler than in the
SID player, and nearly all of the operations are moved into
subroutines closer to the action. CMDLOAD loads and verifies
the binary file coming in over the serial link. CMDPROG
programs the SPI EEPROM and reads its data back for
verification.

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN PHA ; Preserve registers
 PHX

 STZ VIA_IORA ; Start at the first row and first key of the keyboard
 LDX #0

_LOOP LDA VIA_IORA ; Read the keys for the current row from the VIA port
 EOR #$FF
 LSR A
 LSR A
 LSR A
 STA KEYROW0,X

 INC VIA_IORA ; Move on to the next keyboard row
 INX

 CPX #6 ; Do we have any rows remaining to scan?
 BNE _LOOP

 PLX ; Restore registers
 PLA

 RTS

;
; CMDLOAD
;
; Implements the menu option to load a binary file over the UART connection.
;
CMDLOAD JSR SHOWSCRN ; Clear screen

 JSR UARTON ; Receive the binary file
 JSR LOADBIN
 JSR UARTOFF

499

Routines for the menu commands.

The LOADBIN routine is very similar to the SID player's
LOADDATA routine. It starts at the beginning of the memory
buffer and waits for input data. Once a byte has been received,
it enters a loop and continues to read bytes until a timeout is
exceeded. Under normal operations the timeout would indicate
the end of the incoming file.

 JSR SHOWSCRN ; Redraw screen with file length

 JSR UARTON ; Verify the binary file
 JSR VERIBIN
 JSR UARTOFF

 RTS ; All done

;
; CMDPROG
;
; Implements the menu option to program the SPI EEPROM on the cartridge.
;
CMDPROG JSR SHOWSCRN ; Clear screen

 JSR PROGCART ; Program the cartridge

 JSR VERICART ; Verify the cartridge contents

 RTS ; All done

;
; LOADBIN
;
; Loads a binary file into memory.
;
LOADBIN LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_WAITBINA ; Display message about waiting for data
 JSR SHOWSTAT

_READ1 JSR UARTGET ; Read the first byte
 BCC _READ1

 JSR _SAVE ; Save it to memory

 LDX #MSG_RECVDATA ; Display message about receiving data
 JSR SHOWSTAT

 LDX #$FF ; Timeout counter

_READ2 DEX ; Wait for byte with timeout

500

LOADBIN loads a binary file over the UART.

Similar to LOADBIN is the VERIBIN routine. This routine
verifies the content in the memory buffer is the same as the
content coming in over the UART. In this situation, instead of
storing each byte, we compare it with the matching byte we
already have to make sure they're equal. Once we've come to
the end of the file, we also have to make sure we read the same
number of bytes both times.

 BEQ _DONE

 JSR UARTGET
 BCC _READ2

 JSR _SAVE ; Save data

 LDX #$FF ; Reset counter
 BRA _READ2

_DONE SEC ; Calculate program length

 LDA PRGPTR+0
 SBC #<PRGMEM
 STA PRGLEN+0

 LDA PRGPTR+1
 SBC #>PRGMEM
 STA PRGLEN+1

 LDA PRGPTR+0 ; Update end of program
 STA PRGTOP+0

 LDA PRGPTR+1
 STA PRGTOP+1

 RTS

_SAVE STA (PRGPTR) ; Store data

 INC PRGPTR+0 ; Increment address
 BNE _NEXT
 INC PRGPTR+1

_NEXT RTS

;
; VERIBIN
;
; Verifies the binary file in memory.
;
VERIBIN LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM

501

The VERIBIN routine verifies the program in memory.

Once the program has been loaded the remaining task is to
write the program into the EEPROM. The PROGCART routine

 STA PRGPTR+1

 LDX #MSG_WAITREPE ; Display message about waiting for data
 JSR SHOWSTAT

_READ1 JSR UARTGET ; Read the first byte
 BCC _READ1

 JSR _VERIFY ; Check the byte against the memory
 BNE _FAILED

 LDX #MSG_VERIDATA ; Display message about verifying data
 JSR SHOWSTAT

 LDX #$FF ; Timeout counter

_READ2 DEX ; Wait for byte with timeout
 BEQ _DONE
 JSR UARTGET
 BCC _READ2

 LDX #$FF ; Reset counter

 JSR _VERIFY ; Check the byte
 BNE _FAILED

 BRA _READ2

_DONE LDA PRGPTR+0 ; Verify program length was the same
 CMP PRGTOP+0
 BNE _FAILED

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _FAILED

 LDX #MSG_VERIFYOK ; Update status message
 JSR SHOWSTAT

 RTS

_VERIFY CMP (PRGPTR) ; Compare bytes
 PHP

 INC PRGPTR+0 ; Increment address
 BNE _NEXT
 INC PRGPTR+1

_NEXT PLP ; Restore flags and return
 RTS

_FAILED STZ PRGLEN+0 ; Clear program length (bad file?)
 STZ PRGLEN+1

 LDX #MSG_VERIFYBAD ; Update status message
 JSR SHOWSTAT

 RTS ; All done

502

takes care of this, and it's actually somewhat complicated. It
has to send the instructions to enable writing to the EEPROM,
then begin a second SPI transaction with the actual data and its
start address in the EEPROM.

There are some complications here. One is that cartridges
can either be small (64 kilobytes or less) or large (greater
than 64 kilobytes). Small cartridges only need two bytes for
an address but large cartridges use three bytes. We check the
size pin on the expansion port to see what kind of cartridge the
programmer is set up for.

Another complication comes from a limitation in the SPI
EEPROM's writing protocol. Because of the EEPROM's design,
we have to start a new write transaction on each 256-byte
page. Because our memory buffer is page-aligned, every time
we wrap to another page, we also close the current write
transaction and begin a new one. Between them we must wait
for the EEPROM to finish writing our data, so we poll the
EEPROM's status register in between.

;
; PROGCART
;
; Writes the program in memory to the SPI EEPROM on the cartridge.
;
PROGCART LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_PROGDATA ; Display message about programming data
 JSR SHOWSTAT

 JSR _BEGIN ; Begin initial SPI transaction

_LOOP LDA PRGPTR+0 ; Ensure we're not at the top of the data
 CMP PRGTOP+0
 BNE _CONT

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _CONT

503

PROGCART handles SPI EEPROM programming at a high level.

 JSR _END ; Done programming

 LDX #MSG_CLEAR ; Clear status message
 JSR SHOWSTAT

 RTS

_CONT LDA (PRGPTR) ; Send the next byte to the cartridge
 JSR CARTXFER

 INC PRGPTR+0 ; Increment address
 BNE _LOOP
 INC PRGPTR+1

 JSR _END ; New page, need to start new transaction
 JSR _BEGIN

 BRA _LOOP

_BEGIN JSR CARTON ; Begin SPI transaction for write enable

 LDA #6 ; Write enable command
 JSR CARTXFER

 JSR CARTOFF ; End SPI transction for write enable

 JSR CARTON ; Begin SPI transaction for writing data

 LDA #2 ; Write starting address command
 JSR CARTXFER

 JSR CARTSIZE ; Check cartridge size
 BEQ _ADDR

 LDA #0 ; Write address highest byte, greater than 64K only
 JSR CARTXFER

_ADDR SEC ; Write address high byte
 LDA PRGPTR+1
 SBC #>PRGMEM
 JSR CARTXFER

 LDA #0 ; Write address low byte
 JSR CARTXFER

 RTS

_END JSR CARTOFF ; End previous transaction

 JSR CARTON ; New transaction to read status register

_WAIT LDA #5 ; Read status register command
 JSR CARTXFER

 LDA #0 ; Read the status register
 JSR CARTXFER

 AND #$01 ; Wait until previous write is completed
 BNE _WAIT

 JSR CARTOFF ; End transaction and return

 RTS

504

We also want to make sure there weren't any glitches when
we wrote to the EEPROM, so when we're done, we use the
VERICART routine to check it. A simpler form of the
PROGCART routine, it reads the data back from the EEPROM
and compares each byte to the contents in the memory buffer.

;
; VERICART
;
; Reads the SPI EEPROM and compares it to the program in memory.
;
VERICART LDA #<PRGMEM ; Move to beginning of memory
 STA PRGPTR+0

 LDA #>PRGMEM
 STA PRGPTR+1

 LDX #MSG_VERIDATA ; Display message about verifying data
 JSR SHOWSTAT

 JSR CARTON ; Begin initial SPI transaction

 LDA #3 ; Read command
 JSR CARTXFER

 JSR CARTSIZE ; Check cartridge size
 BEQ _ADDR

 LDA #0 ; Read address highest byte, greater than 64K only
 JSR CARTXFER

_ADDR LDA #0 ; Read address high byte
 JSR CARTXFER

 LDA #0 ; Write address low byte
 JSR CARTXFER

_LOOP LDA PRGPTR+0 ; Ensure we're not at the top of the data
 CMP PRGTOP+0
 BNE _CONT

 LDA PRGPTR+1
 CMP PRGTOP+1
 BNE _CONT

 JSR CARTOFF ; Done reading

 LDX #MSG_VERIFYOK ; Verify passed
 JSR SHOWSTAT

 RTS

_CONT LDA #0 ; Read the next byte from the cartridge
 JSR CARTXFER

 CMP (PRGPTR) ; Compare the bytes to verify
 BNE _FAILED

 INC PRGPTR+0 ; Increment address

505

The VERICART routine checks the program contents against
the EEPROM.

While loading data or programming cartridges, we want to
update the current status message on the screen. The
SHOWSTAT routine lets us redraw just that part of the screen
without affecting anything else.

A simple routine to display a status message by number.

A larger routine, SHOWSCRN clears the entire screen and
draws the menu. This is performed far less frequently, only at
startup and at particular stopping points in the program.

 BNE _LOOP
 INC PRGPTR+1
 BRA _LOOP

_FAILED JSR CARTOFF ; Turn off SPI

 LDX #MSG_VERIFYBAD ; Display verification failed message
 JSR SHOWSTAT

 RTS

;
; SHOWSTAT
;
; Shows a message in the status bar at the bottom of the screen.
; The message number should be in the X register.
;
SHOWSTAT PHX ; Preserve message number

 LDX #0 ; Clear status bar
 LDY #11
 JSR MOVESCRN

 LDX #MSG_CLEAR
 JSR PUTMSG

 LDX #0 ; Print message
 LDY #11
 JSR MOVESCRN

 PLX
 JSR PUTMSG

 RTS

;

506

A rather long SHOWSCRN draws most of the user interface.

; SHOWSCRN
;
; Shows the main screen.
;
SHOWSCRN JSR CLRSCRN

 LDX #0
 LDY #0
 JSR MOVESCRN

 LDX #MSG_CODYPROG
 JSR PUTMSG

 LDX #0
 LDY #1
 JSR MOVESCRN

 LDX #MSG_SUBTITLE
 JSR PUTMSG

 LDX #0
 LDY #3
 JSR MOVESCRN

 LDX #MSG_LENGTH
 JSR PUTMSG

 LDX #9
 LDY #3
 JSR MOVESCRN

 LDA PRGLEN+1
 JSR PUTHEX

 LDX #11
 LDY #3
 JSR MOVESCRN

 LDA PRGLEN+0
 JSR PUTHEX

 LDX #0
 LDY #5
 JSR MOVESCRN

 LDX #MSG_LOADMENU
 JSR PUTMSG

 LDX #0
 LDY #6
 JSR MOVESCRN

 LDX #MSG_PROGMENU
 JSR PUTMSG

 LDX #0
 LDY #7
 JSR MOVESCRN

 LDX #MSG_QUITMENU
 JSR PUTMSG

 RTS

507

The underyling UART routines for loading binary files are
identical to those in the SID player example in the previous
chapter. The UARTON routine is called before beginning a
UART operation.

UARTON turns on UART 1.

Its companion routine, UARTOFF, turns off the UART at the
end of a read operation.

;
; UARTON
;
; Turns on UART 1.
;
UARTON PHA
 PHY

_INIT STZ UART1_RXTL ; Clear out buffer registers
 STZ UART1_TXHD

 LDA #$0F ; Set baud rate to 19200
 STA UART1_CNTL

 LDA #01 ; Enable UART
 STA UART1_CMND

_WAIT LDA UART1_STAT ; Wait for UART to start up
 AND #$40
 BEQ _WAIT

 PLY
 PLA

 RTS ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF PHA

 STZ UART1_CMND ; Clear bit to stop UART

_WAIT LDA UART1_STAT ; Wait for UART to stop
 AND #$40
 BNE _WAIT

 PLA

508

UARTOFF shuts off UART 1.

Reading from the UART is handled by the UARTGET routine.
It checks to see if a byte is in the receive buffer. If not, it fails
fast, but if there is, it reads the byte and returns it in the
accumulator. The carry flag is used to indicate if a byte was
read.

UARTGET polls the UART and returns a byte if available.

SPI routines are contained in the various CART routines that
talk to the cartridge on the expansion port. Because of the

 RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET PHY

 LDA UART1_STAT ; Test no error bits set in the status register
 BIT #$06
 BNE _ERR

 LDA UART1_RXTL ; Compare current tail to current head position
 CMP UART1_RXHD
 BEQ _EMPTY

 TAY ; Read the next character from the buffer
 LDA UART1_RXBF,Y

 PHA ; Increment the receiver tail position
 INY
 TYA
 AND #$07
 STA UART1_RXTL
 PLA

 PLY
 SEC ; Set carry to indicate a character was read
 RTS

_EMPTY PLY
 CLC ; Clear carry to indicate no character read
 RTS

_ERR LDX #MSG_ERROR ; UART error, display error status message
 JSR SHOWSTAT

_DONE JMP _DONE

509

simple nature of the SPI protocol, these routines are the same
as those used to read a cartridge in Cody BASIC. We just use
them differently.

The only new routine is the CARTSIZE routine that tests
whether the cartridge is small or large. It does so by examining
the value of the matching I/O pin.

A simple routine to check a cartridge's size before writing.

The CARTON routine begins an SPI transaction by setting
the appropriate pins on the expansion port. Most importantly,
it brings the SPI chip select pin from high to low to initiate the
transaction itself.

;
; CARTSIZE
;
; Checks the cartridge size as small (64K or less) or large (greater than 64K).
; Cartridges greater than 64K require an additional address byte.
;
CARTSIZE LDA VIA_IORB
 AND #CART_SIZE

 RTS

;
; CARTON
;
; Starts an SPI transation on the cartridge pins for the expansion port. The proper
; directions for 65C22 port B are set, outputs are set, and then the chip select is
; brought low.
;
; Calls to CARTON should be matched by a call to CARTOFF. The presence of a cartridge
; should be verified by a prior call to CARTCHECK.
;
CARTON LDA #(CART_CLK | CART_MOSI | CART_CS) ; Set port B directions
 STA VIA_DDRB

 LDA #CART_CS ; Start with SPI select high
 STA VIA_IORB

 LDA #0 ; Bring select low to begin a cycle
 STA VIA_IORB

510

CARTON begins an SPI transaction.

CARTOFF brings the SPI chip select high to end the current
transaction.

CARTOFF ends the current SPI transaction.

The CARTXFER routine is more complicated and handles the
actual exchange of data. A byte is shifted out over the SPI pins
while another byte is shifted in at the same time. Rather than
use the 65C22 VIA's shift register (which has complications
that we won't cover here), we bit-bang the port directly. SPI
data is sent with the highest bit first, so we shift ot the left and
look at our carry bits.

 RTS

;
; CARTOFF
;
; Brings the chip select high at the end of an SPI transaction with a cartridge.
;
CARTOFF LDA #CART_CS ; Bring select high to end the transaction
 STA VIA_IORB

 RTS

;
; CARTXFER
;
; Transfers a single byte during an SPI transaction with a cartridge. The value
; to send should be stored in the accumulator, and it will be replaced by the
; value received.
;
CARTXFER PHX

 STA SPIOUT

 STZ SPIINP

 LDX #8 ; 8 bits to read

_LOOP STZ VIA_IORB ; Bring the clock low

 LDA #0 ; Start with no data

 ROL SPIOUT ; Get output bit

511

The CARTXFER sends and receives a single SPI byte.

The other routines are copied verbatim from earlier
examples. MOVESCRN moves the current screen pointer to a
particular row and column.

 BCC _SEND

 ORA #CART_MOSI ; Output bit was a 1

_SEND STA VIA_IORB ; Put the bit on MOSI

 ORA #CART_CLK ; Bring the SPI clock high
 STA VIA_IORB

 ROL SPIINP ; Rotate SPI input for next bit

 LDA VIA_IORB ; Read the incoming MISO
 AND #CART_MISO

 BEQ _NEXT

 LDA SPIINP
 ORA #1
 STA SPIINP

_NEXT DEX ; Next loop (if any remain)
 BNE _LOOP

 PLX

 LDA SPIINP

 RTS

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 INY ; Increment pointer for each row
_LOOPY CLC
 LDA SCRPTR+0
 ADC #40
 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1
 DEY
 BNE _LOOPY

 CLC ; Add position on column
 TXA
 ADC SCRPTR+0

512

A routine to position the next output on the screen.

Another routine you've seen before, CLRSCRN, clears the
entire screen by filling it with whitespace.

The screen-clearing routine.

The PUTMSG routine puts a string identified by a message
number onto the screen starting at the current location.

 STA SCRPTR+0
 LDA SCRPTR+1
 ADC #0
 STA SCRPTR+1

 RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN LDA #<SCRRAM ; Move screen pointer to beginning
 STA SCRPTR+0
 LDA #>SCRRAM
 STA SCRPTR+1

 LDA #20 ; Clear screen by filling with whitespaces

 LDY #25 ; Loop 25 times on Y

_LOOPY LDX #40 ; Loop 40 times on X for each Y

_LOOPX STA (SCRPTR) ; Store zero

 INC SCRPTR+0 ; Increment screen position
 BNE _NEXT
 INC SCRPTR+1

_NEXT DEX ; Next X
 BNE _LOOPX

 DEY ; Next Y
 BNE _LOOPY

 RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG PHA
 PHY

513

PUTMSG prints a message on the screen.

The PUTCHR routine is used internally to copy each
individual character in the message.

PUTCHR plots the individual characters.

The PUTHEX routine plots the byte in the accumulator as
two hex digits. In the SID player this routine was used a lot to
show the current register values. In this program we only need
it to display the program's length as a hex value for sanity
checking.

 LDA MSGS_L,X ; Load the pointer for the string to print
 STA STRPTR+0
 LDA MSGS_H,X
 STA STRPTR+1

 LDY #0

_LOOP LDA (STRPTR),Y ; Read the next character (check for null)
 BEQ _DONE

 JSR PUTCHR ; Copy the character and move to next
 INY

 BRA _LOOP ; Next loop

_DONE PLY
 PLA

 RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR STA (SCRPTR) ; Copy the character

 INC SCRPTR+0 ; Increment screen position
 BNE _DONE
 INC SCRPTR+1

_DONE RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;

514

PUTHEX prints a byte as two hex digits.

The message table in this program is different, so our
constants below are different.

The constants for the messages in the string table.

The actual string contents of the messages, of course, are
also different. The text relates to the menu options and status

PUTHEX PHA
 PHX
 TAX
 JSR HEXTOASCII
 PHA
 TXA
 LSR A
 LSR A
 LSR A
 LSR A
 JSR HEXTOASCII
 PHA
 PLA
 JSR PUTCHR
 PLA
 JSR PUTCHR
 PLX
 PLA
 RTS
HEXTOASCII AND #$F
 CLC
 ADC #48
 CMP #58
 BCC _DONE
 ADC #6
_DONE RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYPROG = 0
MSG_SUBTITLE = 1
MSG_LOADMENU = 2
MSG_PROGMENU = 3
MSG_QUITMENU = 4
MSG_WAITBINA = 5
MSG_WAITREPE = 6
MSG_RECVDATA = 7
MSG_PROGDATA = 8
MSG_VERIDATA = 9
MSG_VERIFYOK = 10
MSG_VERIFYBAD = 11
MSG_LENGTH = 12
MSG_CLEAR = 13
MSG_ERROR = 14

515

updates involved in programming the SPI EEPROM in the
cartridge.

The string literals for the program's messages.

The message table consists of the string addresses split into
low and high bytes. As in the other programs, this allows a
quick lookup of the string using an index.

;
; The strings displayed by the program.
;
STR_CODYPROG .NULL "CodyProg"
STR_SUBTITLE .NULL "The Cody Cartridge Programmer"
STR_LOADMENU .NULL "(L)oad binary"
STR_PROGMENU .NULL "(P)rogram cartridge"
STR_QUITMENU .NULL "(Q)uit"
STR_WAITBINA .NULL "Waiting for binary data..."
STR_WAITREPE .NULL "Waiting for repeat data to verify..."
STR_RECVDATA .NULL "Receiving data..."
STR_PROGDATA .NULL "Programming data..."
STR_VERIDATA .NULL "Verifying data..."
STR_VERIFYOK .NULL "Verify OK."
STR_VERIFYBAD .NULL "Verify FAILED."
STR_LENGTH .NULL "Length: $"
STR_CLEAR .NULL " "
STR_ERROR .NULL "ERROR"

;
; Low bytes of the string table addresses.
;
MSGS_L
 .BYTE <STR_CODYPROG
 .BYTE <STR_SUBTITLE
 .BYTE <STR_LOADMENU
 .BYTE <STR_PROGMENU
 .BYTE <STR_QUITMENU
 .BYTE <STR_WAITBINA
 .BYTE <STR_WAITREPE
 .BYTE <STR_RECVDATA
 .BYTE <STR_PROGDATA
 .BYTE <STR_VERIDATA
 .BYTE <STR_VERIFYOK
 .BYTE <STR_VERIFYBAD
 .BYTE <STR_LENGTH
 .BYTE <STR_CLEAR
 .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
 .BYTE >STR_CODYPROG
 .BYTE >STR_SUBTITLE
 .BYTE >STR_LOADMENU
 .BYTE >STR_PROGMENU

516

The low and high portions of the strings' addresses.

The program ends with the same boilerplate as the others.

The end of the program.

USING THE PROGRAMMER

Build the programmer utility by running it through 64tass
assembler on your PC. Just run 64tass --mw65c02 --nostart -
o codyprog.bin codyprog.asm. These are the same steps as in
the previous chapter for assembly language programs.

Once you've done that, turn off the Cody Computer and
plug the cartridge programmer into the expansion slot. Turn
the Cody Computer back on and load the programmer utility
using the LOAD 1,1 command. Remember that the second
argument is also a 1 because the program is a binary and not a
BASIC program.

Once loaded we can begin programming a cartridge. Press
the L key to load a binary to the programmer, then send the
codybros.bin binary file you built in the previous chapter. You

 .BYTE >STR_QUITMENU
 .BYTE >STR_WAITBINA
 .BYTE >STR_WAITREPE
 .BYTE >STR_RECVDATA
 .BYTE >STR_PROGDATA
 .BYTE >STR_VERIDATA
 .BYTE >STR_VERIFYOK
 .BYTE >STR_VERIFYBAD
 .BYTE >STR_LENGTH
 .BYTE >STR_CLEAR
 .BYTE >STR_ERROR

LAST ; End of the entire program

.ENDLOGICAL

517

will actually be prompted for the file twice, first for the load
and the second time to verify the contents are identical.

The programmer program running and waiting for a binary
file.

Once the binary is verified, press the P key to program the
cartridge. This will begin the programming of the SPI EEPROM
inserted into the DIP socket on the programmer board. It will
take a few moments and then read the contents back to verify
that no errors occurred while programming.

Once done you can test out the cartridge. Turn off the Cody
Computer and reconnect JP2, the cartridge detect, on the
cartridge programmer board. Turn the Cody Computer back on
and watch the program load from the cartridge.

518

The Cody Bros example from the previous chapter now
running as a cartridge.

CARTRIDGE CASE ASSEMBLY

Cartridges, particularly the more permanent kind, can be
built into a case. STL files are provided for a case that will fit
the cartridge PCB. Assembly is relatively straightforward.

When building a cartridge PCB for use as an actual cartridge
rather than as a programmer, it's better if you solder actual
jumpers on the board rather than using header pins and
blocks. You would make the same connections the jumper
blocks would when the programmer is used in cartridge mode

519

(including the JP2 cartridge-detect), but make them in a more
permanent fashion. However, even the PCB built as a
programmer will (barely) fit into the provided cartridge case
design.

For this step you'll need the following:

1 completed cartridge PCB (see above notes)
1 cartridge top (CartridgeTop.stl)
1 cartridge bottom (CartridgeBottom.stl)
1 4 M3 x 10mm self-tapping screw, round/pan head (US
#4 x 3/8")
Screwdriver

The cartridge halves are intended to be printed with the
outside parts against the print bed. For the top half of the
cartridge, it will require some supports for the recessed label
area. Removing these supports shouldn't be too difficult, and
with some care, any damage from the removal should be
hidden under the label area.

To begin ensure that the finished PCB fits into the cartridge
bottom. The PCB should fit regardless of whether it was built
as a cartridge or a programmer. Sanding may be required.

•
•
•
•

•

520

The cartridge case parts with board inserted. For a true
"cartridge" the PCB should be built as an actual cartridge
rather than a programmer, but it should fit mechanically either
way.

With the board in place, pop the top and bottom halves of
the cartridge together. Some sanding may again be required to
ensure a snug fit. Take the M3 screw and screw it into the
cartridge through the back.

521

Inserting the M3 screw that holds the cartridge together.

This should affix the two halves together as well as secure
the board. A recessed area on the cartridge is suitable for
affixing a permanent label. Additional sanding or post-
processing may be required to ensure a smooth surface for
affixing the label.

522

The finished cartridge waiting for a label.

523

ONE GOOD LITTLE DUDE

He wasn't much of a dog, but he was a great little kid. A few
memories of the real Cody as we knew him.

This Used to Be the Future. Cody gazing at relics of the space
shuttle program. Pima Air and Space Museum, Tucson, Arizona.

525

Model Behavior. Studying a wooden model of the ESA's Jules
Verne as docked with Zvezda. Ripley's Believe-It-or-Not, Saint
Augustine, Florida.

526

Star Trekkin'. Science Officer Cody conducting a routine
planetary survey near Kodachrome Basin State Park. Devil's
Garden, Utah.

527

Digitize Me, Daddy! Cody retracing the steps of Galaxy Quest.
Goblin Valley State Park, Utah.

528

Preparing for Launch. Cody watching as I fumble around in a
bag for a model rocket engine and igniter. Bonneville Salt
Flats, Utah.

529

Artiste. Cody and his mom taking a break from the
Commodore Amiga's Personal Paint. Folkston, Georgia.

530

Just a Wee Calculator. Cody with an early version of the circuit
that would grow into the Cody Computer. Folkston, Georgia.

531

Design Review. Cody posing with a late revision of the Cody
Computer on a breadboard (literally). Mesa, Arizona.

532

Shopping Trip. Cody and his mom in the semiconductor aisle of
a now-defunct Fry's Electronics. Phoenix, Arizona.

533

Duplication. Cody watching our new Creality Ender 3 Pro print
a tiny little dog for a test print. Mesa, Arizona.

534

APPENDIX A: MEMORY MAP

The Cody Computer's 64 kilobytes of memory contains
different RAM and ROM regions as well as several memory-
mapped peripherals. This memory map will help you when
designing the layout of your own programs, particularly in
assembly language. You will need to know the addresses of the
various peripherals whether programming in Cody BASIC or in
assembly language.

Address Description

$0000 65C02 zero page variables

$0100 65C02 stack page

$9F00 65C22 Versatile Interface Adapter (VIA) registers

$A000 Beginning of Propeller shared memory

$D000 Video Interface Device (VID) registers

$D040 Video Interface Device (VID) control bank

$D060 Video Interface Device (VID) data bank

$D080 Video Interface Device (VID) sprite banks

$D400 Sound Interface Device (SID) registers

$D480 UART 1 registers

$D4A0 UART 2 registers

$E000 Cody BASIC ROM (character set)

$E800 Cody BASIC ROM (BASIC interpreter)

$FFFF End of memory

536

65C02 ZERO PAGE VARIABLES

In Cody BASIC most of the 65C02 zero page is used by the
interpreter. Several of these memory locations are intended
for use by Cody BASIC programs through the PEEK and POKE
operations.

The ISRPTR address is relevant to assembly language
programs that wish to register an interrupt handler. Cody
BASIC already registers an interrupt handler at this address on
startup.

Address Description

$0000 SYS call A register (Cody BASIC)

$0001 SYS call X register (Cody BASIC)

$0002 SYS call Y register (Cody BASIC)

$0008 ISRPTR (2 bytes, assembly)

$000E INPUT prompt character code (Cody BASIC)

$0010 Keyboard row 0 state (Cody BASIC)

$0011 Keyboard row 1 state (Cody BASIC)

$0012 Keyboard row 2 state (Cody BASIC)

$0013 Keyboard row 3 state (Cody BASIC)

$0014 Keyboard row 4 state (Cody BASIC)

$0015 Keyboard row 5 state (Cody BASIC)

$0016 Joystick 1 state (Cody BASIC)

$0017 Joystick 2 state (Cody BASIC)

537

65C22 VERSATILE INTERFACE ADAPTER (VIA)
REGISTERS

The 65C22 is a 6502-family I/O chip currently in
production by the Western Design Center. Aside from the
UARTs implemented by the Propeller, all of the Cody
Computer's input and output is handled by this chip. It's the
modern version of the classic 6522 VIA used in many vintage
computers.

The below table lists the VIA registers as they exist within
the Cody Computer's memory map. Port A is used internally
for keyboard and joystick scanning while port B is open for use
on the expansion port.

For detailed documentation on the chip's functions, refer to
WDC's data sheet.

Address Description

$9F00 Input/output register B

$9F01 Input/output register A

$9F02 Data direction register B

$9F03 Data direction register A

$9F04 Timer 1 latch/counter (low byte)

$9F05 Timer 2 counter (high byte)

$9F06 Timer 1 latch (low byte)

$9F07 Timer 1 latch (high byte)

$9F08 Timer 2 latch/counter (low byte)

$9F09 Timer 2 counter (high byte)

538

Address Description

$9F0A Shift register

$9F0B Auxiliary control register

$9F0C Peripheral control register

$9F0D Interrupt flag register

$9F0E Interrupt enable registr

$9F0F Input/output register A (no handshake)

VIDEO INTERFACE DEVICE (VID) REGISTERS

The Cody VID is a software-implemented video device built
using the Propeller. It is inspired by, but different from, the
VIC-II and its multicolor graphics mode.

Address Description

$D000 Blanking register (nonzero during blanking
interval)

$D001 Control register

Bit 0 disables screen output.
Bit 1 enables vertical scrolling (24 rows).
Bit 2 enables horizontal scrolling (38 columns).
Bit 3 enables row effects.
Bit 4 enables bitmap mode.

$D002 Color register

Bits 0-3 contain border color.

•
•
•
•
•

•

539

Address Description

Bits 4-7 contain color memory location.

$D003 Base register

Bits 0-3 contain character memory location.
Bits 4-7 contain screen memory location.

$D004 Scroll register

Bits 0-3 contain vertical scroll (0-7).
Bits 4-7 contain horizontal scroll (0-3).

$D005 Screen colors register

Bits 0-3 contain character color 2.
Bits 4-7 contain character color 3.

$D006 Sprite register

Bits 0-3 contain common sprite color.
Bits 4-7 contain current sprite bank.

The Video Interface Device also has two banks responsible
for implementing row effects. A row effect changes part of the
screen for one of the 25 character rows and replaces the the
raster interrupt effects used on the Commodore 64. One bank

•

•
•

•
•

•
•

•
•

540

controls the effect to apply while the other bank contains the
replacement value.

Address Description

$D040 Row effect control bank (32 bytes)

Bits 0-4 contain row number.
Bits 5-6 contain destination (see below).
Bit 7 enables the effect.

Destinations can be the following:

00 overrides the base register.
01 overrides the scroll register.
10 overrides the screen register.
11 overrides the sprite register.

$D060 Row effect data bank (32 bytes)

The VID has four different sprite banks that take up the
remainder of the page:

Address Description

$D080 Sprite bank 0

$D0A0 Sprite bank 1

$D0C0 Sprite bank 2

$D0E0 Sprite bank 3

•
•
•

•
•
•
•

541

Each entry in a sprite bank is a contiguous group of four
bytes. A single sprite bank has eight sprites, all of which are
set up exactly like the below table.

Offset Description

+0 Sprite x-coordinate (0 to 184)

+1 Sprite y-coordinate (0 to 242)

+2 Sprite colors

Bits 0-3 contain color 1.
Bits 4-7 contain color 2.

+3 Sprite location.

SOUND INTERFACE DEVICE (SID) REGISTERS

The Cody Computer has a sound interface device based on
the Commodore/MOS 6581. It is implemented within the
Propeller chip as a software emulation. Not all SID features are
supported and the implementation is not an exact SID
replacement. Filters and combined waveforms, among other
features, are not implemented at all.

Refer to Chapter 8, Sound and Music Programming, for an
explanation of the frequency and ADSR values.

Address Description

$D400 Voice 1 frequency value (low byte)

$D401 Voice 1 frequency value (high byte)

$D402 Voice 1 pulse duty cycle (low byte)

•
•

542

Address Description

$D403 Voice 1 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D404 Voice 1 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 3 oscillator.
Bit 2 enables ring modulation with voice 3.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D405 Voice 1 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D406 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D407 Voice 2 frequency value (low byte)

$D408 Voice 2 frequency value (high byte)

•
•

•
•
•
•
•
•
•
•

•
•

•
•

543

Address Description

$D409 Voice 2 pulse duty cycle (low byte)

$D40A Voice 2 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D40B Voice 2 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 1 oscillator.
Bit 2 enables ring modulation with voice 1.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D40C Voice 2 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D40D Voice 2 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D40E Voice 3 frequency value (low byte)

•
•

•
•
•
•
•
•
•
•

•
•

•
•

544

Address Description

$D40F Voice 3 frequency value (high byte)

$D410 Voice 3 pulse duty cycle (low byte)

$D411 Voice 3 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D412 Voice 3 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 2 oscillator.
Bit 2 enables ring modulation with voice 2.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D413 Voice 3 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D414 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

•
•

•
•
•
•
•
•
•
•

•
•

•
•

545

Address Description

$D415 Reserved

$D416 Reserved

$D417 Reserved

$D418 Volume control

Bits 0-3 contain the global volume.

$D419 Reserved

$D41A Reserved

$D41B Voice 3 oscillator (read)

$D41C Voice 3 envelope (read)

UART 1 REGISTERS

Cody Computer UART 1 is connected to the Prop Plug port
on the back of the computer. As with most Cody Computer
peripherals, it is implemented using the Propeller. This device
is generally used for serial communications with your PC or
for transferring files. Bit rate options are copied from the 6551
ACIA:

$0 is not supported.
$1 for 50 BPS.
$2 for 75 BPS.
$3 for 110 BPS.
$4 for 135 BPS.
$5 for 150 BPS.

•

•
•
•
•
•
•

546

$6 for 300 BPS.
$7 for 600 BPS.
$8 for 1200 BPS.
$9 for 1800 BPS.
$A for 2400 BPS.
$B for 3600 BPS.
$C for 4800 BPS.
$D for 7200 BPS.
$E for 9600 BPS.
$F for 19200 BPS.

Address Description

$D480 Control register

Bits 0-3 contain the bit rate.

$D481 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes.

$D482 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

•
•
•
•
•
•
•
•
•
•

•

•

•
•
•
•
•

547

Address Description

$D483 Reserved

$D484 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D485 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D486 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D487 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D488 Receive ring buffer (8 bytes)

$D490 Transmit ring buffer (8 bytes)

UART 2 REGISTERS

Cody Computer UART 2 is identical in function to UART 1.
However, UART 2 is connected to the expansion port.

Address Description

$D4A0 Control register

•

•

•

•

548

Address Description

Bits 0-3 contain the bit rate.

$D4A1 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes.

$D4A2 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D4A3 Reserved

$D4A4 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A5 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D4A6 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

•

•

•
•
•
•
•

•

•

•

549

Address Description

$D4A7 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A8 Receive ring buffer (8 bytes)

$D4B0 Transmit ring buffer (8 bytes)

•

550

APPENDIX B: COLOR CODES

The color codes used by the Cody Computer's Video
Interface Device are the same as those from the Commodore
VIC-II chip. The actual colors used are from the Propeller NTSC
palette.

Code (dec) Code (hex) Color

0 $0 Black

1 $1 White

2 $2 Red

3 $3 Cyan

4 $4 Purple

5 $5 Green

6 $6 Blue

7 $7 Yellow

8 $8 Orange

9 $9 Brown

10 $A Light red

11 $B Dark gray

12 $C Gray

13 $D Light green

14 $E Light blue

15 $F Light gray

551

APPENDIX C: CODY BASIC REFERENCE

This appendix contains a brief reference for Cody BASIC. For
more information and examples refer to Chapter 5: Using
Cody BASIC and Chapter 6: Advanced Cody BASIC.

LINE NUMBERS

All Cody BASIC statements in a program must have a line
number. A handful of statements and commands can be
evaluated immediately at the BASIC prompt, but this is the
exception and not the rule.

COMMENTS

Lines beginning with the REM (remark) statement will be
ignored. Each line incurs a small performance penalty as the
statement's token must be processed and the rest of the line
skipped over.

VARIABLES

Numeric variables are the letters A through Z. Each variable
can store a 16-bit signed integer from -32768 to 32767
inclusive. When used in certain situations, such as POKE
statements, numbers are interpreted as their unsigned
equivalents to address the entire Cody Computer memory.

A numeric variable is actually the first element in a numeric
array of 128 values. A specific element can be accessed by

552

indexing with a number or numeric expression, such as A(10).
Arrays are declared by default in Cody BASIC.

String variables are the letters A$ through Z$ (note the
trailing dollar sign character). Each string can store up to 255
possible characters and a terminating null character. Strings
are declared by default.

Assignment is made using the = operator. Each assignment
must be on its own line and the type of the expression must
match the type of the variable. A numeric variable must have a
numeric expression on the right side, while a string variable
must have a string expression on the right side instead.

NUMERIC EXPRESSIONS

Supported numeric operators are + (addition), -
(subtraction), * (multiplication) and / (division). Order of
operations is obeyed, with mulitplication and division
occurring before addition and subtraction.

Expressions can be grouped using ((left parenthesis) and)
(right parenthesis). A leading - (unary minus) can be used to
obtain the negative of a number or expression.

STRING EXPRESSIONS

The only supported operator for strings is + (concatenation).
This operator is only supported in very limited circumstances
involving explicit string expressions (assignment, PRINT, and
the right side of expressions in IF statements).

553

RELATIONAL EXPRESSIONS

Relational expressions are only used in IF statements.
Supported relational operators are < (less than), > (greater
than), <= (less than or equal), >= (greater than or equal), =
(equal), and <> (not equal).

For numbers a relational expression consists of two numeric
expressions with a relational operator. For strings a relational
expression consists of a string variable on the left side and a
string expression on the right side.

MATHEMATICAL FUNCTIONS

Several mathematical functions are present in Cody BASIC.

ABS(n) returns the absolute value of a number.
MOD(m, n) returns the result of m modulo n.
SQR(n) returns the integer square root of a number.
RND() returns a pseudorandom number.
RND(n) seeds the pseudorandom generator with a new
value.

BITWISE FUNCTIONS

The typical bitwise operations are implemented as Cody
BASIC functions.

AND(m, n) returns the bitwise-and of two numbers.
OR(m, n) returns the bitwise-or of two numbers.

•
•
•
•
•

•
•

554

XOR(m, n) returns the bitwise exclusive-or of two
numbers.
NOT(n) returns the bitwise negation of a number.

STRING FUNCTIONS RETURNING NUMBERS

Some functions that take a string variable argument are
used in numeric expressions.

ASC(s$) returns the number of the first character in a
string variable.
VAL(s$) parses a number from the start of a string
variable.
LEN(s$) returns the number of characters in a string
variable.

STRING FUNCTIONS RETURNING STRINGS

Other string functions return strings and are used in string
expressions.

CHR$(n,...,n) converts one or more numbers to string
characters.
STR$(n) converts a number to its string representation.
SUB$(s$,m,n) returns a substring of length n starting at
m.

•

•

•

•

•

•

•
•

555

FORMATTING FUNCTIONS

Two functions can only be used to control formatting in
PRINT statements.

AT(x,y) moves the output to the specified coordinates.
TAB(n) moves the output to a particular tab column on
screen.

OTHER FUNCTIONS

A couple of functions don't fit into a specific category.

PEEK(n) returns the byte at a specific memory address.
TI returns the current time count in jiffies (1/60th of a
second).

COMMANDS

Several commands are used to interact with rudimentary
Cody BASIC facilities.

NEW clears the program memory and starts a new
program.
LOAD m,n saves the current program on UART m and
mode n. Use 0 for BASIC programs and 1 for binary
programs.
SAVE n saves the current program on UART n.
RUN runs the current BASIC program starting at the first
line.

•
•

•
•

•

•

•
•

556

LIST lists the program.
LIST m lists the program starting with a particular line.
LIST m,n lists the program between two line numbers.

CONTROL STATEMENTS

Control statements manage the flow through a Cody BASIC
program.

IF r THEN s evaluates statement s if relational expression
r is true.
GOTO n jumps to a particular line in the program.
GOSUB n calls a particular line with the intention of
RETURNing.
RETURN returns to the line after the last GOSUB.
FOR i=m TO n loops i from m to n with a matching NEXT.
NEXT starts the next loop with the matching FOR.
STOP exits the current program.

INPUT AND OUTPUT STATEMENTS

Cody BASIC has several statements for structured input and
output.

INPUT v,...,v reads one-per-line numeric or string values
into one or more variables v.
PRINT prints a blank line.
PRINT e,...,e prints one or more numeric or string
expressions. The statement will move on to the next line
unless ; (semicolon) is at the end.

•
•
•

•

•
•

•
•
•
•

•

•
•

557

OPEN m,n redirects future INPUT and PRINT statements
to UART m with bit rate specifier n.
CLOSE closes a UART and directs back to the keyboard
and screen.

The most recent keyboard and joystick matrix scans
performed by the BASIC interpreter can be read from zero
page addresses 16 through 23. The input prompt character can
be changed by changing zero page address 14.

DATA STATEMENTS

Cody BASIC supports a limited form of DATA statements for
literals. Data will be read from each statement in the program
starting at the beginning and going to the end.

DATA n,..,n declares one or more numeric literals
separated by commas.
READ v,..,v reads one or more literals from DATA into
number variables.
RESTORE moves the data location back to the beginning
of the program.

OTHER STATEMENTS

Some statements don't easily fit into a specific category.

POKE m,n pokes byte n into memory address m.

•

•

•

•

•

•

558

SYS n calls address n in assembly language. Values for
registers A, X, and Y can be passed in the first three zero
page variables.

ERRORS

Cody BASIC has limited error handling inspired by Tiny
BASIC.

LOGIC errors occur when a statement was syntactically
valid but wrong in context.
SYNTAX errors occur when a statement could not be
correctly parsed.
SYSTEM errors occur when a statement fails because of
low-level problems.

•

•

•

•

559

Image

APPENDIX D: CODSCII TABLE

The CODSCII character set is the default character set used
by the Cody Computer and Cody BASIC. It's an extended ASCII
character set with the top 128 values used for Commodore
PETSCII characters and custom control codes for colors and
terminal operations.

Dec Hex Description

0 $00 Null

1 $01 Start of heading

2 $02 Start of text

3 $03 End of text

4 $04 End of transmission

5 $05 Enquiry

6 $06 Acknowledge

7 $07 Bell

8 $08 Backspace

9 $09 Horizontal tab

10 $0A Line feed

11 $0B Vertical tab

12 $0C Form feed

13 $0D Carriage return

560

14 $0E Shift out

15 $0F Shift in

16 $10 Data link escape

17 $11 Device control 1 (XON)

18 $12 Device control 2

19 $13 Device control 3 (XOFF)

20 $14 Device control 4

21 $15 Negative acknowledge

22 $16 Synchronous idle

23 $17 End of transmission block

24 $18 Cancel

25 $19 End of medium

26 $1A Substitute

27 $1B Escape

28 $1C File separator

29 $1D Group separator

30 $1E Record separator

31 $1F Unit separator

32 $20 Whitespace

33 $21 Exclamation mark

34 $22 Double quotes

35 $23 Hash symbol

561

36 $24 Dollar sign

37 $25 Percent

38 $26 Ampersand

39 $27 Single quote

40 $28 Left parenthesis

41 $29 Right parenthesis

42 $2A Asterisk

43 $2B Plus

44 $2C Comma

45 $2D Minus

46 $2E Period

47 $2F Slash

48 $30 Zero

49 $31 One

50 $32 Two

51 $33 Three

52 $34 Four

53 $35 Five

54 $36 Six

55 $37 Seven

56 $38 Eight

57 $39 Nine

562

58 $3A Colon

59 $3B Semicolon

60 $3C Less than

61 $3D Equal

62 $3E Greater than

63 $3F Question mark

64 $40 At symbol

65 $41 Uppercase A

66 $42 Uppercase B

67 $43 Uppercase C

68 $44 Uppercase D

69 $45 Uppercase E

70 $46 Uppercase F

71 $47 Uppercase G

72 $48 Uppercase H

73 $49 Uppercase I

74 $4A Uppercase J

75 $4B Uppercase K

76 $4C Uppercase L

77 $4D Uppercase M

78 $4E Uppercase N

79 $4F Uppercase O

563

80 $50 Uppercase P

81 $51 Uppercase Q

82 $52 Uppercase R

83 $53 Uppercase S

84 $54 Uppercase T

85 $55 Uppercase U

86 $56 Uppercase V

87 $57 Uppercase W

88 $58 Uppercase X

89 $59 Uppercase Y

90 $5A Uppercase Z

91 $5B Left bracket

92 $5C Backslash

93 $5D Right bracket

94 $5E Caret

95 $5F Underscore

96 $60 Backquote

97 $61 Lowercase a

98 $62 Lowercase b

99 $63 Lowercase c

100 $64 Lowercase d

101 $65 Lowercase e

564

102 $66 Lowercase f

103 $67 Lowercase g

104 $68 Lowercase h

105 $69 Lowercase i

106 $6A Lowercase j

107 $6B Lowercase k

108 $6C Lowercase l

109 $6D Lowercase m

110 $6E Lowercase n

111 $6F Lowercase o

112 $70 Lowercase p

113 $71 Lowercase q

114 $72 Lowercase r

115 $73 Lowercase s

116 $74 Lowercase t

117 $75 Lowercase u

118 $76 Lowercase v

119 $77 Lowercase w

120 $78 Lowercase x

121 $79 Lowercase y

122 $7A Lowercase z

123 $7B Left brace

565

124 $7C Pipe

125 $7D Right brace

126 $7E Tilde

127 $7F Unused/Reserved

128 $80 Pound sign

129 $81 Up arrow

130 $82 Left arrow

131 $83 Horizontal line

132 $84 Spade

133 $85 Vertical line

134 $86 Horizontal line

135 $87 Horizontal line up 1

136 $88 Horizontal line up 2

137 $89 Horizontal line down 1

138 $8A Vertical line left 1

139 $8B Vertical line duplicate

140 $8C Quarter circle bottom left

141 $8D Quarter circle top right

142 $8E Quarter circle top left

143 $8F Box bottom left corner

144 $90 Diagonal down

145 $91 Diagonal up

566

146 $92 Box top left corner

147 $93 Box top right corner

148 $94 Dot

149 $95 Horizontal line down 2

150 $96 Heart

151 $97 Vertical line left 1 duplicate

152 $98 Quarter circle bottom right

153 $99 X

154 $9A Dot with hole

155 $9B Club

156 $9C Vertical line duplicate

157 $9D Diamond

158 $9E Cross

159 $9F Dotted left

160 $A0 Vertical line duplicate

161 $A1 Pi

162 $A2 Filled diagonal top right

163 $A3 Blank

164 $A4 Filled box left

165 $A5 Filled box bottom

166 $A6 Horizontal line top

167 $A7 Horizontal line bottom

567

168 $A8 Vertical line left

169 $A9 Dotted square

170 $AA Vertical line right

171 $AB Dotted bottom

172 $AC Diagonal filled top left

173 $AD Vertical line right duplicate

174 $AE T right

175 $AF Filled quarter box bottom right

176 $B0 Box top right

177 $B1 Box bottom left

178 $B2 Horizontal line bottom duplicate

179 $B3 Box bottom right

180 $B4 T up

181 $B5 T down

182 $B6 T left

183 $B7 Vertical line left duplicate

184 $B8 Filled left half duplicate

185 $B9 Filled right half duplicate

186 $BA Horizontal line top

187 $BB Horizontal partial fill top

188 $BC Horizontal partial fill bottom

189 $BD Box bottom right corner

568

190 $BE Filled box lower left

191 $BF Filled box top right

192 $C0 Box top left

193 $C1 Filled box top left

194 $C2 Checkered square

195 $C3 Unused/Reserved

196 $C4 Unused/Reserved

197 $C5 Unused/Reserved

198 $C6 Unused/Reserved

199 $C7 Unused/Reserved

200 $C8 Unused/Reserved

201 $C9 Unused/Reserved

202 $CA Unused/Reserved

203 $CB Unused/Reserved

204 $CC Unused/Reserved

205 $CD Unused/Reserved

206 $CE Unused/Reserved

207 $CF Unused/Reserved

208 $D0 Unused/Reserved

209 $D1 Unused/Reserved

210 $D2 Unused/Reserved

211 $D3 Unused/Reserved

569

212 $D4 Unused/Reserved

213 $D5 Unused/Reserved

214 $D6 Unused/Reserved

215 $D7 Unused/Reserved

216 $D8 Unused/Reserved

217 $D9 Unused/Reserved

218 $DA Unused/Reserved

219 $DB Unused/Reserved

220 $DC Unused/Reserved

221 $DD Unused/Reserved

222 $DE Clear screen

223 $DF Reverse field

224 $E0 Background black

225 $E1 Background white

226 $E2 Background red

227 $E3 Background cyan

228 $E4 Background purple

229 $E5 Background green

230 $E6 Background blue

231 $E7 Background yellow

232 $E8 Background orange

233 $E9 Background brown

570

234 $EA Background light red

235 $EB Background dark gray

236 $EC Background gray

237 $ED Background light green

238 $EE Background light blue

239 $EF Background light gray

240 $F0 Foreground black

241 $F1 Foreground white

242 $F2 Foreground red

243 $F3 Foreground cyan

244 $F4 Foreground purple

245 $F5 Foreground green

246 $F6 Foreground blue

247 $F7 Foreground yellow

248 $F8 Foreground orange

249 $F9 Foreground brown

250 $FA Foreground light red

251 $FB Foreground dark gray

252 $FC Foreground gray

253 $FD Foreground light green

254 $FE Foreground light blue

255 $FF Foreground light gray

571

	Table of Contents
	Introduction
	What's a Home Computer?
	Commodore as Inspiration
	KIM-1
	Commodore PET
	VIC-20
	Commodore 64
	Commodore Plus/4

	The Cody Computer Design
	Memory
	Input and Output
	Serial Ports
	Video
	Sound

	Comparisons and Context
	Introduction
	Mechanical Design
	Case Bottom
	Keyboard Module
	Case Top
	OpenSCAD Files

	Electronic Design
	Power Supply
	Propeller
	65C02
	RAM
	65C22 and I/O
	Keyboard

	Propeller Firmware
	cody_computer.spin
	cody_uart.spin
	cody_audio.spin
	cody_video.spin
	cody_line.spin

	Introduction
	Startup and Initialization
	Timer Interrupt
	Keyboard Scanning
	Error Handling
	Starting BASIC
	Starting a Cartridge Program

	Tokenization and Interpretation
	Tokenization
	Line Insertion and Deletion
	Interpretation

	Numeric and String Expressions
	Control and Data Statements
	IF Statements
	GOTO Statements
	GOSUB and RETURN Statements
	FOR and NEXT statements
	DATA and READ Statements

	Input and Output Statements
	OPEN and CLOSE Statements
	PRINT Statements
	INPUT Statements

	Loading and Saving Programs
	LOAD Statements
	SAVE Statements

	Serial Routines
	Screen Output
	Introduction
	Notes on 3D Printing
	Keyboard Assembly
	Making the Keycaps
	Making the Keyboard Cable
	Assembling the Keyboard

	Printed Circuit Board Assembly
	Installing Integrated Circuit Sockets
	Installing Diodes
	Installing Decoupling Capacitors
	Installing the Expansion Connector
	Installing Pull-Up Resistors
	Installing Power Supply Components
	Installing Propeller Components
	Installing Additional Rear Connectors
	Installing Keyboard and Joystick Connectors
	Power Test
	Firmware Programming
	Installing the Integrated Circuits

	Case Assembly
	Case Badge Assembly
	Power LED Assembly
	Case Top Assembly
	Case Bottom Assembly
	Installing the Keyboard
	Installing Magnets
	Final Assembly

	Initial Setup
	Introduction
	Using the Keyboard
	The Read-Eval-Print Loop
	Typing and Editing Programs
	Input and Output
	Variables, Numbers, and Strings
	Numbers and Number Variables
	Strings and String Variables

	Control Statements
	IF Statements
	GOTO Statements
	GOSUB and RETURN statements
	FOR and NEXT statements

	Loading and Saving Programs
	Saving a Program
	Loading a Program

	Understanding Error Messages
	Syntax Errors
	Logic Errors
	System Errors

	Introduction
	Working With Numbers
	Arithmetic Operations
	Mathematical Functions
	Bitwise Functions

	Text Manipulation and Strings
	String Concatenation
	String Comparisons
	Functions in String Expressions
	Additional String Functions

	Print Formatting
	Positioning the Cursor
	Aligning Output With Tabs
	Clearing the Screen
	Setting the Foreground Color
	Setting the Background Color
	Reversing Foreground and Background
	Printing Graphical Characters

	File Input and Output
	Writing to a File
	Reading from a File

	Including Data in Programs
	Timekeeping
	Reading and Writing Memory
	Writing to Memory
	Reading Memory

	Using Machine Code
	Programming Hints
	Documenting Your Programs
	Using Line Numbers
	An Example Program

	Introduction
	Changing the Border Color
	Working With Screen Memory
	Updating Screen Memory
	Relocating Screen Memory

	Working With Color Memory
	Updating Color Memory
	Relocating Color Memory

	Characters and Character Memory
	Characters in ROM
	Custom Characters
	Relocating Character Memory

	Waiting for Blanking
	Scrolling the Screen
	Fine Scrolling With Registers
	Combined Scrolling

	Moving Graphics With Sprites
	Displaying a Sprite
	Displaying Multiple Sprites

	Disabling Video Output
	Row Effects
	Row Effects Register Banks
	Screen Colors and Row Effects
	Sprite Colors and Row Effects
	Sprite Banks and Row Effects
	Scrolling with Row Effects
	Relocations Using Row Effects

	Bitmapped Graphics
	Introduction
	Making a Sound
	Creating Sounds With Numbers
	Triangle Waves
	Sawtooth Waves
	Pulse Waves
	Noise
	Experimenting With Different Values

	Playing a Simple Song
	Sound Effects
	An Explosion
	An Alert Siren
	An Energy Beam
	A Commodore 64 Example

	A Practical Sound Program
	Ring Modulation
	Introduction
	Keyboard and Joystick Input
	Serial Input and Output
	Transmitting Data
	Receiving Data

	General-Purpose Input and Output
	Special Pins and Shift Registers
	SPI Communication and Cartridges
	Introduction
	The CodySID Music Player
	The PSID File Format
	The CodySID Program
	Building and Running CodySID
	Suggested SID Files

	The "Cody Bros." Demo
	The CodyBros Program
	Building and Running Cody Bros.

	Introduction
	Cartridge Design
	Cartridge Programmer Assembly
	Installing the Expansion Connector
	Installing the Socket and Capacitor
	Installing the Headers
	Inserting the IC and Jumpers

	SPI Programming in BASIC
	Simple SPI Communication
	A Test Program
	Writing to the EEPROM
	Reading the EEPROM
	Booting the Cartridge

	A Program for Programming
	The CodyProg Program
	Using the Programmer

	Cartridge Case Assembly
	One Good Little Dude
	Appendix A: Memory Map
	65C02 Zero Page Variables
	65C22 Versatile Interface Adapter (VIA) Registers
	Video Interface Device (VID) Registers
	Sound Interface Device (SID) Registers
	UART 1 Registers
	UART 2 Registers

	Appendix B: Color Codes
	Appendix C: Cody BASIC Reference
	Line Numbers
	Comments
	Variables
	Numeric Expressions
	String Expressions
	Relational Expressions
	Mathematical Functions
	Bitwise Functions
	String Functions Returning Numbers
	String Functions Returning Strings
	Formatting Functions
	Other Functions
	Commands
	Control Statements
	Input and Output Statements
	Data Statements
	Other Statements
	Errors

	Appendix D: CODSCII Table

