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INTRODUCTION

Welcome to  The Cody Computer Book, a guide to building
and  programming  your  own  8-bit  computer.  The  computer
you'll build is inspired by the popular home computers of the
1980s—particularly the Commodore series—though it is not a
direct clone of or compatible with any of them. Rather, it tries
to be a somewhat-faithful modern take on a computer from
that  era,  with  many  of  the  same  limitations  that  inspired
ingenuity and creativity in an earlier time. Some aspects have
been updated and others simplified for ease of use, but in all
cases we've tried to preserve the aesthetic of the era. Most of
all, we've tried to make it approachable and fun.

If  you  follow  the  book,  you'll  build  a  computer  with  a
period-appropriate 65C02 processor running at 1 megahertz
and accessing 64 kilobytes of memory.  You'll  get an analog
NTSC video output with blocky character graphics and sprites,
synthesized  audio,  and  serial  ports  for  loading  and  saving
programs—all  through  a  Parallax  Propeller  microcontroller
that replaces the features of half a dozen legacy chips. You'll
even  build  a  fully-mechanical  keyboard  and  a  toylike  3D-
printed case inspired by the keyboard wedges of the 1980s,
complete with joystick ports for games and an expansion port
for  your  own  peripherals  or  cartridges.  Once  it's  up  and
running, you'll start to program in Cody BASIC and move on to
65C02 assembly.

While the computer itself belongs in the 1980s, the spirit is
that of the 1970s—open hardware and open software that is
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readily  accessible  to  the  end  user.  Unlike  most  modern
reinventions of the classic home computer, the entire design is
intended  to  be  constructable  by  a  single  person,  at  home,
using  techniques  and  tools  available  to  today's  maker
community. All the parts are hobbyist-friendly, and even the
more  obscure  ones  are  currently  in  production  from
historically reliable companies. All the design files, including
its  own  custom  BASIC  dialect,  are  released  under  copyleft
licenses.  And  should  the  worst  ever  come  to  pass,
synthesizable  implementations  of  all  the  core  components
already exist in the wild.

Building  the  Cody  Computer  isn't  an  incredibly  difficult
project, but you'll need some basic skills and access to a few
things. You'll need to solder a couple of circuit boards, one for
the computer and one for the keyboard, and you'll also need
to be able to assemble them into a 3D-printed case. All the
design files  you'll  need are  provided so that  you can order
your own boards or make your own tweaks when 3D printing.
A large section of this book is devoted to build instructions to
help you, but it assumes that you already know the basics.

We've tried to make it easy to source the parts without a lot
of  hassle.  The  electronics  should  all  be  available  through a
single  order  from  Mouser,  including  the  keyboard  switches,
but  you  may  find  it  more  cost-effective  to  order  cheaper
keyswitches through another  reseller  instead.  If  you've built
any projects like this at home, you'll know that sometimes it
helps  to  shop  around.  We're  also  assuming  that  you  have
access to items such as PLA filament through the same means
you'll use to print the case. The remainder of the items you'll
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need are things that can be sourced wherever you can find a
hardware or craft store.

You'll have to install some software to finish programming
the Cody Computer once it's built. One of the key components
in the project, the Parallax Propeller, has software that you'll
need  to  use  when  programming  the  Propeller's  firmware.
You'll also need to install a terminal program so that the Cody
Computer can exchange data with another device. Lastly, if you
want to get into assembly language programming, you'll need
to have a 65C02 assembler that you're familiar with. The Cody
Computer standardizes on the  64tass cross-assembler which
is also used to assemble the built-in Cody BASIC.

For  the  best  chance  of  success  you  should  already  have
some  significant  experience  with  electronics,  programming,
soldering,  and  3D printing,  or  have  people  around who can
help you with the topics you don't know. You'll especially need
that knowledge when something doesn't go well and you need
to solve a problem. If you've done any programming of any
kind,  built  an  intermediate  electronics  kit,  downloaded
software  to  an  Arduino,  or  set  up  some  command-line
programs on your computer, you'll already have a lot of the
technical background you'll need. If you've screwed up all of
those but were able to fix it yourself, you're ready.

In terms of tooling, a good workspace, a good soldering iron,
and a reliable if  standard fused-filament 3D printer are the
most important items to have around. You'll also need to have
a means of obtaining some double-sided circuit boards from
the design files,  one for the keyboard and one for the main
board. You may have to order them from an offshore supply
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house and expect to have some spares, or perhaps go in with a
friend who also wants to build a copy.

Here's an anecdote to give you an idea of what to expect: All
the  3D printing  was  done  on  a  more-or-less  stock  Creality
Ender 3 Pro, mostly with Hatchbox or Inland PLA filaments, and
we  went  through  a  lot  as  we  tried  different  designs.  For
electronics,  a  standard  multimeter  was  used  for  most
measurements,  with a Siglent SDS1104X-E oscilloscope only
being  used  a  few  times  to  diagnose  problems  during
prototyping.  We ordered our boards from Aisler throughout
the project because of their out-of-the-box support for KiCad,
but they should be manufacturable by other board houses.

We didn't need anything especially fancy to build the
Cody Computer, nor did we get paid to write any of this.
When it came time to get some of the tools we didn't have
on hand, we intentionally picked the options that would be
most accessible to people financially. In many respects it's
kind of amazing it actually works!

WHAT'S A HOME COMPUTER?

What constitutes a home computer varies a lot depending
on the era. Because the Cody Computer is channeling the early
1980s,  it's  worth  revisiting  the  1970s  and  1980s  to  discuss
exactly what computers were like at  the time.  As with other
new technologies being introduced to the marketplace for the
first time, there were many new systems being released from a
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variety of manufacturers large and small, much of it forgotten
or otherwise lost outside of collectors' circles. It wasn't just a
couple of famous companies and their famous products. There
were literally too many to list here.

The earliest  home computers resembled a tiny version of
the 1960s Batcomputer more than anything else. The Kenbak-1
of  the  1970s  was  made  without  any  microprocessors  at  all,
instead built with what looked like a small city of individual
logic chips and programmed via a front panel of buttons and
switches.  Professional  computers  of  the  era  were  also  built
from collections  of  chips  like  this,  though  those  used  more
powerful chips with a higher level of integration.

Machines with microprocessors, such as the MITS Altair and
the  IMSAI  8080  (famously  used  in  WarGames),  became
available  by the  mid-1970s.  These  also  sported  a  blinking-
lights-and-switches  appearance,  with  programs  generally
loaded manually or by paper tape readers. Finding an external
terminal  to  talk  to  your  computer  became  an  adventure  in
itself. Projects like the TV Typewriter were popular and led to
experimentation with input terminals and cheap video output
hardware.

A large number of the systems of that era came in kit form,
often described in magazine articles that functioned as build
instructions  or  user  guides.  Single  board  computers  or
modular systems became quite popular. Among those would
be  systems  important  in  the  history  of  the  6502
microprocessor, such as the Jolt and MOS Technology's KIM-1;
that  latter  device  was  in  many  respects  the  first  of  the
Commodore computers.
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Taken as a whole, however, these machines were often more
like  a  minicomputer  for  the  home  rather  than  a  home
computer.  Yet  even in this  era,  much of  the home computer
culture was being established. Microsoft got its start by selling
BASIC  interpreters  for  these  systems,  while  the  People's
Computer Company created the first of many versions of the
open  Tiny  BASIC  instead.  Standards  for  saving  and  loading
programs  emerged,  such  as  the  Kansas  City  Standard  for
storing  data  on  the  audio  cassettes  of  the  era.  Commercial
operating systems such as CP/M became available for many
systems.  And users began sharing programs via  magazines,
mail, and computer clubs.

The concept  of  the home computer  began to  change with
systems like the Sol-20 and Apple 1, including the keyboard
and  video  output  within  the  computer  itself.  By  1977,  the
Commodore PET, Apple II, and Tandy TRS-80 were all launched
to the public as complete systems. Graphics capabilities were
limited  and  the  game-system-inspired  Atari  800  wasn't
released until two years later. At this point, the outlines of the
stereotypical  home  computer  became  apparent:  A  wedge-
shaped computer, a built-in keyboard, support for cartridges
and cassettes for data storage, joystick or controller ports, and
output to a dedicated monitor or home television.

By the 1980s, the line between home computer and game
system became blurry. Existing game systems received add-
on  keyboards  and  BASIC  interpreters  to  resemble  a  home
computer.  The  Nintendo was  sold  in  its  native  Japan as  the
Famicom,  with  keyboards,  BASIC  cartridges,  and  disk  drives
made  available.  Computer  manufacturers  began  including
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more advanced graphics and sound features in their products.
By 1982, the color-video ZX Spectrum was released in the UK,
and in the US, the Commodore 64 was released with game-
like graphics and sound capabilities. Storage devices improved
as  floppy  drives  became  more  common  than  cassettes,
particularly in the US market.

As the 1980s continued, more advanced computers eclipsed
the earlier 8-bit systems. The Amiga, Atari ST, Macintosh, and
the  IBM  PC  represented  the  next  generation  of  computer
technology.  Yet  companies  persisted  in  the  8-bit  market.
Amstrad  released  its  CPC  family  with  impressive  bitmap
graphics  for  its  day.  Handhelds  like  the  Atari  Lynx  and
Nintendo  Game  Boy  utilized  8-bit  6502  and  Z80
microprocessors. The 65816, a 16-bit variant of the 6502, was
used in the Apple IIGS (with capabilities often surpassing the
Macintosh itself) and Super Nintendo. Despite those successes,
by the middle of the 1990s, the 8-bit world was all but gone,
save for third-party companies and aftermarket add-ons that
gave existing systems a new lease on life.

COMMODORE AS INSPIRATION

While not compatible with the Commodore series of 8-bit
computers,  much  of  the  inspiration  for  the  Cody  Computer
comes  from  that  lineage.  Commodore  produced  one  of  the
most  influential  series  of  8-bit  computers.  Many  of  their
systems were known for providing an exceptional feature set
at  a  low  price,  while  much  of  the  company's  design  and
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marketing had been directed at producing capable systems for
the general public rather than computing nerds or enthusiasts.

Along with their significance to the early history of home
computing,  you'll  find  that  much  of  the  Cody  Computer's
functionality was inspired by how Commodore did things. Not
everyone has firsthand experience with one of these systems,
so to provide some historical context, we'll briefly review some
of the better-known entries in the Commodore 8-bit family.

Commodore  actually  began  as  a  typewriter  company,
moving by necessity into the new markets of electronic adding
machines and calculators in the 1960s and 1970s. Competition
in  the  market  was  brutal,  and  Commodore  began  acquiring
electronics companies as part of its business strategy. One of
the  acquisitions  was  MOS  Technology,  the  company
responsible  for  the  6502  microprocessor.  As  part  of  the
purchase, Commodore also gained access to the engineering
talent behind the company.

Realizing  the  potential  in  the  home  computer  market,
Commodore  began  manufacturing  computers  using  its  own
chips starting in the late 1970s. Future designs would continue
to  leverage  their  in-house  electronics  expertise  instead  of
relying on off-the-shelf components. Commodore's sales pitch
marketed their  systems as friendly computers that provided
amazing  features  for  the  price.  Despite  their  successes,
changing markets,  cutbacks on engineering,  and problematic
business practices proved too much to bear; Commodore went
bankrupt in 1994.
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KIM-1

The KIM-1 was a single board computer produced by MOS
Technology in the mid-1970s. Its primary purpose was to serve
as a reference system for their 6502 processor. Out of the box
it  had  a  keypad  and  numeric  display  for  interaction  and
programming, while mass storage was available by connecting
to  cassettes  or  paper  tape.  Clones  were  made  by  other
companies  and  aftermarket  enhancements  included  video
output. Many of the starter 65C02 projects you'll find on the
Internet are,  in some sense, the spiritual successors of these
early single board computers.

COMMODORE PET

The PET was Commodore's first real entry into the computer
market.  Many  of  the  characteristics  associated  with
Commodore's computers began with this model.  Featuring a
6502  processor,  a  built-in  keyboard,  cassette,  monochrome
monitor,  and  a  copy  of  Microsoft  BASIC,  the  machine  was
intended as a more practical computer at its release in 1977.
The machine also supported the IEEE-488 bus, providing use of
a variety of peripherals and storage devices.

Because  of  the  computer's  text-only  display,  a  graphical
character set called PETSCII was invented to make games and
entertainment applications more feasible. The characters were
prominently  featured  on  Commodore  keyboards  throughout
the  8-bit  era.  PETSCII  graphics  remain  one  of  the  most
uniquely-identifiable  aspects  of  a  Commodore  computer
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system,  often  finding  their  way  into  hobbyist  graphics  and
compact homebrew games.

VIC-20

After other research and development attempts at a color
PET successor, Commodore released the VIC-20 as a “friendly
computer” that could be plugged into your television set. The
computer  had  expansion  and  cartridge  slots,  both  of  which
were heavily used because of the computer's minimal standard
memory.  Commodore  replaced  the  PET's  IEEE-488  bus  with
their  own  serial  version,  the  IEC  bus.  The  VIC-20  had  an
optional floppy drive but datasettes were most popular at this
point.  BASIC was still  standard and a joystick was added for
gaming.

The  VIC-20  also  set  a  precedent  for  powerful  peripheral
chips made custom by Commodore. The VIC-20 used the VIC
chip for handling video, sound, and other system functions. It
produced  two-color  character  graphics  at  a  moderate
resolution  and  four-color  character  graphics  by  halving  the
horizontal resolution, which became the standard approach in
Commodore systems. Games and images were displayed by
changing the colors and characters themselves.  For sound, it
produced  three  programmable  square  wave  channels  and  a
single noise channel.

COMMODORE 64

The  best-known  of  Commodore's  computers,  the
Commodore 64 contained the famous VIC-II and SID chips that
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made it a compelling video game system. Expansion and user
ports existed for cartridges and add-ons, and a stripped-down
C64 variant was later released as a console-like game system.
Early  models  of  the  C64 bore  a  strong resemblance  to  the
prior  VIC-20.  Datasettes were still  very common but floppy
drives became standard for the machine in the United States.

Much of the C64's unique character came from its custom
support  chips.  The  VIC-II  supported  character  and  bitmap
graphics  modes  at  higher  resolution  than  the  VIC-20,  but
continued  with  the  VIC's  tradition  of  a  low-color  high-res
mode and a multicolor low-res mode. It also supported up to
eight sprites at a time, including extra functions like collision
detection.  Raster  interrupts  allowed programmers  to  change
graphics content while the screen was actually being drawn.

The SID was also a breakthrough for its era, at least within
the home computing market. It was a sound chip built around
digital  synthesis  principles  rather  than  being  a  mere  tone
generator.  It  supported  a  total  of  three  different  sound
generators called voices, each of which could produce at least
four  different  types  of  sounds.  Based  on  current  music
synthesizers  principles,  different  waveforms,  envelopes,  and
filters were available to craft audio output.

COMMODORE PLUS/4

The Plus/4 began as a cheap computer to compete with the
ZX  Spectrum  and  similar  systems.  Much  like  the  VIC-20,
video,  sound,  and  other  functions  were  combined  into  the
single TED chip, which could produce more colors but lacked
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many VIC-II and SID features. The computer also shipped with
a  faster  6502  processor  and  a  more  advanced  version  of
Commodore's BASIC.

Management changes at Commodore led to the technology
being repurposed into an entire suite of business computers
with built-in productivity software, marketed as the successor
to the Commodore 64 and priced to match. As a result of these
miscalculations, the entire line failed in the American market.
In  recent  years  developers  have  shown  the  system's  full
potential, porting existing titles from the C64 and creating new
ones—including  the  well-known  Pets  Rescue platformer  in
2019.

THE CODY COMPUTER DESIGN

Having  reviewed the  systems that  inspired  it,  it's  time to
learn more about the Cody Computer's own design. The Cody
Computer's  overall  design  is  quite  simple,  based  around  a
handful of computer chips and some discrete components.  It
has  a  built-in  keyboard  just  like  its  1980s  predecessors.
Instead of using FPGAs and programmable logic, the design is
limited to  modern equivalents  of  the chips  that  would have
been  available  in  the  era.  When  a  modern  option  is
unavailable, a close substitute was chosen instead. The Cody
Computer  was  never  intended  as  a  product  to  be  sold.  It's
really a DIY project that can be the jumping-off point for your
own designs even if you don't build one as-is.

Like  many  retrocomputers,  the  Cody  Computer  is  built
around the 65C02 microprocessor. It's a modern variant of the
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traditional  6502  originally  produced  by  MOS  Technology,
then Commodore, and finally the Western Design Center. It can
run at speeds over 14 megahertz, but the Cody Computer runs
it  at  a mere 1  megahertz for reasons of both simplicity and
period authenticity. It shares the same 6502 instruction set as
its 1970s and 1980s predecessors,  but replaces many of the
original  6502's  illegal  instructions  with  new  ones  for  bit
setting,  bit  testing,  and storing registers on the stack.  Some
bug fixes are also present. Otherwise it shares the same simple
but powerful 6502 design, with a single accumulator register,
X  and  Y  indexing  registers,  64  kilobytes  of  addressable
memory  space,  and  a  variety  of  powerful  but  easily
comprehensible addressing modes.

The  Cody  Computer  also  relies  on  the  Propeller,  a  very
powerful  and  completely  custom microcontroller  created  by
Parallax,  a  small  company  with  a  long  commitment  to
education, hobbyists, and bespoke engineering. It dates to the
early  2000s  and  has  a  total  of  eight  separate  processors,
called  cogs,  that  can  run  up  to  20  million  instructions  per
second. Its hub memory region contains 32 kilobytes of RAM
and  32  kilobytes  of  ROM,  including  an  interpreter  for
Parallax's SPIN programming language. All of this is available
in a 40-pin DIP package that fits with the overall aesthetic of
the Cody Computer.

The Propeller is the Cody Computer's equivalent of the VIC,
TED, and other custom chips. Out of the eight cogs, we devote
five to video generation, one to sound generation, one to serial
communication,  and one to  managing the  data  and address
bus for the 65C02. For performance reasons the Propeller is
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programmed directly in PASM, the Propeller's low-level RISC
instruction set, rather than SPIN. From the 65C02's perspective
it doesn't matter, as the Propeller presents itself as memory-
mapped hardware.

MEMORY

The Cody Computer can address a total of 64 kilobytes of
memory. The lower 40 kilobytes of memory are all handled by
a single AS6C1008 static RAM chip. A single page of memory
is  mapped to  a  65C22 Versatile  Interface Adapter  for  input
and  output.  The  remaining  24  kilobytes  of  memory  are  all
handled by the Propeller chip itself. 16 kilobytes are used as
shared RAM for video and simulated peripherals.

Instead of a separate ROM chip, the Cody Computer's ROM
is actually included inside the firmware used by the Propeller,
and  when  memory  accesses  hit  the  appropriate  region,  the
ROM contents are returned. The top 8 kilobytes of RAM store
the Cody BASIC ROM and a copy of the character set. In reality
these  are  kept  as  8  kilobytes  in  the  Propeller  immediately
after the shared RAM section.

INPUT AND OUTPUT

Most of the Cody Computer's I/O is controlled by a single
65C22 Versatile Interface Adapter (VIA). The 65C22 contains
two  bidirectional  8-bit  I/O  ports,  a  shift  register,  some
additional handshaking pins, and internal timers.

One of the two I/O ports is used to scan the keyboard and
joysticks, all of which are wired together into the same matrix.
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Three pins are used to select one of eight rows (six keyboard
rows  and  two  joysticks)  with  the  help  of  a  CD4051  1-of-8
switch, with the remaining five pins used to read in the keys or
joystick buttons for that row.

The other I/O port and the shift register are both wired to a
general-purpose expansion port  where they can be used to
interface  with  other  devices.  The 65C22's  handshaking lines
are instead used to detect whether a cartridge containing an
SPI EEPROM is present.

SERIAL PORTS

The Cody Computer has two serial ports, both of which can
operate  at  speeds  of  up  to  19200  baud.  They're  actually
implemented as a dual UART peripheral running in a single
cog on the Propeller.  Both UARTs are hardcoded to support
only an 8-N-1 protocol (one start bit, eight data bits, no parity
bit, and 1 stop bit). Each UART is polling-based but utilizes ring
buffers to reduce the need for 65C02 intervention.

It's assumed that the serial channels being used are unlikely
to be prone to errors, particularly at the relatively low rates
supported  by  the  emulated  peripherals.  Some  checks  for
simple errors are performed at the UART level, and data sent
using the standard serial  protocol contains no checksums or
similar measures.

One of the serial ports is actually the same port as the Prop
Plug connection for programming the board. This is intended
to connect to another system (such as a terminal application)
to load and save data and programs. It would even be possible
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to build a  Datasette-like device that  could be interfaced via
this connection. The other serial port is routed to the expansion
slot alongside the pins connected to the 65C22 VIA.

VIDEO

Video output is handled by the Cody Video Interface Device
(VID) peripheral implemented in the Propeller.  It  supports a
character graphics mode where the screen is divided into 40
columns and 25 rows of  characters.  Each character  has  four
horizontal  pixels  and  eight  vertical  pixels,  similar  to  the
Commodore 64's multicolor character mode. Each pixel can be
one of four colors, two of which are unique to the individual
screen  location  and  two  of  which  are  shared  by  the  entire
screen.

The  VID  has  many  game-focused  features.  Up  to  8
multicolor  sprites  can  also  appear  on  each  line.  Smooth
scrolling  is  supported.  Additional  features  allow  changing
some of the data dynamically to allow more colors, characters,
or  sprites  to  appear  on  the  screen.  These  allow  raster-
interrupt-like  effects  through  the  use  of  built-in  video  chip
features.

Video generation is  very complex.  In  the Cody Computer,
most of the Propeller's internal resources are devoted to the
video  system.  One  of  the  Propeller's  cogs  is  devoted  to
generating the actual NTSC video signal while four other cogs
run in the background to generate video data. These cogs take
the  screen  memory,  color  memory,  character  memory,  and
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sprite  memory  contents  and  generate  pixel  colors  that  are
included in the NTSC signal.

SOUND

Audio is produced by the Cody Sound Interface Device (SID),
a simplified version of the famous SID from the Commodore
64.  This  peripheral  is  also implemented using the Propeller
and contains a rough emulation of the SID in a single cog. The
peripheral supports three voices with Attack-Decay-Sustain-
Release (ADSR) envelopes. The SID's sawtooth, triangle, pulse,
and  white  noise  waves  are  supported,  and  it  also  has  a
rudimentary attempt at features such as ring modulation.

However,  the Cody SID is not a full  SID emulation.  Decay
constants are linear instead of exponential and filters are not
implemented. Many other differences also exist, and it's best
to view the Cody SID as a SID-like device with its own unique
characteristics.

COMPARISONS AND CONTEXT

The  Cody  Computer  is  not  compatible  with  any  of  the
Commodore lineage (though, to be fair, they were rarely very
compatible with each other). In terms of inspiration and design
decisions,  however,  there  is  a  significant  debt.  Much  of  the
overall  philosophy  and  even  some  specific  details  are  very
similar.  During  development  I  sometimes  considered  it  a
“Commodore  Junior”,  a  simplified  system  that  was  also  an
homage  to  the  Commodore  64  in  particular.  I  also  took
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inspiration from how much the Plus/4 engineers were able to
preserve a Commodore feeling despite stripping so much of
the C64 away.

For  example,  the  Cody  Computer  has  two  video  modes
inspired  by  the  C64  and  Plus/4.  The  Cody  Computer's  Its
character-based  graphics  mode  is  influened  by  those
machines'  multicolor  character  mode.  Similarly,  the  sprite
graphics are very similar to the VIC-II's multicolor sprites, even
though they don't support features like collision detection and
scale-doubling. Built-in support for additional sprite banks is
likewise influenced by sprite  multiplexing routines from the
C64. Its bitmap mode is also very similar to those on the C64
and Plus/4, falling somewhere between the VIC-II and TED in
terms of its limitations.

Audio functionality is largely copied from the Commodore
SID  design.  The  Propeller  uses  a  port  of  a  SID  emulation
library from the Arduino to mimic basic synthesis functions,
providing waveforms and ADSR functionality very similar  in
nature  to  the  SID  chip.  Many  other  features  including
combined  waveforms  and  filters  were  intentionally  not
implemented.  The  SID  registers  are  mapped  to  the  same
locations as on the C64, and there is at least a minimal level of
C64 compatibility.

Two side-mounted joystick ports are available as on later
Commodore  machines,  but  they're  wired  into  the  keyboard
matrix  as  rows.  The  keyboard  itself  is  far  from  a  standard
Commodore  layout  and  actively  avoids  the  multi-labelled
PETSCII  hieroglyphics  of  times  past.  A  dedicated  expansion
port exposes many of the 65C22 VIA's I/O pins and a second
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UART from the Propeller, but it does not expose the 6502 bus
as on Commodore machines. No dedicated “user port” exists,
but  the  same  serial  port  used  to  exchange  programs  is
intended for something similar.

For loading and saving files, standard serial communication
is used like a very simple datasette. For the Cody Computer, a
dedicated mass storage device is not only excessive but ruins
the retro spirit. Instead, the intended target is a terminal or file
application running on another computer or phone. However, it
wouldn't be difficult to build a Datasette-like device that could
interface with the Cody Computer over this serial port.

The Cody BASIC provided with the computer is closer to a
tokenized Tiny Basic from the 1970s than to a 1980s Microsoft
BASIC.  It  supports  16-bit  integer  math  rather  than  floating
point, has a limited set of commands, and has a limited feature
set.  However,  the  Cody  Computer's  extensions,  including
arrays and strings, were largely inspired by Microsoft BASIC
from the Commodore. Cody BASIC is also tokenized, though it
stores the programs as plain ASCII to make it easier to load
and  save  BASIC  programs  from  modern  computers.
Tokenization  happens  when  loading,  requiring  some  input
delays by the sender so that the tokenizer can keep up.

For  compatibility  reasons  the  software  uses  what  is
essentially  an  extended  ASCII,  but  the  PETSCII  graphics
characters are available.  Cody BASIC does not allow directly
entering the characters into the input, but the character codes
can  be  specified  in  CHR$ commands.  Cody  BASIC  also
understands  a  reserved  set  of  character  codes  that  work  as
control  codes,  including  clearing  the  screen,  changing
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foreground  and  background  colors,  and  implementing  a
reverse-field  effect.  So  in  most  respects,  Commodore-style
PETSCII  graphics are still  possible even in a BASIC program,
just done differently.

The  Plus/4  approach  of  packing  a  huge  amount  of
functionality  into  the  TED  chip  was  a  major  inspiration  for
using the Parallax Propeller as a similar device. The Propeller's
advanced capabilities then opened the door to creating a more
C64-like set of features. The low-resolution PETSCII graphics
in  the  Cody  Computer's  font  were  inspired  by  various  40-
column extensions written for  the VIC-20.  Having grown up
with a Commodore 64, the source of the inspiration was never
far away.

In fairness, many of the major decisions were taken on the
basis of what elicited the best response from one small dog. I
wouldn't have done it like this. My original thought was to add
a microcontroller or two and create a modernized PET. Instead
the real Cody preferred SID and TED music,  YouTube videos
and emulations of Commodore games, Propeller demos on the
TV, and so many other things I attempted to find some way to
work in.

In  many  respects,  he  reminded  me  of  myself  as  a  very
young child working on computers, electronics, or rockets with
my  father  or  uncle.  My  brain  liked  what  it  saw  and  had  a
glimpse of the big picture, yet I found myself overwhelmed by
all the strange details and held back by tiny hands. And Cody
was, in so many ways, a small dog with the heart and mind of a
very young boy.
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In any event, thanks to my four-legged management, what
you see here is  what we got.  Yet  Cody demonstrated better
acumen, wisdom, and aesthetics through his smiles, gestures,
and tail wags than I ever encountered in my working career. I'll
always  have  doubts  about  certain  design  choices  or
implementation details on my part, but I think Cody was right
about the big picture.  His apparent interest (or lack thereof)
determined  so  much  of  what  did  and  didn't  make  the  cut.
While he was there for so much of this work, he's no longer
here for one last final inspection, big smile, or wag of the tail.
But I do hope he would have been proud.

30





INTRODUCTION

In finished form the Cody Computer is small by computer
standards,  fitting  into  a  rectangle  about  the  size  of  a  large
laptop  trackpad  and  a  couple  of  inches  thick.  Much  of  the
industrial design is inspired by the Commodore 64 and similar
1980s computers with additional influence from the collected
works of  Tomy,  Playskool,  or  Fisher-Price.  The overall  intent
was to produce something that would be identifable as an old-
school  computer  yet  come  across  to  a  bystander  as
unintimidating, fun, and approachable.

From  the  top  view  you'll  notice  a  prominent  case  badge
(complete with an inlaid rainbow-colored badge in the finished
product),  a  large  10mm  power  LED  (blue  according  to  the
design, but you can replace it),  and a 30-key keyboard. The
keycaps are custom but compatible with Cherry MX keystems,
though the Cody Computer uses a nonstandard spacing to fit
everything into such a small package. Standard keycaps won't
work unless you decided to saw them down.
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Top of Cody Computer showing case badge,  power LED, and
keyboard.

While  you'll  spend most  of  your  time from this  position,
looking down at the machine and using the keyboard, much of
its most important functionality is elsewhere.  In particular,  a
variety of ports on the back and right side of the computer are
used to interface with the outside world.

33



Back of Cody Computer showing expansion port, video, audio,
and Propeller port.

Most  of  the  Cody  Computer's  ports  appear  on  the
computer's lower back panel. The largest is an expansion port
that  can be used to  interface  external  devices  or  boot  from
cartridges.  We'll  discuss  the  electrical  characteristics  of  the
expansion port later. For now, it's enough to know it's here.

Next  to  the  expansion  port  are  RCA  jacks  for  NTSC
composite video and mono audio output. The video output can
be connected to  any device that  supports  NTSC video input
(unless,  in  rare  circumstances,  the  display  or  converter  is
incompatible with the software-generated video from the Cody
Computer).  The  audio  output  is  generally  connected  to  a
splitter and then to the left and right channels of the display.

The  last  connector  on  the  back  is  a  four-pin  DuPont
connector  compatible  with  Parallax's  specifications  for  their
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Prop Plug. Initially used to download the firmware to a finished
Cody Computer,  it  later doubles as a serial  communications
port to other computers, mobile phones, or compatible devices
using the same mechanism.

The remaining ports  are  on the  computer's  right  side  (as
viewed from the top).

Right side of Cody Computer showing joystick ports and DC
power connector.

Two of the ports are standard Atari-style joystick ports used
by many of the best 1980s computers. Purely digital, they lack
support for the analog paddles of the Atari and Commodore
systems, but otherwise are nearly identical. Each presents as a
male DB9 connector suitable for use with any standard Atari-
compatible joystick.
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The  other  port  is  the  DC  barrel  jack  responsible  for
delivering  power  to  the  Cody  Computer.  Input  is  typically
around 5 volts delivered from a wall-wart or other transformer
plugged into a mains outlet. Because no switch is built into the
Cody Computer, I suggest connecting an external inline switch
between the DC jack and wall-wart.

MECHANICAL DESIGN

We'll  explain  how  to  build  the  Cody  Computer  in  the
chapter on assembly, but first it's good to have some idea of
what  you're  actually  building.  Aside  from  a  few  core
components,  switches,  and  fasteners,  the  Cody  Computer  is
designed to be printed on any reasonable fused-filament 3D
printer.

The case itself is held together with some semi-permanent
screws  on  the  lower  half  that  also  secure  the  main  printed
circuit board. The screws also hold some slotted brackets for
the keyboard module,  and some rare earth magnets  hold a
removable top section to finish the enclosure.

In addition to being easy to assemble, the Cody Computer is
designed to be easy to take apart. The magnets allow the top
of the case to be easily removed for a closer inspection of the
keyboard and case interior. The keyboard itself can be easily
slid out of its brackets to expose the main printed circuit board
for  the  entire  system.  If  you  do  this  a  lot,  you  may  find
yourself in need of some additional glue, but the idea is for
the system to be open for inquiry in every possible way.
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CASE BOTTOM

The  bottom  subassembly,  built  around  the  case  bottom
itself, is essentially a stack. The printed circuit board containing
the circuitry for the computer rests on standoffs at the base of
the case. Above the PCB are two brackets used to provide some
support for the top of the case, as well as a mounting location
for the keyboard.

Cutaway view of the bottom section of the Cody Computer.

The  entire  stack  is  held  together  by  four  screws  that  are
inserted from the bottom of the case through holes in the PCB
and  into  the  mounting  brackets  at  top.  Pilot  holes  for  the
screws are designed into the brackets, though they may need
to be adjusted for particular printers.

Holes  in  the  back  of  the  case  expose the expansion port,
video and audio connectors, and serial port on the back of the
printed circuit board.
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The mounting brackets contain slots to slide the keyboard
assembly into.  The right bracket also contains punchouts for
the joystick ports and DC power connector. Recessed holes at
the top of the brackets contain magnets that will anchor to the
case top. The keyboard itself is a separate piece.

KEYBOARD MODULE

The keyboard module consists of a keyboard plate, a printed
circuit board, and a set of Cherry MX compatible mechanical
keyswitches and their keycaps. The printed circuit board rests
along the bottom of the keyboard plate, with the keyswitches
pressed in  from the top.  The switches  are  soldered into  the
PCB, along with a DuPont connector, and the keycaps pressed
on.

Cutaway view of the keyboard module.

The keyboard plate is sized to friction-fit into the slots on
the brackets mentioned earlier.  One side of  the keyboard is
slid into place, followed by the other. This allows the keyboard
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to be removed and the underlying PCB for the Cody Computer
to be examined for educational purposes.

Bottom assembly with keyboard module slotted into place.

With the keyboard in place, all that remains is the top cover
for the Cody Computer.

CASE TOP

Similar to the bottom cover, the top cover has holes for the
keyboard, case badge, and the holder for the power LED. These
parts are glued or press-fit to the top of the case. Four bosses
for magnets also exist on the top of the case. In these locations
magnets are glued into place, matching those inserted into the
brackets attached to the lower half of the computer.
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Cutaway view of the top section of the Cody Computer.

With the magnets correctly affixed to the brackets and the
case top, the top cover can be easily popped on and off the
remainder of the assembly.

Cutaway view of the assembled Cody Computer.
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OPENSCAD FILES

All mechanical designs for the Cody Computer were created
using OpenSCAD and released under an open-source license.
This means that the original design files are available to review
and even change if you need to. The generated STL files for
each  component  are  available  and  should  be  the  primary
source  for  printing  Cody  Computer  parts  under  normal
circumstances. The OpenSCAD files were only there to produce
the  canonical  set  of  STLs  for  the  Cody  Computer  using  a
standard open source tool.

However, the OpenSCAD files are available if you need to
adjust them for your own 3D printer or parts.  They're direct
translations  from  pencil-and-paper  sketches  so  they  aren't
particularly pleasant to work with.  The files aren't  done in a
parametric  CAD  style,  magic  numbers  are  everywhere,  and
changes  to  one  measurement  will  often  necessitate  other
changes. To the extent that changes are possible, it's wise to
limit them to adding or subtracting fudge factors for specific
3D printer setups or part substitutions.

module CaseBottom() {

    difference() {

        union() {

            // bottom with cavity
            difference () {

                // main shape
                hull() {

                    translate([0, 2, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

                    translate([0, 103, 2]) rotate([0, 90, 0]) cylinder(h=165, r=2, $fn=20);

                    translate([0, 0, 25]) cube([165, 105, 1]);
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Example from Case.scad showing heavy use of magic numbers.

The Case.scad file contains the designs for the case top, case
bottom, LED holder, badge, and badge inlays. Each portion of
the  design  resides  in  its  own  SCAD  module  (CaseTop, 
CaseBottom,  LEDHolder,  LEDHolder,  CaseBadge,  and

                }

                // interior
                translate([2, 2, 2]) cube([161, 101, 25]);

            }

            // PCB mounting standoffs
            translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=9.63, d=10, $fn=20);
            translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=9.63, d=10, $fn=20);
        }

        // screw heads
        translate([2.5 + 5, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5, 0]) cylinder(h=7.63, d=6.5, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5 + 90, 0]) cylinder(h=7.63, d=6.5, $fn=20);

        // screw holes (gives a couple of layers to punch out rather than using supports)
        translate([2.5 + 5, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
        translate([2.5 + 5, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);
        translate([2.5 + 5 + 150, 2.5 + 5 + 90, 7.63 + 0.20]) cylinder(h=10, d=3.1, $fn=20);

        // vent holes
        for(count = [0 : 6]) {
            translate([15 + count * 8, 15, 0]) VentHole();
            translate([15 + count * 8, 105 - 15 - 30, 0]) VentHole();
            translate([165 - 15 - 4 - count * 8, 15, 0]) VentHole();
            translate([165 - 15 - 4 - count * 8, 105 - 15 - 30, 0]) VentHole();
        }

        // expansion port
        translate([2.5 + 34.2, 0, 4]) cube([58, 10, 17 + 10]);

        // video port
        translate([2.5 + 95.7, 0, 11.23]) cube([12, 10, 17]);

        // audio port
        translate([2.5 + 114.9, 0, 11.23]) cube([12, 10, 17]);

        // prop plug port
        translate([2.5 + 134.1, 0, 11.23]) cube([12, 10, 17]);

        // side panel
        translate([0, 10 + 2.5, 11.23]) cube([5, 80, 15]);
    }
}
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BadgeInlay).  In  some  cases  these  modules  rely  on  other
modules within the same file.

The  Keyboard.scad file  contains  the  designs  for  the
keyboard plate (as the KeyboardPlate module) and keyboard
brackets. The two keyboard brackets are somewhat different as
one  contains  punchouts  for  the  DB9  Atari  joystick  ports
(KeyboardBracketWithHoles),  while  the  other  does  not
(KeyboardBracket).  A helper module,  DB9Hole,  contains the
shape of the hole.

The  Keycap.scad file  contains  the  keycap  designs.  The
Keycap module has the design for a normal keycap, with the
legend specified as a parameter.  The designs for the keycap
legends  exist  as  SVG  files  in  a  subdirectory,  with  the
appropriate SVG legend being subtracted from the keycap's
face based on the parameter.

The spacebar is a special keycap and has its own module,
Spacebar. Supporting modules are KeySlice, which generates
a  two-dimensional  keycap  shape  used  for  extrusion,  and
KeyStem, which creates a Cherry MX-compatible keystem. The
tolerances for a suitable keystem are quite small, and if you
need to modify any of the SCAD files directly, it will likely be
this one.

The  Keychain.scad file  is  unused  for  the  actual  Cody
Computer build, but I've included it anyway. It's a design for a
simple keychain based on the Cody Computer's  case badge
and  has  similar  assembly  requirements.  During  the  Cody
Computer's  development,  one of  these was used to test  the
longevity of air-dried clay for keycap legends.
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ELECTRONIC DESIGN

We've  discussed  the  overall  concept  behind  the  Cody
Computer and how it fits together mechanically, so now we'll
talk about how the actual electronics work.  In many respects
this is a guided tour through the schematics, starting with the
power supply and going on to the microprocessor, RAM, and
other major components.

While excerpts of the schematics are available here, the full
schematics are also available as original files or PDF exports.
It's  recommended  to  follow  along  with  those  if  you're
particularly interested in any of the electrical details. The Cody
Computer was designed using KiCad 5 and later KiCad 6, so
even the software used to design it  is  available as free and
open source software.

POWER SUPPLY

The  Cody  Computer's  power  supply  circuit  is  simple  but
very important. Almost all of the glitches and transient faults
encountered when developing the computer were actually the
result of glitches in the power supply, either from third-party
power supply boards or from loose connections in the wires
supplying power to the breadboards.
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Schematic of the Cody Computer's power supply.

For the power supply circuit, a standard DC barrel jack (J1)
supplies power from a wall-wart transformer or other device.
The external device typically supplies power at a level around
5  or  6  volts.  This  is  regulated  by  a  LM2937ET-3.3  voltage
regulator (U2) that produces 3.3 volts from the input. There's
also a rather large capacitor (C5) to take care of any minor
wobbles. A 1 kilohm resistor (R1) connects to a 2-pin plug (J2)
for the power LED, so that the LED turns on whenever power is
being supplied to the circuit as a whole.

The power supply circuit  is  a  subset  of  the power supply
circuit featured in Andy Lindsay's Propeller Education Kit Labs:
Fundamentals.  Aimed  at  students,  that  circuit  was  powered
from a 9 volt battery and had regulators for both 5 volts and
3.3 volts. Only a subset of that circuit is needed here for the
3.3 volt supply.
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Andy  Lindsay's  text  and  the  associated  kit  were  my
introduction  to  the  Propeller  and  were  very  useful  in
getting  started.  I  went  through  a  few  9  volt  batteries
during  my  own  later  experiments  and  ran  into  some
weirdness when the batteries started to go dead. For very
long-term projects use your bench power supply.

There  are  also  individual  0.1  microfarad  decoupling
capacitors scattered throughout the circuit,  typically one per
integrated circuit and sometimes more. These are omitted from
the simplified schematics in this section but appear in the full
schematic. We place these capacitors very close to the positive
voltage and ground pins on each integrated circuit to ensure a
reliable and noise-free power supply.

Part of a Cody Computer schematic showing some decoupling
capacitors.

Note  that  as  the  Cody  Computer  doesn't  have  a  built-in
power switch because of space constraints, it's beneficial to get
an inline switch. There are many power switches that accept a

46



DC jack  connector,  and  similar  switches  have  been  used  on
everything  from  the  ZX81  to  most  of  today's  Raspberry  Pi
models. Such items are available from Amazon, Sparkfun, and
a  variety  of  other  retailers,  usually  costing  less  than  a  few
dollars.

PROPELLER

Much of the circuit is offloaded to a single microcontroller,
the  Parallax  Propeller.  It  does  most  of  the  same  jobs  as
Commodore's  old  VIC  or  TED,  and  sometimes  a  lot  more.
Fortunately, it's able to keep up as it's a rather unique (and
open-source)  device  that  actually  contains  eight  lightweight
processor "cogs" on a single chip. It's used to clock the 65C02
microprocessor, monitor and decode the 65C02 bus, perform
serial  communications,  and  generate  video  and  sound.  The
complexity  of  the  schematic  sheet  containing  the  Propeller
gives you an idea of just how important the chip is to the Cody
Computer's functioning.
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Schematic of the Propeller and closely-related circuitry.

When the circuit  powers up,  the Propeller  (U3) wakes up
using  its  own  internal  oscillator.  It  later  switches  to  a  a  5
megahertz crystal (Y1) which internally is multiplied by 16 to
give an actual clock frequency of 80 megahertz. Because each
Propeller instruction takes four cycles (with some exceptions),
there are 20 million instructions per second  per cog. That's a
lot of CPU cycles, especially when you take into account the
Propeller's built-in support for video generation. On the other
hand, it has a lot to do!

On startup, it checks to see if a program is being uploaded
via the Prop Plug.  If  a  program is  being uploaded,  the Prop
Plug  (J3)  generates  a  reset  pulse  and  begins  sending  the
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program. We need this feature to program the Propeller for
the first time, but after that, external devices shouldn't be able
to  reset  the  computer.  To  inhibit  this,  a  small  jumper  (JP1)
connects the Prop Plug reset pin to the Propeller's reset pin
and a pull-up resistor (R2).  When removed, the Prop Plug's
reset pin is disconnected so the Propeller's reset pin cannot be
pulled low and trigger a reset. Other features are unaffected,
allowing it to work as a serial user port to communicate with
other devices.

Aside  from  the  rare  circumstance  when  the  Propeller  is
being programmed, it will load its firmware from a 32 kilobyte
I2C EEPROM (U4), a 24LC256 or similar. The Propeller has an
internal 64 kilobyte memory space of its own, half of which is
RAM and half of which is ROM. The content of the 32 kilobyte
I2C EEPROM is copied into the RAM portion and then run, first
using  the  Propeller's  built-in  SPIN  interpreter,  but  soon
dropping directly into the Propeller's own assembly language.
Contained  in  that  EEPROM is  not  only  the  program for  the
Propeller but also the ROM for the 65C02.

Once the Propeller begins running its code, most of its I/O
pins are used for communicating with the 65C02's system bus
and  other  devices.  Eight  of  the  Propeller's  I/O  pins,  P16
through  P21,  are  used  to  generate  the  65C02's  PHI2  clock
signal and reset pulse, chip select signals for other devices on
the board, and monitor the read/write signal from the 65C02.
An  additional  two  pins  are  used  for  a  second  UART  that
interfaces with the Cody Computer's expansion port.

When running, one of the Propeller's many responsibilities
is  to  decode  the  65C02's  address  bus.  Along  with  the
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mentioned read/write signal, it uses I/O pins P0 through P15
to interface with the 65C02's address and data buses. We're
even able to share some pins and minimize part count because
of a unique characteristic of the 65C02's bus. The 65C02 puts
the address on the address bus throughout a clock cycle, but it
only puts the data on the data bus during the latter half of the
cycle when PHI2 is high. During the first part, when PHI2 is low,
the data bus is essentially disconnected.

This means that we can actually share the same pins on the
Propeller  (P0 through P7)  for  both.  We just  need a  way to
control the lower eight bits of the address bus and shut them
off  to  avoid  a  collision  when  PHI2  is  high.  To  solve  that
problem, a 74HC541 buffer (U1) sends the lower eight address
bits to the Propeller when enabled. When disabled, its outputs
are also tristated, allowing the data lines access instead.

This technique can be used by any 6502-based system,
not  just  a  Propeller-based  one.  In  the  Propeller
community  it  became popularized from Dennis  Ferron's
PROP-6502 and Jac Goudsmit's Propeddle, both of which
used it to solve a similar problem of conserving I/O pins
on the Propeller.

The Propeller is also responsible for generating NTSC video.
The chip itself  has  built-in  circuitry for  generating NTSC or
PAL video output, generating a variety of colors. However, the
circuitry still  needs to be programmed on the software side
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and interfaced on the hardware side using a digital-to-analog
converter (DAC) made of resistors.

Schematic detail showing the video output pins, resistor DAC,
and RCA jack.

For the Cody Computer, I/O pins P24 through P26 are used
as  the  video  output  pins.  These  are  summed  into  a  single
analog signal through a DAC made of up of 1.1 kilohm (R6),
560 ohm (R5),  and 270 ohm (R4) resistors connected to an
RCA composite video jack (J4).  The Cody Computer uses 1%
tolerance resistors for this particular part of the circuit, but the
values  aren't  that  finicky.  Some resistor  values  in  the  same
ballpark should suffice for our purposes.  The resistor values
themselves  come  from  André  Lamothe's  Unleashing  the
Propeller C3 about the eponymous credit card sized computer.

Audio  output  is  handled  by  the  Propeller  as  well.  The
Propeller's  internal  counters  and  support  for  pulse  width
modulation is  used to  output  a  pulse  with  a  changing duty
cycle. The stronger the signal, the longer the pulse stays on
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before  turning  off.  This  output,  in  turn,  gets  converted  by
support circuitry into a normal audio signal.

Schematic detail of the audio circuit.

For the Cody Computer, Propeller I/O pin P27 is used for
the audio output. It connects to a 220 ohm resistor (R7) which
is  itself  connected  to  a  0.1  microfarad  capacitor  (C6).  The
resistor  and  capacitor  essentially  smooth  out  the  on-or-off
pulses  generated  by  the  Propeller.  This  output  is  further
filtered  by  a  larger  10  microfarad  capacitor  (C7)  that  also
couples the output to the RCA output jack (J5).

The circuit itself comes from a September 2006 Propeller
forum posting by Parallax engineer Paul Baker, who noted that
the circuit was not necessarily “optimal” but would suffice. I've
been using it since I started prototyping with the Propeller on a
breadboard,  and  it's  been  a  part  of  what  became the  Cody
Computer ever since. You'll find many variations of the same
circuit  floating  around  with  different  component  values  for
different frequency cutoffs.
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65C02

The  Cody  Computer's  brain  is  the  65C02  microprocessor
(U5). The actual computing performed by the Cody Computer
happens entirely as a result of the 65C02's actions. It's also
responsible for directing what happens in the rest of the circuit,
though the Propeller assists greatly when it comes to decoding
the 65C02's address bus.

Schematic  detail  showing the 65C02 microprocessor  and its
connections.

The  Propeller's  generated  PHI2  signal  is  directed  to  the
65C02's input on pin 37; this pin has gone by various names
over the years, but in modern variants, it's essentially the PHI2
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clock input. A Propeller-generated reset pulse is also applied
to its reset pin on startup. The 65C02's IRQ line is connected to
the corresponding pin on the 65C22 I/O chip so that timers
and output port events can signal the processor when needed.

The  65C02's  other  interrupt  line,  the  non-maskable
interrupt  (NMI),  isn't  used  in  the  Cody  Computer  and  is
connected to 3.3 volts. Several other 65C02 pins, such as those
for setting overflow or enabling the address bus, are also tied
high. Some unused pins are left unconnected and do not pose
a concern for our purposes.

One notable pin is the RDY pin, which is connected to a 3.3
kilohm pull-up resistor (R8) rather than directly tied high to
3.3  volts.  This  is  because  on  the  65C02,  a  WAI (wait  for
interrupt) instruction can actually make the RDY pin go low.
The 65C02 has no built-in pull-up resistor to deal with this
problem.  Without  a  pullup  resistor,  the  65C02  would
essentially be connecting the positive voltage to a logic zero
when  a  WAI instruction  runs.  To  avoid  that  problem,  there
needs to be a pull-up resistor.

The 65C02's other connections are to the system bus. The
65C02's address pins (or a subset thereof) are wired to the
Propeller, SRAM, and 65C22. The data bus pins are similarly
connected. Lastly, the 65C02's RWB pin, a read-write strobe
indicating  whether  the  current  bus  operation  is  a  read  or  a
write,  is  connected  to  the  same  devices  and  completes  the
necessary  bus  signals.  The  PHI2  clock  generated  by  the
Propeller is used throughout the entire circuit instead of the
PHI2  output  from  the  65C02.  The  Propeller  generates  the
master clock, so the 65C02's PHI2 output is left unconnected.
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RAM

Most of the Cody Computer's RAM is provided by a single
AS6C1008 static  RAM chip  (U6).  The  chip  is  actually  a  128
kilobyte memory chip, but the Cody Computer uses less than
half of that—40 kilobytes reside in the static RAM and the top
24  kilobytes  are  inside  the  Propeller  itself.  Unfortunately,
while there are 32 kilobyte static RAM chips and 128 kilobyte
static RAM chips readily available,  modern production of 64
kilobyte static RAM is nonexistent. As a result, designers just
use the next biggest size and ignore the extra space.

Schematic detail showing static RAM connections.

The static  RAM itself  is  rather unremarkable.  The address
and data pins come directly from the 65C02, as does the read/
write  strobe  indicating  the  type  of  memory  operation  in
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progress. The PHI2 clock and chip select both come from the
Propeller,  which  is  responsible  for  decoding  addresses  and
selecting the appropriate chip.

If  you  look  closely  at  the  address  and  data  lines  you'll
realize they don't match up with the exact same line on the
65C02.  For  example,  the  65C02's  address  line  A12  is
connected to the static RAM's address line A8. It may appear to
be an error, but it's a quite intentional choice. The static RAM is
really  just  a  sequential  bunch  of  byte-sized  buckets,  and  it
doesn't  care  what  65C02  address  maps  to  its  own  internal
address as long as the mapping is one-to-one.

You can't use this in all cases, but for static RAM chips and
similar, switching around the lines like this is a common trick
when you're trying to route your printed circuit board. That's
what happened to the Cody Computer; it was easier to route
the  connections  if  some  of  the  address  lines  were  moved
around.

65C22 AND I/O

Aside from two serial  ports provided by the Propeller,  all
input  and output  from the Cody Computer  is  handled by a
single 65C22 Versatile Interface Adapter (U7). We use some
additional  circuitry  to  assist  in  scanning  the  keyboard,  thus
freeing up more of the 65C22's I/O pins for an expansion port.
In  general,  the  Cody  Computer's  I/O  is  there  to  provide
mechanism, not policy. In other words, you have direct access
to I/O pins which you can program however you want, whether
that's to perform modern SPI or I2C communications or just
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turn individual lines on and off. The only exception is when a
Cody Computer cartridge is inserted into the expansion port,
at which point certain pins read binary code from an external
SPI memory.

65C22 and associated I/O ports.

The 65C22 is connected to the system's data and address
buses, with the PHI2 clock and chip selects being provided by
the Propeller. The 65C22 also has an /IRQ pin that's connected
to the 65C02's own interrupt pin, thereby letting the 65C22
trigger  interrupts  based  on  timers  or  I/O  events.  The
remainder  of  the 65C02's  pins  are  dedicated to  two output
ports, port A and port B, both of which are 8-bit and have some
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additional out-of-band pins used to handle handshaking or for
general I/O.

The Cody Computer uses the 65C22's port  A to scan the
keyboard and joysticks. The keyboard and joystick ports are all
combined into the same matrix, consisting of five columns and
eight rows. The last two of the eight matrix rows are the two
joystick ports, with all other rows part of the keyboard itself.

To cut down on pin counts, the CD4051 one-of-eight analog
switch (U8) is  used to assist  in  scanning rows.  Three output
lines from the 65C22 are used to select one of eight outputs
on the CD4051. This specific use of the CD4051 goes back to
the Oric computer.

The use of the CD4051 as a keyboard scanning aid is
explained as part of Garth Wilson's  Circuit Potpourri. His
entire  Wilson Mines Company website is a vital resource
for those new to the 65C02, with his 6502 Primer required
reading  for  anyone  embarking  on  their  own  65C02
computer design.

Both  the  keyboard  rows  and  keyboard  columns  are
connected to the actual keyboard by the keyboard connector
(J7).  Each  column  is  connected  to  a  pull-up  resistor  (R9
through R13) so that, by default, a key that is not pressed will
register as a logic 1. When a row is scanned, the selected row is
pulled low by the CD4051, with all others left disconnected in a
high-impedance state. In this situation, when a key is pressed,
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it completes the circuit to ground, resulting in a logic 0 for the
pressed key.

The joystick ports, which reside on the main board, work in a
similar fashion. Both joystick ports are male DB9 connectors
(J8 and J9) that support a subset of the Atari joystick pinout
common  to  the  8-bit  era.  Each  port  has  the  standard
connections for up, down, left, right, and fire button wired as
the keys for a keyboard row, while the ground pin for each port
is wired as one of the rows on the CD4051's outputs. To scan a
joystick, one selects the row just as for a keyboard, then reads
the joystick pins.

One minor difference is that the joystick pins have diodes
(D1  through  D10)  connected  to  them  to  avoid  ghosting,  a
phenomenon  where  simultaneous  keypresses  can  result  in
erroneous data.  We don't worry about this for the keyboard
itself, as there are a very limited number of valid multiple-key
combinations and ghosting will  not  be a  problem for  those.
However,  for  the  joysticks,  where  vigorous  action  and many
multiple presses can be expected, we need to directly deal with
the ghosting issue.

The remainder of the 65C22's I/O pins are connected to the
expansion port (J6). All eight I/O pins from 65C22 port B are
routed there and can be used as general-purpose pins in most
situations.  The CB1 and CB2 pins can be used as handshake
pins  for  communication  with  compatible  devices,  but  also
feature a shift-register mode that will likely be more useful
for most applications. While not connected to the 65C22, the
Propeller's  second  UART  has  its  transmit  and  receive  pins
routed to the expansion port as well.
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The CA1 and CA2 handshake pins, not used with port A, are
used to check whether a Cody Computer cartridge has been
connected  to  the  expansion  slot.  CA1  is  tied  high  via  a  10
kilohm  resistor  (R14),  but  will  be  pulled  down  during  the
cartridge-check  routine  if  CA1  and  CA2  are  actually  tied
together by a cartridge in the slot. In all other cases, CA1 will
remain at a high logic level and not trigger anything.

In  the  event  a  cartridge  is  detected,  the  value  of  PB4  is
examined to determine whether the cartridge uses two-byte or
three-byte addressing.  Following that,  PB0 through PB3 are
used to read the contents of the cartridge into memory over a
lowest-common-denominator SPI protocol for memories.

KEYBOARD

The  Cody  Computer's  keyboard  exists  as  a  separate
schematic and printed circuit board. It contains 29 keys and a
spacebar. The physical layout of the keys differs significantly
from the electrical layout, with the keyboard itself arranged in
a  very  compact  QWERTY  layout.  The  keyboard  also  uses  a
nonstandard spacing to keep the size down.

Three  of  the  keys—the Cody,  Meta,  and Arrow keys—are
special keys used to select other characters, change caps lock,
and delete or enter text. Two switches are actually combined
into the spacebar, one on each side of the spacebar' keycap.
This solution was actually easier than designing a nonstandard
spacebar stabilizer.
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Schematic with keyboard matrix and connector.

The keyboard matrix consists of 31 Cherry MX or compatible
switches  (SW1  through  SW31)  arranged  into  an  electrical
matrix  of  five columns and six  rows.  The spacebar  uses two
switches  (SW4  and  SW5)  placed  on  either  end  of  the
spacebar; from the standpoint of the keyboard matrix they're
more  or  less  the  same  switch.  The  matrix  is  wired  to  the
keyboard connector (J1) and is connected to the main board via
a cable.

No diodes are added to the keyboard to prevent ghosting.
Instead the Cody Computer is designed so that no more than
two  keys  would  need  to  be  pressed  simultaneously  at  any
time,  thereby  avoiding  ghosting  issues;  at  least  three
simultaneous presses would be necessary to produce ghosting.

Note  that  this  means  the  keyboard  is  a  poor  choice  for
arcade games or similar. In those situations the joystick ports
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are the more proper input device. As mentioned above, these
do have diodes to prevent ghosting and allow the joysticks to
be read without problems under heavy use.

PROPELLER FIRMWARE

As  mentioned  earlier,  much  of  the  Cody  Computer's
functionality comes from the Propeller chip. That functionality
is specified within the Propeller's firmware. Mostly written in
the Propeller's own assembly language, PASM, with minor use
of  SPIN,  the  Propeller's  interpreted  high-level  language,  it
should be at least somewhat understandable to anyone with
experience in low-level programming.  The files are released
under  the  GPL  and  are  available  with  the  rest  of  the  Cody
Computer's files.

The Propeller actually contains eight small processors, each
of  which  can  run  its  own  small  program  of  up  to  512
instructions. While this may not sound like a lot, it suffices for
most  low-level  programming,  and  larger  programs  can  be
written  in  SPIN  or  executed  using  various  low-level
workarounds.

For  our  purposes,  we  rely  on  the  fast,  deterministic
execution of Propeller assembly language code, so those don't
apply to us. Instead, we break up the necessary parts of the
Cody  Computer's  emulated  hardware  into  small  programs,
then start them up on individual cogs, letting them run until
the computer is shut off.
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The firmware is split up into five files:

The cody_computer.spin file contains startup code and
drives the circuit.
The cody_uart.spin file contains code for two emulated
serial UARTs.
The cody_audio.spin file contains a rough emulation of
the SID sound chip.
The cody_video.spin file contains code for NTSC color
video generation.
The cody_line.spin file contains per-line rendering code
used for video.

Each file is heavily commented but we'll do a brief review of
each one here in the book. If you're new to the Propeller you
may want  to  find a  reference  for  PASM and SPIN from the
Parallax  website,  especially  if  you're  going  to  be  following
through in the original source files.

CODY_COMPUTER.SPIN

The cody_computer.spin file contains the main startup code
for the entire Cody Computer, both Propeller and 65C02 code,
and  acts  as  the  overall  driver  for  the  rest  of  the  system.
Everything else that happens in the Cody Computer directly or
indirectly happens because of the contents of this file.

In its DAT section it declares the memory regions that will be
visible  to  the  65C02 bus.  One region  is  a  16-kilobyte  area
containing  zeroes,  used  for  the  emulated  16-kilobyte  RAM.
Following that is an 8-kilobyte area that contains the contents

• 

• 

• 

• 

• 
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of the cody.bin file, the 65C02 firmware that contains the Cody
Computer's code and BASIC interpreter.

Declarations  for  shared  memory  mapped  into  the  65C02's
address space.

The actual  startup code is  written in SPIN,  the Propeller's
interpreted  language,  and is  contained in  the  start method.
The Propeller contains a copy of the SPIN interpreter, and once
it starts up, it calls this routine and starts interpreting the code.
From there, control is passed to us. Our code starts the audio,
UART,  and video cogs of the code,  then uses the Propeller's
coginit function to replace the code in the current cog with the
driver code under cogmain.

The Cody Computer's startup sequence as written in SPIN.

The  rest  of  the  file  is  written  in  PASM.  When  control  is
passed to cogmain, the assembly language entry point, it sets
up  some  of  the  Propeller's  I/O  pins  and  does  some  quick
memory calculations to speed up the code later. After that, it

DAT

memory

    long 0[4096]    ' 16K shared RAM starting at 65C02 address $A000
    long            ' 8K ROM (BASIC, character set) starting at 65C02 address $E000
    FILE "cody.bin"

PUB start

    audio.start(@memory)
    uart.start(@memory)
    video.start(@memory)

    waitcnt(cnt + 10000)
    coginit(0, @cogmain, @memory)
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emits  a  reset  pulse  to  start  the  65C02  by  calling  the
emit_reset routine.

The entry point in Propeller PASM.

The Propeller emit_reset routine that starts the 65C02.

Once done, the program enters the main loop, under cycle,
where  it  handles  all  the  operations  necessary  to  drive  the

cogmain         mov     memory_ptr, PAR

                ' adjust ROM cutoff location with start address of memory
                add     BOUNDARY_ROM, memory_ptr

                ' configure the IO pins used for 6502 and bus signals
                mov     OUTA, INIT_OUTA
                mov     DIRA, INIT_DIRA

                ' run 65C02 reset sequence of 10 clocks with reset high
                call    #emit_reset

                ' dummy read to align our code with hub access windows
                ' before commencing the main loop driving the 6502
                rdbyte  data, addr

emit_reset
                ' begin with reset high and emit 20 clock cycles
                or      OUTA, MASK_RES
                mov     count, #20
:loop
                ' clock low
                andn    OUTA, MASK_PHI
                mov     temp, cnt
                add     temp, #40
                waitcnt temp, temp

                ' clock high
                or      OUTA, MASK_PHI
                mov     temp, cnt
                add     temp, #40
                waitcnt temp, temp

                ' bring reset low after 10 cycles
                cmp     count, #10      wz
if_z            andn    OUTA, MASK_RES

                ' next clock cycle
                djnz    count, #:loop

                ' bring reset high when done
                or      OUTA, MASK_RES

emit_reset_ret  ret
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circuit for a single cycle. It brings the PHI2 clock signal for the
65C02 low, reads the address on the bus to determine what
device to use,  selects the appropriate device,  and brings the
PHI2  clock  signal  high.  Checks  are  also  performed  to
determine if the Propeller itself is the device being selected,
which will happen if the address is at the top 24 kilobytes of
memory.

Because this main loop also produces the main clock for the
rest of the circuit, it must be exact with its timing. In order to
achieve  that,  we  perform  what  is  called  a  hub  operation,
syncing  the  code  up  with  the  rest  of  the  Propeller,  before
entering the main loop. After that, we go through and add up
the  time  required  for  each  instruction,  including  other  hub
operations, to ensure that a stable 1 megahertz clock results
from the code regardless of any path taken through it.

cycle
                ' Begin the main 6502 loop by bringing phi low to end
                ' the previous cycle, then reset the OUTA/DIRA config.
                '
                ' Once we've reset our state to begin the next cycle,
                ' read from the inputs and determine what we need to do.

                andn    OUTA, MASK_PHI          ' phi2 low at start (1)
                mov     DIRA, INIT_DIRA         ' reset IO direction (2)
                mov     OUTA, INIT_OUTA         ' reset output state (3)
                mov     addr, INA               ' read address (4)
                and     addr, MASK_WORD         ' mask address bits (5)
                cmp     addr, BOUNDARY_RAM  wc  ' test address for prop memory (6)
if_nc           jmp     #internal               ' prop internal memory path (7)
                cmp     addr, BOUNDARY_VIA  wc  ' test address for sram or io (8)
if_nc           andn    OUTA, MASK_IOSEL        ' io selected (9)
if_c            andn    OUTA, MASK_RAMSEL       ' otherwise ram selected (10)
                or      OUTA, MASK_ABE_PHI      ' address bus off, phi2 high (11)
                nop                             ' wait (12)
                nop                             ' wait (13)
                nop                             ' wait (14)
                nop                             ' wait (15)
                nop                             ' wait (16)
                nop                             ' wait (17)
                nop                             ' wait (18)
                nop                             ' wait (19)
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The main loop that drives the rest of the circuit, including the
65C02.

In this latter case, it also has to read data from the 65C02's
bus into the Propeller or write data from the Propeller onto the
65C02's  bus.  In  these  cases,  control  jumps  to  the  internal
branch,  and  on  to  the  labelled  read or  write sections
depending on the exact operation. It  also performs a special
check to see if the 65C02 is attempting to write to the top 8
kilobytes, and if so, ignore it. This emulates a traditional ROM
at the top of the address space by making it unwritable.

                jmp     #cycle                  ' next loop (20)

                ' Accessing hub memory so capture the address while the
                ' address bus is enabled, then process as read or write.

internal        sub     addr, BOUNDARY_RAM      ' adjust address for prop (8)
                add     addr, memory_ptr        ' adjust with base pointer (9)
                test    MASK_RWB, INA       wz  ' read or write op? (10)
                or      OUTA, MASK_ABE_PHI      ' address bus off, phi2 high (11)
if_z            jmp     #write                  ' write operation (12)

                ' Performing a read operation from the hub memory, so we
                ' have to read from memory during the hub window and put
                ' the data on the data bus (note that the pin direction
                ' also has to be changed to actually put the data on the
                ' 6502 bus).

read            nop                             ' wait (13)
                nop                             ' wait (14)
                rdbyte  data, addr              ' read byte (15, 16)
                or      OUTA, data              ' set output data (17)
                or      DIRA, MASK_LOBYTE       ' enable outputs (18)
                nop                             ' wait (19)
                jmp     #cycle                  ' next loop (20)

                ' Performing a write operation, so we need to get the
                ' data from the 6502 data bus and write it to hub ram
                ' during our hub window.

write           mov     data, INA               ' get input data (13)
                cmp     addr, BOUNDARY_ROM  wc  ' test for non-writeable ROM area (14)
if_c            wrbyte  data, addr              ' write input data (15, 16)
                nop                             ' wait (17)
                nop                             ' wait (18)
                nop                             ' wait (19)
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The paths taken when the Propeller's memory is accessed by
the 65C02.

CODY_UART.SPIN

The  Cody  Computer  contains  two  UART  devices  used  for
serial communication. However, both are implemented purely
in software inside the Propeller and are exposed to the 65C02
through shared memory in the Propeller. Each UART uses ring
buffers in memory for transmitted and received information, a
technique very common in serial communications.

Both are defined in the same file and run in the same cog,
with coroutines used to interleave the running code for both
UARTs.  The  Propeller  has  a  special  machine  language
instruction,  jmpret,  that  performs  a  jump  while  updating  a
return  address,  making  it  well-suited  for  implementing
coroutines.

The cody_uart.spin file contains a start method that's called
by the main program to launch the UART cog. Passed along as
a  parameter  is  the  base  of  the  shared memory area  in  the
Propeller. Because the UART will talk to the rest of the circuit
using addresses in shared memory it needs to know where the
shared memory begins within the Propeller.  From there,  the
start method, written in SPIN, eventually launches a new cog
with assembly code using cognew.

                jmp     #cycle                  ' next loop (20)

PUB start(mem_ptr)
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The UART start entry point written in SPIN.

The  assembly  code,  starting  under  cogmain,  begins  by
adjusting a variety of memory pointers with the base address
of shared memory. This way the adjustment only occurs once
at the start of the program rather than each time it reads or
writes a value. After that, it configures the Propeller I/O pins
used for serial I/O and does initial setup for the coroutines.

Two variables, uart1_task and uart2_task, store the current
positions within the  uart1 and  uart2 routines (the names are
just a convention and could have been anything). The UARTs
are implemented within the  uart1 and  uart2 routines,  which
are identical except that they use different local variables and
I/O pins.

The PASM cogmain that sets up the UARTs.

Control initially begins with uart1. On each loop it begins by
checking if the UART is enabled, and if so, reading the baud
rate  from  the  UART's  configuration  settings.  Once  read  the
baud  rate  is  converted  to  a  time  value  using  the

    cognew(@cogmain, mem_ptr)

cogmain
                ' Adjust all pointers using hub memory base address
                mov     temp, #18
:adjust         add     UART1_CONTROL, PAR
                add     :adjust, INC_DEST
                djnz    temp, #:adjust

                ' Initialize serial port pins
                or      DIRA, UART1_TX_PIN
                or      OUTA, UART1_TX_PIN

                or      DIRA, UART2_TX_PIN
                or      OUTA, UART2_TX_PIN

                ' Prepare to run as coroutines
                mov     uart2_task, #uart2
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BAUD_RATE_TABLE. If the UART is disabled then it does some
cleanup at the end and loops until the UART is reenabled.

The initial lines of the UART1 routine.

BAUD_RATE_TABLE lookup table that maps register values to
time delays.

When  the  UART  is  running,  it  checks  to  see  if  any  bits
remain to be sent, and if so, whether enough time has elapsed

uart1
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Is the UART running?
                rdbyte  temp, UART1_COMMAND
                test    temp, #$01              wz
if_z            jmp     #:disabled

                ' Mark UART1 status bit as high
                or      uart1_state, #$40
                wrbyte  uart1_state, UART1_STATUS

                 ' Get the baud rate for the UART
                rdbyte  temp, UART1_CONTROL
                and     temp, #$0F
                add     temp, #BAUD_RATE_TABLE
                movs    :baud, temp
                nop
:baud           mov     uart1_delta, 0-0

BAUD_RATE_TABLE long    0                               ' 0x0
                long    (80_000_000 /    50)            ' 0x1
                long    (80_000_000 /    75)            ' 0x2
                long    (80_000_000 /   110)            ' 0x3

                long    (80_000_000 /   135)            ' 0x4
                long    (80_000_000 /   150)            ' 0x5
                long    (80_000_000 /   300)            ' 0x6
                long    (80_000_000 /   600)            ' 0x7

                long    (80_000_000 /  1200)            ' 0x8
                long    (80_000_000 /  1800)            ' 0x9
                long    (80_000_000 /  2400)            ' 0xA
                long    (80_000_000 /  3600)            ' 0xB

                long    (80_000_000 /  4800)            ' 0xC
                long    (80_000_000 /  7200)            ' 0xD
                long    (80_000_000 /  9600)            ' 0xE
                long    (80_000_000 / 19200)            ' 0xF

70



since the last bit to send another one. If there are no more bits
to send, it checks to see if there are more bytes to send in the
transmit  ring buffer  and brings in the next  byte.  Using that
byte,  it  constructs the entire frame for the byte,  including a
start bit and a stop bit, and saves it so that the code can send it
out a bit at a time.

                ' Yield to other UART
:transmit       jmpret  uart1_task, uart2_task

                ' Do we have bits left to send?
                cmp     uart1_tx_left, #0       wz
if_nz           jmp     #:send

                ' Get buffer head and tail positions
                rdbyte  head, UART1_TXHEAD
                and     head, #$07

                rdbyte  tail, UART1_TXTAIL
                and     tail, #$07

                ' Is the buffer empty? If so, move on
                cmp     head, tail              wz
if_z            jmp     #:receive

                ' Mark transmit bit as high
                or      uart1_state, #$10
                wrbyte  uart1_state, UART1_STATUS

                ' Read the next item from memory
                mov     temp, UART1_TXBUF
                add     temp, tail
                rdbyte  uart1_tx_bits, temp

                ' Update the tail position
                add     tail, #1
                and     tail, #$07
                wrbyte  tail, UART1_TXTAIL

                ' Construct frame for bits (start and stop bit)
                or      uart1_tx_bits, #$100
                shl     uart1_tx_bits, #2
                or      uart1_tx_bits, #1

                ' Calculate first timestamp to send a bit
                mov     uart1_tx_time, CNT
                add     uart1_tx_time, uart1_delta

                ' Loop 11 times (high, start, data, stop)
                mov     uart1_tx_left, #11

:send
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                 ' See if it's time to send data
                mov     temp, uart1_tx_time
                sub     temp, CNT
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Code path taken when transmitting bits.

The receive process is generally the same, checking to see if
a  bit  needs  to  be  read,  and  if  no  receive  operation  is  in
progress, whether a start bit has been encountered. As bytes
are read, they are added to the receive buffer similar to how
they're  consumed from the  transmit  buffer.  Throughout  the
process, the code updates various local variables, status bits in
shared memory,  and at  key points  jumps back  to  the  other
UART so both run concurrently.

                cmps    temp, #0                wc
if_nc           jmp     #:receive

                ' Shift out the next bit
                shr     uart1_tx_bits, #1       wc
                muxc    OUTA, UART1_TX_PIN
                add     uart1_tx_time, uart1_delta

                ' Decrement bit count by one
                sub     uart1_tx_left, #1       wz

                ' Clear transmit bit when done with the byte
if_z            andn    uart1_state, #$10
if_z            wrbyte  uart1_state, UART1_STATUS

:receive
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Are we already receiving a byte?
                cmp     uart1_rx_left, #0       wz
if_nz           jmp     #:recv

                ' Do we have a start bit? (start bits are 0)
                test    UART1_RX_PIN, INA       wz
if_nz           jmp     #uart1

                ' Mark receive bit as high
                or      uart1_state, #$08
                wrbyte  uart1_state, UART1_STATUS

                ' Calculate first timestamp to receive a bit
                mov     uart1_rx_time, uart1_delta
                shr     uart1_rx_time, #1
                add     uart1_rx_time, uart1_delta
                add     uart1_rx_time, CNT

                ' Clear out bits
                mov     uart1_rx_bits, #0

                ' Nine bits to receive (includes the stop bit)
                mov     uart1_rx_left, #9
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Code path taken when receiving bits.

Some special paths exist for when errors are detected or the
UART is disabled. During error conditions an appropriate bit is

:recv
                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' See if it's time to receive data
                mov     temp, uart1_rx_time
                sub     temp, CNT
                cmps    temp, #0                wc
if_nc           jmp     #uart1

                ' Read the next bit
                test    UART1_RX_PIN, INA       wz
if_nz           or      uart1_rx_bits, BIT_9
                shr     uart1_rx_bits, #1
                add     uart1_rx_time, uart1_delta

                ' Decrement number of bits left to read
                sub     uart1_rx_left, #1       wz
if_nz           jmp     #uart1

                ' Test stop bit was set (framing error?)
                test    uart1_rx_bits, BIT_8    wz
if_z            jmp     #:frame

                ' Yield to other UART
                jmpret  uart1_task, uart2_task

                ' Get buffer head and tail positions
                rdbyte  head, UART1_RXHEAD
                and     head, #$07

                rdbyte  tail, UART1_RXTAIL
                and     tail, #$07

                ' Check for overflow (can only store 7 items)
                mov     temp, tail
                sub     temp, head
                abs     temp, temp
                cmp     temp, #7                wc
if_nc           jmp     #:overflow

                ' Calculate address for next byte in buffer
                mov     temp, UART1_RXBUF
                add     temp, head

                ' Calculate new buffer head position
                add     head, #1
                and     head, #$07

                ' Update buffer and position
                wrbyte  uart1_rx_bits, temp
                wrbyte  head, UART1_RXHEAD

                ' Clear receive bit at end of byte
                andn    uart1_state, #$08
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1
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set in the status register to indicate the nature of the problem.
When the UART is disabled, it is also an opportunity to reset
the  UART  for  the  next  time  it's  used.  Some of  the  internal
variables in particular need cleared out.

Special  paths  used  when  an  error  is  found  or  the  UART  is
turned off.

The UART code, while not as complex as other portions of
the firmware, still contains a variety of concepts that may be
new. For a simple example of implementing a single UART on
the  Propeller,  one  might  start  with  the  Full  Duplex  Serial
example  by  Propeller  designer  Chip  Gracey  posted  on  the
Propeller OBEX. The code uses coroutines to toggle between
the receive and transmit paths for a single software UART and
lacks many of the complicating factors in the Cody Computer
UART code. It is very useful as a learning aid or reference.

:frame
                ' Set frame bit (bit 1) on status register
                or      uart1_state, #$02
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1

:overflow
                ' Set overflow bit (bit 2) on status register
                or      uart1_state, #$04
                wrbyte  uart1_state, UART1_STATUS

                jmp     #uart1

:disabled
                ' Clear any pending bits in the system
                mov     uart1_rx_left, #0
                mov     uart1_tx_left, #0
                mov     uart1_state, #0

                ' Clear out any registers managed by the UART
                wrbyte  ZERO, UART1_RXHEAD
                wrbyte  ZERO, UART1_TXTAIL
                wrbyte  ZERO, UART1_STATUS

                jmp     #uart1
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CODY_AUDIO.SPIN

The  Cody  Computer  uses  a  simplified  version  of  the
Commodore SID chip for its sound generation. Instead of a real
SID, one of the cogs in the Propeller is devoted to generating
audio output, and a portion of the shared memory is set aside
to mimic the SID's registers.

The Cody Computer's implementation is in most respects a
port  of  the  GPL-licensed  MOS6581  SID  Emulator  Arduino
Library by Christoph Haberer and Mario Patino. In addition to
rewriting the library in  PASM from the original  code,  many
changes were made to support the Propeller's similar but not
identical  output-pin  hardware.  Yet  other  changes  had  to  be
made to integrate it into the Cody Computer as a whole.

SIDcog is a more complete emulation for the Propeller
created  by  Johannes  Ahlebrand  and  later  enhanced  by
Ada  Gottensträter.  The  emulator  is  excellent  but  some
timing and space requirements on top of our already busy
Propeller  made it  a  challenge to integrate.  Nonetheless,
the possibility exists for an interested reader.

As  with  the  other  portions  of  Propeller  firmware,  the
implementation is written using PASM. A small SPIN method,
start,  launches the cog with PASM code starting at  cogmain,
similar to the UART. The PASM code begins by adjusting some
internal  memory  pointers  relative  to  the  shared  memory
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region,  sets  up  an  output  pin  for  the  audio  signal,  and
initializes some variables used for the main loop.

One  important  step  is  setting  the  cog's  ctra register  to
enable what's known as the duty single-ended mode on the
pin we've selected for audio output. Each cog has an internal
counter that can be used for a variety of operations. In this case
we're  using  the  counter  to  quickly  generate  an  on-or-off
output with a varying duty cycle faster than we could possibly
do in software alone.

The  external  circuitry  discussed  in  the  previous  section
smoothes this out into an analog waveform despite the actual
output being a digital on-or-off. Once enabled, we can put an
output value into the matching frqa register to control the duty
cycle, and by extension, control the sound that comes out of
the Propeller.

The cogmain entry point in PASM.

From  there  the  code  enters  main_loop,  which  begins  by
waiting until  enough time has elapsed to run the main loop
again.  The  Cody  Computer's  SID  has  a  sample  rate  of  16
kilohertz,  which  means  that  we  want  the  main  loop  to  run

cogmain
                ' Calculate actual position of registers
                add     REGS_BASE, PAR
                add     OSC3_PTR, PAR
                add     ENV3_PTR, PAR

                ' Configure output for sound
                mov     dira, INIT_DIRA
                mov     ctra, INIT_CTRA

                ' Configure timing
                mov     time, cnt
                add     time, WAIT_TIME

                mov     output, #0
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16000 times per second. The Propeller's clock ticks 80 million
times per second, so after dividing the Propeller's clock by the
desired sampling rate, we realize we need to run the loop once
every 5000 ticks. And because each Propeller instruction takes
four of its clock cycles, we calculate that our loop has to run in
no more than 1250 instructions.

When the loop is ready to run again, it begins by updating
the  white  noise  generator.  White  noise  was  one  of  the
waveform options for the real SID, so we also need a source for
it here. Our implementation follows the Arduino SID emulator
mentioned  previously,  so  it  uses  a  linear  feedback  shift
register implemented in software.

In  a  linear  feedback  shift  register,  a  sequence  of  bits  is
generated  by  storing  a  seed  value,  extracting  certain  bits,
shifting  the  original  value,  A  portion  of  the  result  can  be
extracted and used for  other  purposes (such as  noise),  with
other portions of the result fed back in to repeat the proces on
the next iteration.

Once  the  noise  value  is  updated,  the  code  runs  the
:voice_loop three times,  one for  each voice.  Subroutines for
processing  the  voice  are  called  from  within  the  loop.  Once
done,  the  voices  are  combined  and  output  by  calling  the
make_output routine.

main_loop

:loop
                ' Wait for next cycle
                waitcnt time, WAIT_TIME

                ' Update noise
                mov     temp, noise
                and     temp, #$1
                neg     temp, temp
                and     temp, NOISE_BITS
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The Cody SID's main loop.

The voice_begin routine prepares everything for generating
a voice. Because the Propeller's assembly language has very
limited support for indirect addressing, the code has to copy
variables for each voice to temporary variables used within the
loop.  When it's  done  processing  the  current  voice,  it  copies
them back at the end.

Once  that  initial  per-voice  setup  is  completed,  the  code
performs special checks for the SID's sync and test bits. If the
sync bit is enabled the code syncs the current voice's phase
with another voice,  but  if  the test  bit  is  set,  the code resets
most of the current voice's internal state.

                shr     noise, #1
                xor     noise, temp
                and     noise, MASK_16

                ' Start at beginning of internal voice states on each main loop
                movs    readvar, #state1
                movd    savevar, #state1

                ' Start at beginning of registers on each main loop
                mov     register_ptr, REGS_BASE

                ' Three voices to process
                mov     voice_count, #3
:voice_loop
                call    #voice_begin
                call    #make_wave
                call    #make_envelope
                call    #make_waveform
                call    #voice_end

                djnz    voice_count, #:voice_loop

                ' Combine into a single output
                call    #make_output

                ' Repeat the main loop
                jmp     #:loop

voice_begin
                ' Read the registers for a single voice into COG memory
                movd    :readreg, #voice_freq_l
                mov     count, #7
:readreg        rdbyte  0-0, register_ptr
                add     :readreg, INC_DEST
                add     register_ptr, #1

78



The voice_begin routine called at the start of each loop.

The next part of the loop is in make_wave, which generates
the wave portion of the current voice. The wave, which is the
raw triangle, sawtooth, pulse, or noise signal, is shaped by an
envelope in a later step. However, it comprises the base upon
which the rest of the sound is built.

To begin, it takes the frequency specified for the voice, using
that to update an internal phase counter. This counter is used
to  determine  what  portion  of  a  particular  wave  to  generate
based on how much time has gone by. Different code paths,
:triangle,  :sawtooth,  :pulse,  and  :noise,  exist  for  each
supported wave type.

                djnz    count, #:readreg

                ' Copy the internal states for the current voice into temp vars
                movd    readvar, #state
                mov     count, #7
readvar         mov     0-0, 0-0
                add     readvar, INC_BOTH
                djnz    count, #readvar

                ' Sync voice if the other voice indicates it's time to sync,
                ' test if sync bit is on AND it's time to sync (order is)
                ' reversed because we're counting down).
                cmp     voice_count, #2                     wc,wz
if_nc           movd    :testsync, #sync3     ' Voice 1 uses voice 3
if_z            movd    :testsync, #sync1     ' Voice 2 uses voice 1
if_c            movd    :testsync, #sync2     ' Voice 3 uses voice 2
                nop
:testsync       test    0-0, voice_control                  wz
if_nz           mov     phase, #0

                ' Reset voice if the test bit is on
                test    voice_control, #$08                 wz
if_nz           mov     phase, #0
if_nz           mov     amplitude, #0
if_nz           mov     state, #0

voice_begin_ret ret

make_wave
                ' Combine frequency into 16 bit number
                ' Shift by 2 because frequency * 4000 / 16 KHz sample rate
                mov     freq_coefficient, voice_freq_h
                shl     freq_coefficient, #8
                or      freq_coefficient, voice_freq_l
                shr     freq_coefficient, #2
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                 ' Calculate next phase
                mov     temp_phase, phase
                add     temp_phase, freq_coefficient

                ' If we overflowed, set our internal sync bit to apply later
                testn   temp_phase, MASK_16                 wz
                muxnz   sync, #$02

                ' Limit phase calculation to 16 bits internally
                and     temp_phase, MASK_16

:triangle
                ' Triangle waveform?
                test    voice_control, #$10                 wz
if_z            jmp     #:sawtooth

                ' Time to invert? (Goes up half the time, then down half the time)
                ' Double the value to make sure it covers the full range
                mov     wave, phase
                test    wave, BIT_15                        wz
                shl     wave, #1
if_nz           xor     wave, MASK_16
                and     wave, MASK_16
                jmp     #:done

:sawtooth
                ' Sawtooth waveform?
                test    voice_control, #$20                 wz
if_z            jmp     #:pulse

                mov     wave, phase
                jmp     #:done

:pulse
                ' Pulse waveform?
                test    voice_control, #$40                 wz
if_z            jmp     #:noise

                mov     temp, voice_pulse_h
                shl     temp, #8
                or      temp, voice_pulse_l
                shl     temp, #4
                and     temp, MASK_16

                cmp     phase, temp                         wc
if_c            mov     wave, MASK_16
if_nc           mov     wave, #0

                jmp     #:done

:noise
                ' Noise waveform?
                test    voice_control, #$80                 wz
if_z            jmp     #:done

                mov     temp, phase
                xor     temp, temp_phase
                test    temp, PHASEBIT_NOISE                wz
if_nz           mov     temp, noise
if_nz           and     temp, MASK_16
if_nz           mov     wave, temp

:done
                ' Update phase for the current voice (limited to unsigned 16 bits)
                mov     phase, temp_phase

                ' Ensure wave only has 16 bits of resolution
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The make_wave routine generates a voice's underlying sound.

After generating the wave, make_envelope runs to generate
the  ADSR envelope.  ADSR,  short  for  Attack-Decay-Sustain-
Release,  is  a  key  concept  in  synthesis,  specifying  the
"envelope" for a sound. The attack specifies how long it takes
to reach a maximum volume once a sound is started, while the
decay  specifies  how long  it  takes  for  the  sound to  go  back
down to its sustain level after peaking. The release specifies
how long the sound takes to fade out once the sound is shut
off.

For the Cody Computer's SID, a voice is turned on when its
gate bit is set,  so the code checks it  to see if the sound has
started. It also refers to an internal state variable to determine
where it is in the ADSR envelope. As part of the calculations,
precomputed  tables  ATTACK_RATES,  DECAY_RATES,  and
SUSTAIN_LEVELS are used to look up how much to add or
subtract during the attack and decay or what volume level to
hold  at  during sustain.  At  the  end of  the  calculation,  it  has
generated  the  envelope  that  will  be  combined  with  the
previously-generated wave.

                and     wave, MASK_16

make_wave_ret   ret

make_envelope
                ' Is gate bit set? (playing a note?)
                test    voice_control, #$01                 wz
if_z            jmp     #:release

:attack
                ' Gate bit set, but are we on attack or decay state?
                tjnz    state, #:decay

                ' Increment amplitude with attack value from table
                movs    :addattack, #ATTACK_RATES
                mov     temp, voice_attack_decay
                shr     temp, #4
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                add     :addattack, temp
                nop
:addattack      add     amplitude, 0-0

                ' Did we reach the maximum value (end of attack portion?)
                cmp     amplitude, MAXLEVEL                 wc
if_c            jmp     #:done

                ' Cap at maximum amplitude, enter decay phase
                mov     amplitude, MAXLEVEL
                mov     state, #1

                jmp     #:done

:decay
                ' Look up the matching sustain value from the table
                mov     temp, voice_sustain_release
                shr     temp, #4
                add     temp, #SUSTAIN_LEVELS
                movs    :getsustain, temp
                nop
:getsustain     mov     level_sustain, 0-0

                ' Did we reach that sustain level?
                cmp     level_sustain, amplitude            wc
if_nc           jmp     #:done

                ' Subtract the current decay value from our amplitude,
                ' but don't let our amplitude fall below zero
                mov     temp, voice_attack_decay
                and     temp, #$0F
                add     temp, #DECAY_RATES
                movs    :subdecay, temp
                nop
:subdecay       sub     amplitude, 0-0                      wc
if_c            mov     amplitude, #0

                ' Limit amplitude from falling below sustain level
                min     amplitude, level_sustain

                jmp     #:done

:release
                ' Gate bit is off so not in attack state
                mov     state, #0

                ' Have we reached zero amplitude?
                tjz     amplitude, #:done

                ' Subtract the current decay value from our amplitude,
                ' but don't let our amplitude fall below zero
                mov     temp, voice_sustain_release
                and     temp, #$0F
                add     temp, #DECAY_RATES
                movs    :subrelease, temp
                nop
:subrelease     sub     amplitude, 0-0                      wc
if_c            mov     amplitude, #0

                ' Scale envelope from 24 to 16 bits resolution
:done           mov     envelope, amplitude
                shr     envelope, #8
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The  make_envelope routine  generates  a  voice's  ADSR
envelope.

The  make_waveform combines  both  of  these  values
together.  It  first  checks  if  ring  modulation  is  enabled  and
applies it if so. Ring modulation is a technique where one voice
is  combined  with  the  output  of  another  to  generate  unique
sounds, and the SID chip implemented a special case of ring
modulation that we attempt to mimic.

Once ring modulation has been applied, the wave value and
the  envelope  value  are  multiplied  together  to  get  the  final
waveform value for this voice in the loop.

The  make_waveform routine  that  combines  the  wave  and
envelope.

make_envelope_ret   ret

make_waveform
                ' We'll be multiplying the wave value by the envelope value
                mov     x, wave

:ring
                ' Ring modulation bit?
                test    voice_control, #$04                 wz
if_z            jmp     #:done

                ' For "ring modulation" we invert the wave based on another's phase
                ' (Order is reversed because we're counting down)
                cmp     voice_count, #2                     wc,wz
if_nc           movd    :testphase, #phase3   ' Voice 1 uses voice 3
if_z            movd    :testphase, #phase1   ' Voice 2 uses voice 1
if_c            movd    :testphase, #phase2   ' Voice 3 uses voice 2
                nop
:testphase      test    0-0, BIT_15                         wz
if_nz           xor     x, MASK_16

:done
                ' Multiply the wave by the envelope
                mov     y, envelope
                call    #multiply

                ' Scale result down from 32 to 16 bits
                shr     y, #16
                mov     output, y

make_waveform_ret   ret
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After  that,  there  are  some bookkeeping tasks  to  perform,
such as copying the temporary variables back to their original
locations. At the end of each voice loop the voice_end routine
is called. This handles any final processing or cleanup at the
end  of  a  voice.  As  a  practical  matter,  it's  responsible  for
copying the temporary voice variables back to their permanent
locations. Just as voice_begin copied them in at the beginning
of the loop, this routine does the reverse when the voice has
come to an end. Once that's done, the voice_loop repeats for
each remaining voice.

The voice_end routine saves the values of temporary variables.

Once output values for all three voices have been generated,
make_output puts  them  together.  All  three  voices  are
combined  together  (with  the  possible  exception  of  voice  3,
which  can  be  shut  off),  multiplied  by  the  current  global
volume, and scaled to the range supported by the audio output
circuitry.  Once  the  combined  output  value  is  written  to  the
Propeller's frqa register, the rest is handled by hardware, and
a  pulse-width-modulated  signal  is  output  to  the  audio
circuitry on the board.

A few other operations are also performed, such as updating
a  couple  of  shared  memory  locations  with  some  internal
values from voice 3. The SID did this and the values were often

voice_end
                movs    savevar, #state
                mov     count, #7
savevar         mov     0-0, 0-0
                add     savevar, INC_BOTH
                djnz    count, #savevar

voice_end_ret   ret
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used for random numbers or special audio effects, so here we
do something similar to keep the spirit alive.  Other features
such as filters haven't been implemented.

The  make_output routine  merges  all  three  voices  into  one
output.

Note  that  because  the  Propeller  has  no  built-in
multiplication hardware, all multiplication is done in software.
While this sounds somewhat primitive, it also helps keep the
Propeller  the  simple  and  deterministic  system  it  is  from  a

make_output
                ' Read the filter registers
                movd    :readfilt, #filter_cutoff_l
                mov     count, #4
:readfilt       rdbyte  0-0, register_ptr
                add     :readfilt, INC_DEST
                add     register_ptr, #1
                djnz    count, #:readfilt

                ' Combine outputs (voice 3 is a special case)
                mov     x, output1
                add     x, output2

                ' Voice 3 is skipped if bit is set
                test    filter_mode_volume, #$80            wz
if_z            add     x, output3

                ' Apply volume setting
                mov     y, filter_mode_volume
                and     y, #$0F
                call    #multiply
                shr     y, #4

                ' Scale output value to Propeller PWM value
                mov     output, y
                sub     output, BIT_15
                shl     output, #11
                add     output, BIT_31
                mov     frqa, output

                ' Write high byte of voice 3 oscillator waveform
                mov     temp, wave3
                shr     temp, #8
                wrbyte  temp, OSC3_PTR

                ' Write high byte of voice 3 envelope
                mov     temp, envelope3
                shr     temp, #8
                wrbyte  temp, ENV3_PTR

make_output_ret ret
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hardware  standpoint.  We have a  routine,  multiply,  that  was
taken from Appendix  B  of  the  Propeller's  reference manual
and multiplies two 16-bit numbers together. This suffices for
our purposes and doesn't take that many cycles.

The software multiply routine.

CODY_VIDEO.SPIN

A significant portion of the Propeller's capabilities are used
to  implement  the  Cody  Computer's  Video  Interface  Device
(VID). Five of the chip's eight cogs are devoted to some aspect
of  video generation,  and the chip's  custom video generation
hardware is utilized to generate an NTSC-compatible analog
video signal. The Propeller contains circuitry that can generate
all the relevant portions of a video signal, including blanking
and color sync pulses.

Using  the  circuitry  involves  configuring  a  counter  to  the
appropriate  output  rate  for  the video signal,  then using the
waitvid instruction  to  pass  color  and  pixel  data  to  it.  As  a
special case, we can actually call  waitvid with four colors and

multiply
                shl     x, #16      ' Get multiplicand into x high bits
                mov     t, #16      ' Ready for 16 multiplier bits
                shr     y,  #1  wc  ' Get initial multiplier bit into c
:loop

if_c            add     y, x    wc  ' If carry set, add multiplicand into product
                rcr     y, #1   wc  ' Get next multiplier bit into c, shift product

                ' Loop until done
                djnz    t,  #:loop

multiply_ret    ret
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four pixels,  making it  possible to use any of the Propeller's
colors anywhere on the screen.

Software-based NTSC video generation from first principles
isn't  something  that  can  be  easily  summed  up  in  a  few
paragraphs.  One  level  of  detail  would  be  to  discuss  the
characteristics of the signal itself,  while another would be to
discuss in depth the Propeller's unique capacities for analog
video  output.  In  this  book  it's  assumed that  all  of  that  just
works, instead focusing on how these capabilities are used at a
high level to implement the Cody Computer's video interface
device.

For a more in-depth discussion of video generation without
all the extra complications caused by the Cody Computer, one
might  start  with  Eric  Ball's  NTSC and PAL Driver  Templates
available on the Propeller  OBEX.  Portions of  that  code were
foundational to the Cody Computer's own video code, and it's
an  excellent  walkthrough  of  analog  video  generation  in  the
context of the Propeller. I'd also recommend reading any of the
relevant Propeller forum postings.

Video  generation  on  the  Cody  Computer  begins  in  the
cody_video.spin file.  Memory  is  reserved  for  four  scanline
"mailboxes" in the scanlines variable, which will later be used
to communicate with the cogs responsible for  rendering the
video lines. A lookup table,  COLOR_TABLE, is also defined to
map Cody Computer color codes to their Propeller equivalents.
On  startup,  the  start SPIN  method  sets  up  the  scanline
mailboxes, then launches the video signal generation cog with
PASM code starting at cogmain.
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SPIN portion of the video startup code.

The  cogmain code  first  calls  the  load_params routine  to
read in the locations of shared memory and the four mailboxes
for  the  scanline  cogs.  It  also  uses  the  shared memory base
address  to  calculate  the  positions  of  some  of  the  video
registers used by the video signal generator.

The main loop for the NTSC video generation code.

After  that,  cogmain calls  the  init_video routine to  set  up
vcfg for the video mode and what bank of output pins to use,
ctra for the counter mode, and  frqa for the video frequency.
The video output pins are also set as outputs in dira, as without
doing so,  the video will  not  actually be emitted on the pins

PUB start(mem_ptr) | index

    ' Start up the scanline renderer cogs
    repeat index from 0 to 3

        ' Set up each mailbox
        mailboxes[index * 100 + 0] := index
        mailboxes[index * 100 + 1] := mem_ptr
        mailboxes[index * 100 + 2] := @COLOR_TABLE
        mailboxes[index * 100 + 3] := 0

        ' Launch the corresponding cog
        line_renderer.start(@mailboxes + index * 400)

    ' Launch the video cog itself once the scanline cogs are running
    launch_cog(mem_ptr, @COLOR_TABLE, @mailboxes+0, @mailboxes+400, @mailboxes+800, @mailboxes+1200)

PRI launch_cog(mem_ptr, ctable_ptr, scan1_ptr, scan2_ptr, scan3_ptr, scan4_ptr)

    cognew(@cogmain, @mem_ptr)

cogmain
                call    #load_params
                call    #init_video
:loop
                call    #frame
                jmp     #:loop
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selected in vcfg. (For more detail on these Propeller registers,
refer to the Propeller reference manual in particular.)

Initialization of the Propeller's video registers and output pins.

After  that  the  load_params routine  is  responsible  for
retrieving the parameters passed from SPIN. The previously-
mentioned  launch_cog routine  in  SPIN  used  the  SPIN
interpreter's  stack  to  hold  multiple  parameters,  passing  the
address of the first one to the newly-created cog running the
code. The PASM code sequentially reads parameters from the
SPIN stack beginning at that starting address. It also adjusts a
few addresses along the way.

init_video
                ' Sets up the parameters for video generation
                mov     vcfg, ivcfg

                ' Internal PLL mode, PLLA = 16 * colorburst frequency
                mov     ctra, ictra

                ' 2 * colorburst frequency
                mov     frqa, ifrqa

                ' Configure selected video pins as outputs
                or      dira, idira

init_video_ret  ret

load_params
                mov     params_ptr, PAR

                rdlong  memory_ptr, params_ptr
                add     params_ptr, #4

                rdlong  lookup_ptr, params_ptr
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle1_ptr, temp
                add     buffer1_ptr, temp
                add     buffer5_ptr, temp
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle2_ptr, temp
                add     buffer2_ptr, temp
                add     buffer6_ptr, temp
                add     params_ptr, #4
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PASM  for  loading  parameters  from  the  SPIN  launch_cog
routine.

From this point the video generator code enters an infinite
loop, outputting video signals for NTSC frames one after the
other.  The scanline generators  are set  to  the start  of  a  new
frame,  a  vertical  sync  pulse  is  generated  by  calling
vertical_sync, the video control and border color registers are
read, blank lines are generated by calling  ntsc_blank_lines,
and at last the scanline generators are turned on.

The top border is generated via  top_border,  the drawable
screen area via screen_area, and the bottom border via a call
to  bottom_border.  The  vertical  blanking  register  is  also
updated during this process to indicate when the 65C02 can
generally update video memory or  registers without fear of
collision.

                rdlong  temp, params_ptr
                add     toggle3_ptr, temp
                add     buffer3_ptr, temp
                add     buffer7_ptr, temp
                add     params_ptr, #4

                rdlong  temp, params_ptr
                add     toggle4_ptr, temp
                add     buffer4_ptr, temp
                add     buffer8_ptr, temp
                add     params_ptr, #4

                mov     vblreg_ptr, memory_ptr
                add     vblreg_ptr, VBLANK_REG_OFFSET

                mov     ctlreg_ptr, memory_ptr
                add     ctlreg_ptr, CONTROL_REG_OFFSET

                mov     colreg_ptr, memory_ptr
                add     colreg_ptr, COLOR_REG_OFFSET

load_params_ret ret

frame
                ' Generate NTSC vertical sync
                call    #vertical_sync

                ' Generate NTSC blank lines after vertical sync
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The frame routine generates a single TV frame.

Most of the work occurs in the  screen_area routine where
the actual screen is drawn. A quick check is performed to see if
vertical scrolling is enabled, and if so, reduce the size of the
vertical area by one row. After that, it loops for each row on the
screen, toggling the scanline renderers and generating a video
signal  for  each  rendered  scanline  by  calling  the  scanline
routine.

The  scanline  renderers  are  called  in  order,  giving  each
renderer the equivalent of four scanlines to render the next

                call    #ntsc_blank_lines

                ' Set vertical blanking indicator to zero (not safe to update)
                wrbyte  ZERO, vblreg_ptr

                ' Read current video control register from memory
                rdbyte  control, ctlreg_ptr

                ' Read current border color and convert to Propeller color
                rdbyte  border, colreg_ptr
                shl     border, #1
                add     border, lookup_ptr
                rdword  border, border

                ' Reset scanline generators back to beginning
                wrlong  TOGGLE_FRAME, toggle1_ptr
                wrlong  TOGGLE_FRAME, toggle2_ptr
                wrlong  TOGGLE_FRAME, toggle3_ptr
                wrlong  TOGGLE_FRAME, toggle4_ptr

                ' Draw part of the screen top border
                call    #top_border

                ' Turn scanline generators on
                wrlong  TOGGLE_LINE1, toggle1_ptr
                wrlong  TOGGLE_LINE1, toggle2_ptr
                wrlong  TOGGLE_LINE1, toggle3_ptr
                wrlong  TOGGLE_LINE1, toggle4_ptr

                ' Draw the rest of the screen top border
                call    #top_border

                ' Draw the screen (and horizontal borders)
                call    #screen_area

                ' Set vertical blanking indicator to 1 (safe to update)
                wrbyte  ONE, vblreg_ptr

                ' Draw screen bottom border
                call    #bottom_border

frame_ret       ret
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line.  To  make  this  possible,  each  scanline  renderer  has  two
buffers  so  that  it  can  be  rendering  a  new  line  while  the
previous line is being sent out.

PASM routine for generating the drawable screen area.

screen_area
                ' Generate additional top border lines if vertical scroll enabled
                test    control, #%00000010 wz
if_nz           call    #scroll_border

                ' 25 groups of lines to generate (assuming no vertical scrolling)
                mov     numline, #25

                ' Adjust number of lines if vertical scrolling enabled
                test    control, #%00000010 wz
if_nz           sub     numline, #1

                ' Render scanlines behind the scenes as we generate NTSC signals
:loop           wrlong  TOGGLE_LINE2, toggle1_ptr
                mov     source, buffer1_ptr
                call    #scanline

                wrlong  TOGGLE_LINE2, toggle2_ptr
                mov     source, buffer2_ptr
                call    #scanline

                wrlong  TOGGLE_LINE2, toggle3_ptr
                mov     source, buffer3_ptr
                call    #scanline

                wrlong  TOGGLE_LINE2, toggle4_ptr
                mov     source, buffer4_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle1_ptr
                mov     source, buffer5_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle2_ptr
                mov     source, buffer6_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle3_ptr
                mov     source, buffer7_ptr
                call    #scanline

                wrlong  TOGGLE_LINE1, toggle4_ptr
                mov     source, buffer8_ptr
                call    #scanline

                ' Continue on to next group of 8 lines
                djnz    numline, #:loop

                ' Generate additional bottom border lines if vertical scroll enabled
                test    control, #%00000010 wz
if_nz           call    #scroll_border

screen_area_ret ret
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The scanline routine actually generates the video signal for
a  single  line  in  the  drawable  screen  area.  It  generates  the
horizontal sync at the start of the line, followed by the NTSC
signal's back porch. Following that, a total of 40  waitvids are
performed in a loop,  one for each batch of  four pixels read
from a scanline renderer's inactive buffer.

Once  all  the  pixels  have  been  output,  the  NTSC  signal's
front porch is generated to end the line. The horizontal_sync, 
front_porch,  and  back_porch routines are used to help with
some of the above. When drawing the line, some checks are
also  made  for  situations  where  the  display  is  disabled  or
horizontal  scrolling  is  enabled.  If  these  conditions  exist,
adjustments are made to the output.

scanline
                call    #horizontal_sync
                call    #back_porch

                ' By default we have 40 waitvids (160 pixels / 4 pixels per waitvid)
                mov     count, #40
                mov     VSCL, vsclactv

                ' If horizontal scrolling, draw fewer pixels and a bigger border
                test    control, #%00000100 wz
if_nz           waitvid border, #0
if_nz           sub     count, #2

                ' Adjust pointer for offscreen scratch area in scanline buffer
                add     source, #12

:loop
                ' Read the next four pixels from the scanline buffer
                rdlong  colors, source

                ' If the display is enabled, draw the pixels from the buffer
                ' If the display is shut off, draw the border color instead
                test    control, #%00000001 wz
if_z            waitvid colors, pixels
if_nz           waitvid border, #0

                ' Go on to the next four pixels
                add     source, #4
                djnz    count, #:loop

                ' If horizontal scrolling, draw a bigger border
                test    control, #%00000100 wz
if_nz           waitvid border, #0

                call    #front_porch
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PASM routine for generating a single NTSC scanline.

CODY_LINE.SPIN

The last component of the Cody Computer's video firmware
are the scanline renderers. Rendering the contents of a single
160 pixel line, both background tiles and sprites, takes quite a
bit of time (from the standpoint of a video signal). In fact, it
takes  longer  than  a  single  scanline  just  to  generate  its
contents.

To  work  around  this  problem  we  set  up  other  cogs  as
renderers that store pixels to a buffer in memory. When it's
time to generate the signal containing the line, the video cog
reads  the  pre-rendered  pixels  and  generates  the
corresponding signal.

The video generator  cog launches a total  of  four scanline
renderer cogs, each running the code from cody_line.spin. The
video generator calls a short SPIN method,  start, passing the
pointer to the start of the mailbox used to communicate with
the renderer. The renderer, in turn, starts running PASM code
starting at  cogmain.  Some initial setup code runs to get data
from the mailbox and calculate some pointer addresses.

scanline_ret  ret

cogmain
                ' Load parameters and calculate pointers from the scanline structure
                ' using the calculated offsets within the mailbox memory area
                add     renderer_index, PAR
                add     memory_ptr, PAR
                add     lookup_ptr, PAR
                add     toggle_ptr, PAR
                add     buffer1_ptr, PAR
                add     buffer2_ptr, PAR
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The  cogmain PASM  code  called  when  starting  a  scanline
renderer.

From there the scanline renderer enters the :frame_loop for
the start of a new frame. It waits until the mailbox shows a new
frame has started (because the video cog has toggled it), then
does some initial setup for the new frame. The video registers
are read from shared memory.

The  code  then  waits  for  another  toggle  to  render  a  line,
running the  :line_loop for  a  total  of  50 times.  Because the
drawable  screen  has  200  lines  and  there  are  four  cogs
rendering the screen contents, each cog is responsible for 50
lines.

For  each  line,  any  row  effects  are  applied  first  via
apply_row_effects,  followed by decoding the video register
values in decode_registers. Finally the scanline's contents are
rendered in render_chars and render_sprites. The :line_loop
repeats until no more lines remain on the current frame, each
time waiting for a toggle from the main video cog.

                rdlong  renderer_index, renderer_index
                rdlong  memory_ptr, memory_ptr
                rdlong  lookup_ptr, lookup_ptr

                ' Adjust our offsets into shared memory now that we know where it is
                add     VIDCTL_REGS_OFFSET, memory_ptr
                add     SPRITE_REGS_OFFSET, memory_ptr

                add     ROWEFF_CNTL_OFFSET, memory_ptr
                add     ROWEFF_DATA_OFFSET, memory_ptr

:frame_loop
                ' Wait for the TOGGLE_FRAME value to begin the next frame
                rdlong  toggle, toggle_ptr
                cmp     toggle, TOGGLE_FRAME    wz
if_nz           jmp     #:frame_loop
                wrlong  TOGGLE_EMPTY, toggle_ptr

                ' Read in the video registers at the start of a new frame
                mov     video_register_ptr, VIDCTL_REGS_OFFSET

                rdbyte  blankreg, video_register_ptr
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Code executed in the frame and line loops.

                add     video_register_ptr, #1

                rdbyte  controlreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  colorreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  basereg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  scrollreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  screenreg, video_register_ptr
                add     video_register_ptr, #1

                rdbyte  spritereg, video_register_ptr
                add     video_register_ptr, #1

                ' Render each line
                mov     lines_remaining, #50
                mov     curr_scanline, renderer_index

:line_loop
                ' Wait for a TOGGLE_LINE1 or TOGGLE_LINE2 value to begin the next line
                rdlong  toggle, toggle_ptr

                cmp     toggle, TOGGLE_EMPTY    wz
if_z            jmp     #:line_loop

                cmp     toggle, TOGGLE_FRAME    wz
if_z            jmp     #:frame_loop

                ' Clear toggle value once we begin a new line
                wrlong  TOGGLE_EMPTY, toggle_ptr

                ' Select the destination buffer for this scanline
                cmp     toggle, TOGGLE_LINE1    wz
if_z            mov     buffer_ptr, buffer1_ptr

                cmp     toggle, TOGGLE_LINE2    wz
if_z            mov     buffer_ptr, buffer2_ptr

                ' Read any row effects that may be pending for this scanline
                call    #apply_row_effects

                ' Decode the video registers (including any raster changes)
                call    #decode_registers

                ' Render the scanline to the buffer
                call    #render_chars
                call    #render_sprites

                ' Go to the next line
                add     curr_scanline, #4
                djnz    lines_remaining, #:line_loop

                ' Begin a new frame
                jmp     #:frame_loop
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The  render_chars routine is responsible for rendering the
characters  on  the  screen.  It  begins  by  making  some
adjustments  for  vertical  and horizontal  scrolling,  if  enabled,
and  then  proceeds  to  render  the  current  scanline.  Some
calculations are made using the  SCREEN_OFFSET_TABLE to
determine  the  screen  and  color  memory  locations
corresponding to the current scanline.

Looping over each of the 40 columns in the scanline in the
:char_loop,  the  screen and color  information  are  read from
shared  memory.  The  colors  for  that  screen  location  are
converted from Cody Computer color codes to Propeller NTSC
color  codes  using  the  previously-mentioned  COLOR_TABLE
and merged with the current global colors for the screen. If in
character graphics mode, the matching character line for the
character in screen memory is also read and the byte pattern
returned.  In  bitmap graphics  mode,  the  corresponding four-
pixel byte within screen memory is returned instead, but the
operation is very similar otherwise. From there the :pixel_loop
renders  the  actual  pixels  into  the  scanline  buffer  before
continuing on to the next character.

render_chars
                ' Set up the output pointer taking into account the left "margin" for sprites
                mov     dest_ptr, buffer_ptr
                add     dest_ptr, #12

                ' Update the output start position to account for horizontal scrolling
                test    controlreg, #%00000100  wz
if_nz           sub     dest_ptr, scrollh

                ' Update the source line position to account for vertical scrolling
                mov     adjustv, #0
                test    controlreg, #%00000010  wz
if_nz           mov     adjustv, scrollv

                ' Precalculate the current offset for each character based on the scanline
                mov     char_offset_y, curr_scanline
                add     char_offset_y, adjustv
                and     char_offset_y, #%0111
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                ' Determine offset in the screen and color memory based on the current row
                mov     screen_memory_offset, curr_scanline
                add     screen_memory_offset, adjustv
                shr     screen_memory_offset, #3
                add     screen_memory_offset, #SCREEN_OFFSET_TABLE
                movs    :load_offset, screen_memory_offset
                nop

:load_offset    mov     screen_memory_offset, 0_0

                ' Calculate the locations in color and screen memory using the offset above
                mov     curr_colors_ptr, colmem_ptr
                add     curr_colors_ptr, screen_memory_offset

                test    controlreg, #%00010000 wz
if_z            mov     curr_screen_adv, #1
if_nz           mov     curr_screen_adv, #8
if_nz           shl     screen_memory_offset, #3

                mov     curr_screen_ptr, scrmem_ptr
                add     curr_screen_ptr, screen_memory_offset

                mov     chars_remaining, #40

:char_loop      rdbyte  color_data, curr_colors_ptr

                shl     color_data, #1
                add     color_data, lookup_ptr

                rdword  color_data, color_data
                or      color_data, common_screen_colors

                add     curr_colors_ptr, #1

                test    controlreg, #%00010000              wz
if_nz           mov     source_ptr, curr_screen_ptr
if_z            rdbyte  source_ptr, curr_screen_ptr
if_z            shl     source_ptr, #3
if_z            add     source_ptr, chrset_ptr
                add     source_ptr, char_offset_y
                add     dest_ptr, #3
                rdbyte  pixel_data, source_ptr

                mov     pixels_remaining, #4

:pixel_loop     mov     temp, pixel_data
                and     temp, #%11

                shl     temp, #3
                ror     color_data, temp

                wrbyte  color_data, dest_ptr

                sub     dest_ptr, #1
                rol     color_data, temp

                shr     pixel_data, #2
                djnz    pixels_remaining, #:pixel_loop

                add     dest_ptr, #5
                add     curr_screen_ptr, curr_screen_adv

                djnz    chars_remaining, #:char_loop
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The  render_chars routine  renders  a  line's  background
characters.

The render_sprites routine is largely the same, except that
it  renders  the  sprites  over  the  now-drawn  background
characters. It begins by determining the sprite register bank to
read  from based  on  the  current  value  in  a  shared  memory
register,  positioning a pointer at the start of the appropriate
bank. The sprite bank registers have the needed coordinates,
color, and sprite pointer information, so it's important to start
in the right place.

Once  prepared,  it  loops  over  each  of  the  eight  possible
sprites in the  :sprite_loop,  verifying that they're actually on
screen and adjusting for scrolling if necessary. It also looks up
the sprite's unique colors and finds their Propeller equivalents
in the same way used for the character colors. When it's ready
to draw the sprite, it goes into the :byte_loop to draw each of
the sprite's three data bytes, with the individual pixels being
drawn in the :pixel_loop.

Some  key  differences  exist  between  these  loops  and  the
corresponding loops for drawing character pixels, with one of
the main differences being that sprites can have transparent
pixels.

render_chars_ret    ret

render_sprites

                ' Start sprite pointer at the beginning of the current bank
                mov     curr_sprite_ptr, spritereg
                and     curr_sprite_ptr, #$70
                shl     curr_sprite_ptr, #1
                add     curr_sprite_ptr, SPRITE_REGS_OFFSET

                ' Draw the 8 sprites we have in this bank
                mov     sprites_remaining, #8
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:sprite_loop
                ' Read in and check the sprite x coordinate is within bounds
                rdbyte  sprite_x, curr_sprite_ptr
                add     curr_sprite_ptr, #1

                cmp     sprite_x, #0        wz
if_z            jmp     #:next_sprite

                cmp     sprite_x, #172      wc
if_nc           jmp     #:next_sprite

                ' Read in and check the sprite y coordinate is within bounds
                rdbyte  sprite_y, curr_sprite_ptr
                add     curr_sprite_ptr, #1

                ' Adjust sprite y position by subtracting top margin amount
                sub     sprite_y, #21
                sub     sprite_y, curr_scanline
                neg     sprite_y, sprite_y

                cmp     sprite_y, #0        wc
if_c            jmp     #:next_sprite

                cmp     sprite_y, #21       wc
if_nc           jmp     #:next_sprite

                ' Read in the sprite colors and combine them with the common sprite color
                rdbyte  sprite_colors, curr_sprite_ptr
                shl     sprite_colors, #1
                add     sprite_colors, lookup_ptr
                rdword  sprite_colors, sprite_colors
                shl     sprite_colors, #8
                or      sprite_colors, common_sprite_colors
                add     curr_sprite_ptr, #1

                ' Read in the sprite pointer and adjust for the current scanline
                rdbyte  sprite_ptr, curr_sprite_ptr
                add     sprite_y, #SPRITE_OFFSET_TABLE
                movs    :load_offset, sprite_y
                shl     sprite_ptr, #6
:load_offset    add     sprite_ptr, 0_0
                add     sprite_ptr, memory_ptr

                ' Set up our destination buffer
                mov     dest_ptr, buffer_ptr
                add     dest_ptr, sprite_x

                ' Draw each byte remaining in this scanline
                mov     chars_remaining, #3
:byte_loop
                ' Read in the sprite data
                rdbyte  pixel_data, sprite_ptr
                add     sprite_ptr, #1

                ' Draw each pixel in this byte (in reverse order)
                add     dest_ptr, #3
                mov     pixels_remaining, #4
:pixel_loop
                ' Move the current color into position for drawing
                mov     temp, pixel_data
                and     temp, #%11
                shl     temp, #3
                ror     sprite_colors, temp

                ' Draw the pixel if non-transparent
                cmp     temp, #0                wz
if_nz           wrbyte  sprite_colors, dest_ptr
                sub     dest_ptr, #1
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The render_sprites routine handles eight sprites per line.

The  decode_registers routine is a helper called during the
main  loop  to  decode  the  video  register  values  from  local
variables.  These  contain  some  information,  including  Cody
Computer color codes, that need translated to their Propeller
NTSC  equivalents.  Others  contain  data  that's  packed  into  a
single  register,  such  as  nibble  values  that  map  to  memory
locations within the shared memory.  This  routine helps with
unpacking and keeps the related logic in one place.

                ' Prepare for the next pixel
                rol     sprite_colors, temp
                shr     pixel_data, #2

                djnz    pixels_remaining, #:pixel_loop

                add     dest_ptr, #5
                djnz    chars_remaining, #:byte_loop

:next_sprite
                ' Increment the sprite register pointer to the start of the next sprite
                andn    curr_sprite_ptr, #3
                add     curr_sprite_ptr, #4

                ' Loop if we have more sprites remaining
                djnz    sprites_remaining, #:sprite_loop

render_sprites_ret      ret

decode_registers

                ' Calculate color memory position
                mov     colmem_ptr, colorreg
                shr     colmem_ptr, #4
                shl     colmem_ptr, #10
                add     colmem_ptr, memory_ptr

                ' Calculate screen memory position
                mov     scrmem_ptr, basereg
                shr     scrmem_ptr, #4
                shl     scrmem_ptr, #10
                add     scrmem_ptr, memory_ptr

                ' Calculate character set position
                mov     chrset_ptr, basereg
                and     chrset_ptr, #$7
                shl     chrset_ptr, #11
                add     chrset_ptr, memory_ptr

                ' Calculate scroll values
                mov     scrollv, scrollreg
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The decode_registers routine that unpacks register values.

The  apply_row_effects routine  is  related.  On  old
computers,  it  was  common  to  use  special  tricks,  such  as
switching  out  video  data,  on  certain  lines  to  extend  the
hardware's graphics abilities. The Cody Computer has a similar
feature where data can be overridden on each of the 25 rows
on  the  screen.  Rather  than  setting  interrupts  and  changing
register  data,  additional  registers  let  you  specify  override
values and where to apply them.

This routine handles those situations by checking to see if
the row effects are enabled, and if so, whether they need to be
applied based on the current scanline. The scanline is divided
by 8 to determine what row on the screen is being drawn, and
then any of the video data that has been overridden is updated
in the local variables. By doing this in the main loop prior to
decoding  the  registers,  any  overridden  values  are
automatically used when rendering the scanline.

                and     scrollv, #%00000111

                mov     scrollh, scrollreg
                shr     scrollh, #4
                and     scrollh, #%00000011

                ' Calculate shared screen colors
                mov     common_screen_colors, screenreg
                shl     common_screen_colors, #1
                add     common_screen_colors, lookup_ptr
                rdword  common_screen_colors, common_screen_colors
                shl     common_screen_colors, #16

                ' Calculate shared sprite colors
                mov     common_sprite_colors, spritereg
                shl     common_sprite_colors, #1
                add     common_sprite_colors, lookup_ptr
                rdword  common_sprite_colors, common_sprite_colors
                shl     common_sprite_colors, #24

decode_registers_ret  ret

apply_row_effects
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The  apply_row_effects routine  replaces  old-school  raster
interrupts.

                ' Quick check to ensure that row effects are enabled
                test    controlreg, #%00001000          wz
if_z            jmp     #apply_row_effects_ret

                ' Calculate what row we're currently on for row effects
                mov     roweff_row, curr_scanline
                shr     roweff_row, #3

                ' Start at the beginning of each bank of registers
                mov     roweff_cntl_ptr, ROWEFF_CNTL_OFFSET
                mov     roweff_data_ptr, ROWEFF_DATA_OFFSET

                ' Begin the row effects loop
                mov     roweff_remaining, #32

                ' Read the control and data bytes
:loop           rdbyte  roweff_cntl_byte, roweff_cntl_ptr

                mov     temp, roweff_cntl_byte
                and     temp, #%00011111

                rdbyte  roweff_data_byte, roweff_data_ptr

                ' Test that this line is applicable for this row
                cmp     temp, roweff_row                wz
if_nz           jmp     #:next

                ' Apply the replacement for the selected register
                mov     temp, roweff_cntl_byte
                and     temp, #%11100000

                cmp     temp, #%10000000                wz
if_z            mov     basereg, roweff_data_byte

                cmp     temp, #%10100000                wz
if_z            mov     scrollreg, roweff_data_byte

                cmp     temp, #%11000000                wz
if_z            mov     screenreg, roweff_data_byte

                cmp     temp, #%11100000                wz
if_z            mov     spritereg, roweff_data_byte

:next           add     roweff_cntl_ptr, #1
                add     roweff_data_ptr, #1

                djnz    roweff_remaining, #:loop

apply_row_effects_ret   ret
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INTRODUCTION

On startup,  the Cody Computer boots into Cody BASIC,  a
BASIC  interpreter  written  from  scratch  just  for  the  Cody
Computer.  It  allows  you  to  write  moderately-complex
programs and perform file operations from the BASIC prompt.
The BASIC dialect  is  inspired by Tiny BASIC,  a  small  open-
source BASIC dating to the 1970s.

While largely a dialect of Tiny BASIC, Cody BASIC has some
additional features typically not present in most Tiny BASIC
environments.  These  include  (limited)  arrays,  strings,  and
DATA  statements.  Cody  BASIC  also  uses  messages  and
commands inspired by Commodore BASIC instead of the Tiny
BASIC equivalents. Also unlike many Tiny BASIC dialects but
similar  to  the  Commodore,  the  program  is  not  directly
interpreted. Rather, the BASIC program is tokenized into small
pieces that are executed more quickly at runtime.

We'll cover how to program in Cody BASIC later in the book,
but here we'll talk a bit about how it's implemented in 65C02
assembly.  The  code  itself  is  open  source  and  heavily
commented, so we won't go over every single line here. We're
more  focused  on  a  high-level  view  of  the  code,  with  some
detailed analysis of particular subroutines.

Keep in mind that while the actual source file is somewhat
long, it produces a mere 6 kilobytes of machine code for the
65C02 (an additional  2  kilobytes contain the character  set).
The Cody BASIC ROM itself is embedded as data within the
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Propeller program mentioned in the previous section, mapped
to the very top of the 65C02's memory area.

STARTUP AND INITIALIZATION

When the 65C02 starts, it loads a two-byte address from
memory location  $FFFC,  lowest byte first (this is always the
case for the 65C02, as it's a little-endian processor). Here we
put  the  address  for  our  MAIN routine,  responsible  for  the
initial  startup.  It  has  to  initialize  most  of  the  hardware  and
software  from  the  65C02's  side,  including  copying  the
character  set  into  video memory,  setting up video registers,
and preparing a timer interrupt for timekeeping and keyboard
scanning. It also sets up a simple error handling system that
allows BASIC interpreter routines to easily signal an error.

An excerpt from the initialization code in MAIN.

Different parts of the initialization process run depending on
whether a cartridge is connected to the computer or not. If a
cartridge  is  present,  most  of  the  initialization  process  is
skipped or not enabled, instead loading and running a binary

          STZ VID_SCRL          ; Clear out scroll registers

          STZ VID_CNTL          ; Clear out control register

          LDA #$E7              ; Point the video hardware to default color memory, border color yellow
          STA VID_COLR

          LDA #$95              ; Point the video hardware to the default screen and character set
          STA VID_BPTR

          STZ KEYLAST           ; Clear out the major keyboard-related zero page variables
          STZ KEYLOCK
          STZ KEYMODS
          STZ KEYCODE
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program from the cartridge. In other situations the Cody BASIC
interpreter is launched.

TIMER INTERRUPT

Cody BASIC relies on a timer interrupt to handle keyboard
scanning,  simple timekeeping,  and other  periodic  tasks.  This
timer interrupt is generated by the 65C22 VIA chip that also
handles most of the computer's I/O operations. The interrupt
is configured to run 60 times per second. Most of the setup
occurs  in  the  MAIN routine,  but  the  interrupt  isn't  actually
started until the BASIC interpreter itself takes control.

Setting up the timer interrupt in MAIN.

One  level  of  indirection  exists  for  the  timer  interrupt's
handler.  Because  the  65C02's  interrupt  handler  is  fixed  at
address  $FFFE in  memory,  code  in  ROM  would  make  it
impossible  for  other  programs  (such  as  those  written  in
assembly  language)  to  change  the  interrupt  handler  to
something different.

          LDA #<TIMERISR        ; Set up ISR routine address
          STA ISRPTR+0
          LDA #>TIMERISR
          STA ISRPTR+1

          LDA #<JIF_T1C         ; Set up VIA timer 1 to emit ticks (60 per second)
          STA VIA_T1CL
          LDA #>JIF_T1C
          STA VIA_T1CH

          LDA #$40              ; Set up VIA timer 1 continuous interrupts, no outputs
          STA VIA_ACR

          LDA #$C0              ; Set up VIA timer 1 interrupt
          STA VIA_IER
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To avoid that problem, we put a simple stub, ISRSTUB, at the
65C02's interrupt handler address. This jumps to a different
address,  ISRPTR,  stored in the zero page and pointing to the
actual  location of  the interrupt service routine.  If  other code
wants to change the interrupt behavior, it needs only change
the value of ISRPTR to point to its own routine.

The ISRSTUB that jumps to the actual interrupt handler.

Cody BASIC's interrupt handler or service routine, TIMERISR,
is  responsible  for  several  important  functions.  First  it  calls
KEYSCAN to  scan the keyboard matrix.  Next  it  updates  the
jiffies count stored in JIFFIES, a two-byte variable. A jiffy is the
time for a single timer tick, and we keep a count to provide a
simple mechanism for determining elapsed time without a full
real time clock (this technique was very common in the 8-bit
era).

The  interrupt  handler  also  provides  an  important  safety
function  for  BASIC  programs.  When  a  BASIC  program  is
running, it checks to see if the Cody and Arrow keys are both
held down on the keyboard. If both are pressed, the keypresses
are interpreted as a break request by the user.  Without this
functionality, it would be possible to get into a nonterminating
BASIC program and be unable to exit without turning the Cody
Computer on and off.

ISRSTUB   JMP (ISRPTR)
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The TIMERISR routine runs for each interrupt.

KEYBOARD SCANNING

The  Cody  Computer  has  a  30-key  keyboard  set  up  in  a
matrix of five columns and six rows. In addition, two Atari-style
joystick ports with five buttons each are mapped as keyboard
rows.  Cody  BASIC  scans  the  keyboard  as  part  of  the  timer
interrupt routine, updating eight bytes in zero page memory
(KEYROW0 through KEYROW7) with the current values of the
keyboard rows. These values are subsequently used by other
routines to handle keyboard or joystick input.

Scanning is handled by the KEYSCAN routine. It uses port A
on the 65C22 VIA to iterate over the keyboard matrix, with a
one-of-eight analog switch used to convert a three-bit number

TIMERISR  PHA               ; Preserve accumulator

          BIT VIA_T1CL      ; Read the 6522 to clear the interrupt

          JSR KEYSCAN       ; Scan keyboard

          INC JIFFIES       ; Increment jiffy count lower byte (after scanning!)
          BNE _TEST

          INC JIFFIES+1     ; Increment jiffy count upper byte on overflow

_TEST     LDA RUNMODE       ; Only allow breaks if we're running a program
          BEQ _DONE

          LDA KEYROW2       ; Check for Cody key on row 2 (and ONLY the Cody key)
          CMP #$1E
          BNE _DONE

          LDA KEYROW3       ; Check for arrow key on row 3 (and ONLY the arrow key)
          CMP #$0F
          BNE _DONE

          JMP RAISE_BRK     ; Break

_DONE     PLA               ; Restore accumulator

          RTI               ; Return from interrupt routine
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into the current keyboard row to scan. Once a row is selected,
the remainder of port A is read, containing the five bits for the
columns, and stored in the appropriate KEYROW variable. The
timer interrupt calls this routine on a regular basis to update
the data.

The KEYSCAN routine that scans the keyboard matrix.

Converting  the  raw  bits  from  the  matrix  into  a  keyboard
code is the responsibility of the KEYDECODE routine. There the
KEYROW values are examined and converted to a scan code
and stored in KEYCODE. It also performs a special check to see
if the Cody key is pressed, and if so, updates the state of the
keyboard modifiers in KEYMODS.

KEYSCAN   PHA                   ; Preserve registers
          PHX

          STZ VIA_IORA          ; Start at the first row and first key of the keyboard
          LDX #0

_LOOP     LDA VIA_IORA          ; Get the keys for the current row from the VIA port
          LSR A
          LSR A
          LSR A
          STA KEYROW0,X

          INC VIA_IORA          ; Move on to the next keyboard row
          INX

          CPX #8                ; Do we have any rows remaining to scan?
          BNE _LOOP

          PLX                   ; Restore registers
          PLA

          RTS

KEYDECODE PHX                   ; Preserve registers
          PHY

          STZ KEYMODS           ; Reset scan codes and modifiers at start of new scan
          STZ KEYCODE

          LDX #0                ; Start at the first row and first key scan code
          LDY #0
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The KEYDECODE routine produces a key code from the matrix.

Key scan codes represent an actual button on the keyboard,
not a character. The Cody Computer uses CODSCII,  a special
character  set  that's  just  traditional  ASCII  with  the  PETSCII

_ROW      LDA KEYROW0,X         ; Load the current row's column bits from zero page
          INX

          PHX                   ; Preserve row index

          LDX #5                ; Loop over current row's columns

_COL      INY                   ; Increment the current key number at the start of each new key

          LSR A                 ; Shift to get the next column bit

          BCS _NEXT             ; If the current column wasn't pressed, just skip to the next column

          CPY #KEY_META         ; Is this the META special key?
          BNE _CODY

          PHA                   ; META key is pressed, update current key modifiers
          LDA KEYMODS
          ORA #$20
          STA KEYMODS
          PLA

          BRA _NEXT             ; Continue on to the next column

_CODY     CPY #KEY_CODY         ; Is this the CODY special key?
          BNE _NORM

          PHA                   ; CODY key is pressed, update current key modifiers
          LDA KEYMODS
          ORA #$40
          STA KEYMODS
          PLA

          BRA _NEXT             ; Continue on to the next column

_NORM     PHA                   ; Not a special key so just store it as the current scan code
          TYA
          STA KEYCODE
          PLA

_NEXT     DEX                   ; Move on to the next keyboard column
          BNE _COL

          PLX                   ; Restore current row index

          CPX #6                ; Continue while we have more rows to process
          BNE _ROW

          LDA KEYCODE           ; Update the current key scan code with the modifiers
          ORA KEYMODS
          STA KEYCODE

          PLY                   ; Restore registers
          PLX

          RTS
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graphics  symbols  appended  to  it.  As  a  result,  character
handling  is  greatly  simplified  compared  to  the  actual
Commodore computers. Unfortunately, we still have to convert
scan codes to their ASCII (or more accurately CODSCII) values.

This is handled by the  KEYTOCHR routine, which accepts a
scan code for the keyboard and converts it to an ASCII code.
The  routine's  implementation  relies  on  a  lookup  table
containing the ASCII codes for each scan code. The ASCII codes
correspond to the arrangement of keys in the keyboard matrix
so  that  once  we  have  a  scan  code  we  can  look  up  the
appropriate  value.  The  lookup  table  also  takes  into  account
whether  the  Cody  or  Meta  keys  have  been  pressed  on  the
keyboard. (Shift status and conversion to lowercase, however,
happens elsewhere.)

KEYTOCHR  PHX
          DEC A
          TAX
          LDA _LOOKUP,X
          PLX
          RTS

_LOOKUP

.BYTE 'Q', 'E', 'T', 'U', 'O'      ; Key scan code mappings without any modifiers

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $00

.BYTE 'Z', 'C', 'B', 'M', $0A

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE 'W', 'R', 'Y', 'I', 'P'

.BYTE $00, $00

.BYTE '!', '#', '%', '&', '('      ; Key scan code mappings with META modifier

.BYTE '@', '-', ':', $27, ']'

.BYTE $00, '<', ',', '?', $00

.BYTE '\', '>', '.', '/', $08

.BYTE '=', '+', ';', '[', ' '

.BYTE '"', '$', '^', '*', ')'

.BYTE $00, $00

.BYTE '1', '3', '5', '7', '9'      ; Key scan code mappings with CODY modifier

.BYTE 'A', 'D', 'G', 'J', 'L'

.BYTE $00, 'X', 'V', 'N', $1B

.BYTE 'Z', 'C', 'B', 'M', $18

.BYTE 'S', 'F', 'H', 'K', ' '

.BYTE '2', '4', '6', '8', '0'
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The KEYTOCHR routine and its lookup table.

The  KEYDECODE and  KEYTOCHR routines are never called
as part of the keyboard scanning done in the timer interrupt.
Instead,  they're  called  from  the  READKBD routine,  which  is
completely  separate.  This  routine  is  called  when  the  Cody
BASIC interpreter expects line-based input, such as during the
REPL loop or in an INPUT statement. Each character entered is
also echoed to the screen. We'll discuss those routines in detail
when we talk about input and output handling.

ERROR HANDLING

As part of the initialization process a simple form of error
handling is  set  up for  the BASIC interpreter  and its  related
code. Error handling in Cody BASIC works like a very simple
exception  handler.  On  startup  the  current  location  in  the
65C02's  own  stack  is  stored  in  the  STACKREG variable  for
later use.

At  runtime,  whenever  the interpreter  encounters  an error,
one of several error routines are called. The error routine then
calls  ERROR to handle the error, print an error message, and
unwind the  65C02 stack.  After  unrolling the  error,  it  jumps
back into the BASIC interpreter's REPL loop.

Preserving the stack position to unwind in the event of an error.

.BYTE $00, $00

BASIC     TSX                   ; Preserve the stack register for unwinding on error conditions
          STX STACKREG
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Four  helper  routines  exist  to  save  code  and  provide  a
consistent interface to raise an error condition. The RAISE_BRK
routine  corresponds  to  the  ERR_BREAK error  code,
RAISE_SYN to ERR_SYNTAX,  RAISE_LOG to ERR_LOGIC, and
RAISE_SYS to ERR_SYSTEM.

Entry points to the error-handling system in Cody BASIC.

The first error type, ERR_BREAK isn't an error in the strictest
sense.  An  error  of  this  type  only  indicates  that  the  user  is
attempting to break from the current program by pressing the
Cody  and  Arrow  keys  simultaneously.  In  this  situation,  the
error  handling  process  is  somewhat  abbreviated  instead  of
displaying a full error message.

The  other  error  types  largely  match  the  error  conditions
from  the  original  Tiny  BASIC  in  the  1970s.  ERR_SYNTAX
indicates that a syntax error was encountered in the current
program,  similar  to  Tiny  BASIC's  WHAT?.  ERR_LOGIC
indicates that the program was running but didn't make logical
sense,  similar  to  Tiny  Basic's  HOW?.  The  last  error,
ERR_SYSTEM, indicates a system problem such as running out
of memory caused an error, similar to Tiny BASIC's SORRY.

Using  the  error  routines  is  straightforward.  When  code
determines that an error exists in the program, it performs an

RAISE_BRK LDA #ERR_BREAK
          BRA ERROR

RAISE_SYN LDA #ERR_SYNTAX
          BRA ERROR

RAISE_LOG LDA #ERR_LOGIC
          BRA ERROR

RAISE_SYS LDA #ERR_SYSTEM
          BRA ERROR
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unconditional jump to the corresponding routine to raise that
particular  error.  Detecting  the  error  itself  (for  example,  a
missing keyword in a statement) is  the responsibility of the
calling routine. However, once an error routine is called, further
error handling will be taken care of automatically.

Example from MOD16 of raising an error on division by zero.

Once another part of the program has called into the error
handlers,  control  eventually  passes  to  the  ERROR routine.  It
unwinds the stack, restores any I/O settings to their screen and
keyboard  defaults,  and  finally  prints  an  error  message
indicating the type of error that occurred. If the error occurred
while  the  program was  running,  the  current  line  number  is
appended  as  in  Commodore  BASIC.  Once  completed,  the
routine jumps to the REPL loop, allowing the user to continue
to work with the computer.

MOD16     LDA NUMTWO          ; See if the low byte of the second argument is nonzero
          BNE _OK

          LDA NUMTWO+1        ; See if the high byte of the second argument is nonzero
          BNE _OK

          JMP RAISE_LOG       ; Raise a logic error for divide by zero

ERROR     LDX STACKREG        ; Unwind the stack
          TXS

          JSR SERIALOFF       ; Turn off serial mode (just in case it was on)

          STZ IOMODE          ; Reset IO mode for all future output
          STZ IOBAUD

          STZ OBUFLEN         ; Reset output buffer position

          PHA                 ; Preserve the provided error code in the accumulator

          LDA #CHR_NL         ; Ensure error messages begin on a new line
          JSR PUTOUT

          PLA                 ; Restore the error code into the accumulator
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The ERROR routine recovers from errors and prints messages.

STARTING BASIC

Once the required setup is out of the way, it's time to start
up BASIC itself. If no cartridge is connected to the computer,
the program continues on to boot up BASIC. While the BASIC
interpreter is somewhat complex, the main loop for it isn't that

          CLC                 ; Calculate the message table index for the provided error
          ADC #MSG_ERRORS

          JSR PUTMSG          ; Print the error

          CMP #MSG_ERRORS     ; "Break" errors don't have the word "error" (just BREAK IN ...)
          BEQ _BREAK

          LDA #MSG_ERROR      ; Print the word "ERROR" for all other errors
          JSR PUTMSG

_BREAK    LDA RUNMODE         ; Are we running a program right now? (otherwise hide line numbers)
          CMP #RM_PROGRAM
          BNE _NOLINE

          LDA #MSG_IN         ; Append "IN" to our error message
          JSR PUTMSG

          LDY #1              ; Start at line number position in current line

          LDA (PROGPTR),Y     ; Copy line number low byte
          STA NUMONE

          INY                 ; Next byte

          LDA (PROGPTR),Y     ; Copy line number high byte
          STA NUMONE+1

          JSR TOSTRING        ; Write the line number into the buffer

_NOLINE   LDA #CHR_NL         ; New line after the error message
          JSR PUTOUT

          LDA #CHR_NL         ; Blank line
          JSR PUTOUT

          LDA #MSG_READY      ; Ready message
          JSR PUTMSG

          JSR FLUSH           ; Print the error message

          STZ RUNMODE         ; Reset run mode (REPL mode after errors or breaks)

          CLI                 ; Enable interrupts (in case we came from the interrupt routine)

          JMP REPL            ; Return to the REPL loop
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difficult  to  follow.  As  mentioned  in  our  discussion  of  error
handling, we keep a copy of the current 65C02 stack position
for  our  error  handler  when  we  enter  BASIC.  Then  a  short
startup message is printed. Finally, interrupts are enabled so
that  the  timer  interrupt  and  keyboard  scanning  routine  will
run.

Final steps before entering BASIC.

We then enter a read-eval-print loop (REPL) that lets the
user enter text into Cody BASIC. All input is tokenized by the
TOKENIZE routine and then examined. If a line begins with a
number, we insert or delete the line from the program with a
call to  ENTERLINE.  If  it  doesn't begin with a number, we call
EXSTMT to execute the line as a BASIC statement.

BASIC     TSX                   ; Preserve the stack register for unwinding on error conditions
          STX STACKREG

          STZ OBUFLEN           ; Move to beginning of the output buffer

          LDA #MSG_GREET        ; Print the welcome message
          JSR PUTMSG
          JSR FLUSH

          LDA #MSG_READY        ; Print the ready message
          JSR PUTMSG
          JSR FLUSH

          CLI                   ; Enable interrupts and drop through to the REPL loop
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The implementation of Cody BASIC's read-eval-print loop.

STARTING A CARTRIDGE PROGRAM

The only exception to  the above sequence occurs  when a
cartridge is plugged into the computer. In the event a cartridge
is plugged in, we skip starting up BASIC and instead read in a
binary program from the cartridge. During startup we rely on
the CARTCHECK routine to see if a cartridge is plugged in the
expansion port.

REPL      STZ RUNMODE           ; Clear out RUNMODE

          STZ IOMODE            ; Direct all IO to screen and keyboard

          JSR READKBD           ; Read a line of input and advance the screen
          JSR SCREENADV

          JSR TOKENIZE          ; Tokenize the input

          LDA TBUF              ; Line number to add or execute the line immediately?
          CMP #$FF
          BNE _EXEC

          JSR ENTERLINE         ; Enter the line into the program

          BRA REPL              ; Next read-eval-print loop

_EXEC     STZ PROGOFF           ; Start at the beginning of the line

          LDA #<TBUF            ; Use the token buffer as the line we're going to run
          STA PROGPTR
          LDA #>TBUF
          STA PROGPTR+1

          JSR EXSTMT            ; Execute the statement in the token buffer

          STZ OBUFLEN           ; Move to beginning of output buffer

          LDA #MSG_READY        ; Print the ready message after each REPL operation
          JSR PUTMSG
          JSR FLUSH

          BRA REPL              ; Next read-eval-print loop
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The section in MAIN that checks for a cartridge.

CARTCHECK toggles some lines on the expansion port  to
determine if a cartridge is plugged in. If a cartridge is present,
the CA1 and CA2 lines on the 65C22 VIA will be connected by
a trace on the cartridge's printed circuit board. If not, the CA1
line will  be pulled low by a pulldown resistor built  into the
Cody Computer itself. We set up the 65C22 so that the CA1
line  is  positive-edge triggered,  then bring  CA2 high.  If  CA1
detected a positive edge, we know a cartridge is connected. If
not, then no cartridge is present.

The CARTCHECK routine for cartridge detection.

If a cartridge is detected, the  LOADBIN routine is called to
load binary code from the cartridge's SPI EPROM. This routine

          JSR CARTCHECK         ; Check for cartridge plugged in
          BEQ BASIC

          STZ IOMODE            ; Cartridge found, load and run binary instead of BASIC
          STZ IOBAUD
          JMP LOADBIN

CARTCHECK LDA #$0D              ; Set CA2 to LOW output, CA1 to positive edge trigger
          STA VIA_PCR

          LDA VIA_IORA          ; Clear the existing CA1 flag value in the VIA_IFR register

          LDA #$0F              ; Toggle CA2 HIGH
          STA VIA_PCR

          LDA VIA_IFR           ; Push the CA1 flag value in the VIA_IFR register for later
          PHA

          LDA #$0D              ; Set CA2 to LOW output, CA1 to positive edge trigger
          STA VIA_PCR

          LDA VIA_IORA          ; Clear the existing CA1 flag value in the VIA_IFR register

          PLA                   ; Pop the stored CA1 flag value and test if bit was set
          AND #$02

          RTS
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actually handles loading of binary code from both serial and
SPI sources to save space, but different underlying routines are
called depending on the use case. For loading from SPI, three
helper  routines  exist  to  handle  SPI  communications.  The
CARTON routine  starts  an  SPI  transaction,  the  CARTOFF
routine  ends  an  SPI  transaction,  and  the  CARTXFER routine
simultaneously sends and receives a byte over SPI.

The CARTXFER routine transfers a single byte over SPI.

CARTXFER  PHX

          STA SPIOUT

          STZ SPIINP

          LDX #8              ; 8 bits to read

_LOOP     STZ VIA_IORB        ; Bring the clock low

          LDA #0              ; Start with no data

          ROL SPIOUT          ; Get output bit

          BCC _SEND

          ORA #CART_MOSI      ; Output bit was a 1

_SEND     STA VIA_IORB        ; Put the bit on MOSI

          ORA #CART_CLK       ; Bring the SPI clock high
          STA VIA_IORB

          ROL SPIINP          ; Rotate SPI input for next bit

          LDA VIA_IORB        ; Read the incoming MISO
          AND #CART_MISO

          BEQ _NEXT

          LDA SPIINP
          ORA #1
          STA SPIINP

_NEXT     DEX                 ; Next loop (if any remain)
          BNE _LOOP

          PLX

          LDA SPIINP

          RTS
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An additional complication exists for cartridges as they have
two possible  address  sizes:  16  bits  (for  cartridges  up to  64
kilobytes) and 24 bits (for larger SPI memories). The LOADBIN
routine  takes  this  into  account,  something  we'll  talk  about
when we discuss loading and saving of programs later on.

Portion of LOADBIN that checks for the cartridge's size.

TOKENIZATION AND INTERPRETATION

Running programs in Cody BASIC is a two-step process. The
first  step  is  tokenization,  where  a  program's  contents  are
translated to a special internal representation of the program.
The second step is interpretation, where the tokenized program
is  executed  line  by  line  and  its  statements  processed.  Both
steps occur regardless of the nature of the program, whether
it's  a  single  line  entered  in  REPL  mode,  an  entire  program
that's been typed in by the user, or a program loaded in over a
serial port.

TOKENIZATION

Certain keywords or symbols in Cody BASIC are converted
into  tokens.  This  approach,  common  to  many  1980s  BASIC
implementations,  serves  two  purposes.  The  first  is  that  by

          LDX #2              ; Assume a cartridge with a two-byte address

          LDA VIA_IORB        ; If cart size bit is high, we have a three-byte address
          BIT #CART_SIZE
          BEQ _ADDR
          INX
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reducing an entire word, such as RETURN, to a one-byte token
like  $8A,  we  save  considerable  space  in  BASIC  program
memory. The second is that the program can be interpreted far
more quickly.

Instead of having to process each letter and determine what
to do at the end of the keyword, we can just test if a byte falls
within a certain range reserved for tokens. If so, we know we
have  a  keyword  or  other  special  value.  In  some  cases,  the
tokens can be used as indexes into a jump table, making our
interpreter code even faster.

The tokenization occurs in the TOKENIZE routine. It takes the
contents of a line in the input buffer IBUF and converts it to a
tokenized line in the token buffer  TBUF.  A tokenized line at
this  point  consists  of  the  same text  contents  as  its  original,
except  that  certain  keywords,  symbols,  and  literals  are
replaced by their token equivalents. Constants beginning with
the TOK_ prefix define the numeric values of the tokens.
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Main loop of the TOKENIZE routine.

Tokens always begin with a single byte that has its highest
bit set to 1. As a practical matter, this means that BASIC tokens
begin at $80 in hex or 128 in decimal. Tokens for keywords are
only a single byte in size. Numbers are the only exception and
begin  with  a  sentinel  value  of  $FF followed  by  a  16-bit
unsigned number in little-endian format (lowest byte stored
first).  Strings  are  not  tokenized  and  are  delimited  by  ASCII
double-quote characters.  Contents within the strings are not
tokenized.

_LOOP     LDA IBUF,X          ; Load the next character

          CMP #CHR_NL         ; End of line?
          BEQ _END

          CMP #CHR_QUOTE      ; String?
          BEQ _STR

          JSR ISALPHA         ; Letter?
          BCS _LET

          JSR ISDIGIT         ; Digit?
          BCS _NUM

          CMP #CHR_LESS       ; Rule out relational operator ranges
          BCC _CHR

          CMP #CHR_QUEST
          BCS _CHR

          JMP _OPR            ; Relational operators handled as special case

_NUM      LDA #<IBUF          ; Input buffer lower byte
          STA MEMSPTR

          LDA #>>BUF          ; Input buffer high byte
          STA MEMSPTR+1

          PHY                 ; Preserve current token buffer position

          TXA                 ; Move the current input buffer position into the y-register
          TAY

          JSR TONUMBER        ; Parse the number

          TYA                 ; Move the updated input buffer position back into the x-register
          TAX
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Part of the TOKENIZE routine that handles numbers.

The  actual  text  of  the  tokens  is  kept  alongside  all  other
string constants in the message table, with the first token being
stored  at  an  offset  of  MSG_TOKENS from  the  start  of  the
messages.  To  map  each  string  to  its  token  value  we  use  a
binary  search  algorithm.  The  _TOKTABLE in  the  TOKENIZE
routine stores token values in their alphabetical order to assist
with  the  binary  search  process.  This  table  is  used  by  the
routine to more quickly match incoming text to tokens.

          PLY                 ; Restore the token buffer position off the stack

          LDA #$FF            ; Write the sentinel value for a number token
          JSR _PUT

          LDA NUMANS          ; Store number low byte
          JSR _PUT

          LDA NUMANS+1        ; Store number high byte
          JSR _PUT

          JMP _LOOP

          STZ TOKENIZEL       ; Prepare for binary search
          LDA #(_TOKTABLEEND - _TOKTABLE)
          STA TOKENIZER

_TOKNEXT  LDA TOKENIZEL       ; Are we done yet? (L <= R)
          CMP TOKENIZER

          BCC _TOKCOMP
          BEQ _TOKCOMP

          PLY                 ; Restore token buffer (Y) and input buffer (X) positions
          PLX

          JMP _CHR            ; Process as normal character

_TOKCOMP  CLC                 ; Calculate our position in the token lookup table
          LDA TOKENIZEL
          ADC TOKENIZER
          LSR A
          TAX

          PHX

          LDA _TOKTABLE,X     ; Get the token's matching index in the string table
          TAX

          LDA TOKTABLE_L,X    ; Put the token's address in the memory destination pointer
          STA MEMDPTR
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Binary search as implemented in the TOKENIZE routine.

The  performance  of  the  tokenization  process  is  very
important  to  the  overall  usability  of  the  Cody  Computer.
Unlike most tokenized BASICs,  Cody BASIC does not use its
tokenized form when a copy is saved via  SAVE or loaded via
LOAD. Instead, all tokens are converted back to their plain text
to make the content readable in just about any text editor. This
means that when a program is loaded over a serial connection,
it  must  also be tokenized.  This  also means that  the loading
speed of a BASIC program is largely limited by how fast the
incoming text can be tokenized.

          LDA TOKTABLE_H,X
          STA MEMDPTR+1

          PLX

          LDY #$FF            ; Use the y register for our position in the strings

_TOKCHAR  INY                 ; Move to next char

          LDA (MEMDPTR),Y     ; If we've reached the end of the token we're testing against, we have a match
          BEQ _TOKYES

          LDA (MEMSPTR),Y     ; Get the next character from the input string and UPPERCASE it
          JSR TOUPPER

          CMP (MEMDPTR),Y     ; Compare it to the token string and see if we still match
          BEQ _TOKCHAR
          BCC _TOKLO
          BCS _TOKHI

_TOKHI    TXA                 ; Input token was greater, move to top partition
          INC A
          STA TOKENIZEL
          BRA _TOKNEXT

_TOKLO    TXA                 ; Input token was less, move to bottom partition
          DEC A
          STA TOKENIZER
          BRA _TOKNEXT
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A TOKENIZE optimization that skips over REM comments.

LINE INSERTION AND DELETION

Once a line is tokenized it's either evaluated immediately or
added to the program. The REPL loop examines the contents of
the  token buffer  TBUF and  checks  if  the  line  begins  with  a
number.  If  it  does,  it  means  the  line  is  either  being  added,
replaced, or deleted from the program, which is handled by the
ENTERLINE routine.

It extracts the line number from the token buffer and calls
FINDLINE to  determine  the  line's  starting  location  within
program memory. If  the line exists,  the contents of program
memory  are  shifted  downward  to  delete  the  existing  line.
Unless the line is  empty (containing only the line number),
program memory is then shifted upward to make room for the
new line. INSLINE is called to handle the actual insertion.

_REM      LDA IBUF,X          ; Skip tokenizing after a REMARK to save time

          CMP #CHR_NL         ; End of line?
          BEQ _REMEND

          JSR _PUT            ; Copy the character

          INX                 ; Next character
          BRA _REM

_REMEND   JMP _END

ENTERLINE PHA                 ; Preserve registers

          LDA TBUF+1          ; Get the line number we're looking for
          STA LINENUM+0
          LDA TBUF+2
          STA LINENUM+1

          JSR FINDLINE        ; See if the line number entered already exists
          BCC _NEW
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_DEL      LDA LINEPTR+0       ; Use matching line as destination (deleting line by copying over it)
          STA MEMDPTR+0
          LDA LINEPTR+1
          STA MEMDPTR+1

          CLC                 ; Calculate end of matching line as the source pointer
          LDA MEMDPTR+0
          ADC (LINEPTR)
          STA MEMSPTR+0
          LDA MEMDPTR+1
          ADC #0
          STA MEMSPTR+1

          SEC                 ; Calculate number of bytes to move down from the top
          LDA PROGTOP+0
          SBC MEMSPTR+0
          STA MEMSIZE+0
          LDA PROGTOP+1
          SBC MEMSPTR+1
          STA MEMSIZE+1

          SEC                 ; Adjust the top address in program memory because we deleted a line
          LDA PROGTOP+0
          SBC (LINEPTR)
          STA PROGTOP+0
          LDA PROGTOP+1
          SBC #0
          STA PROGTOP+1

          JSR MEMCOPYDN       ; Delete the current line by moving memory down

_NEW      LDA TBUFLEN         ; If nothing on the new line, don't insert anything (just a deletion?)
          CMP #4
          BEQ _END

          LDA LINEPTR+0       ; Is our insertion position the same as the top of program memory?
          CMP PROGTOP+0
          BNE _MOV

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _MOV

          BRA _INS            ; If so, we can just insert without copying memory to make space

_MOV      LDA LINEPTR+1       ; If we're on the last page of program memory just say we're out
          CMP #>PROGEND
          BEQ _SYS

          LDA LINEPTR+0       ; Use the insertion position as source pointer to move memory
          STA MEMSPTR+0
          LDA LINEPTR+1
          STA MEMSPTR+1

          CLC                 ; Calculate the destination pointer for copying memory
          LDA MEMSPTR+0
          ADC TBUFLEN
          STA MEMDPTR+0
          LDA MEMSPTR+1
          ADC #0
          STA MEMDPTR+1

          SEC                 ; Calculate the amount of memory to copy to make room for the new line
          LDA PROGTOP+0
          SBC MEMSPTR+0
          STA MEMSIZE+0
          LDA PROGTOP+1
          SBC MEMSPTR+1
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The ENTERLINE routine handles lines entered into the REPL.

The  FINDLINE routine determines the insert location for a
new line. If a line already exists with the same number, it will
return that location instead. The routine works by starting at
PROGMEM, the base of program memory, and continuing until
either a matching line number is found (indicating the line is
present) or a line number that is larger is found (indicating the
line does not exist).

To compare line numbers it examines the second and third
bytes in each line, which contain the low and high bytes of the
line number. If it needs to move to the following line, the first
byte  of  the line,  containing the line length,  is  added to  the
current pointer in LINEPTR to move forward. If LINEPTR is ever
equal to PROGTOP, the top of program memory, it means the
line does not exist and should be appended to the end of the
program.

FINDLINE is  also  used  by  the  BASIC  interpreter  to  find
destination line numbers in GOTO and GOSUB statements.

          STA MEMSIZE+1

          JSR MEMCOPYUP       ; Copy the memory up to make room for the new line

_INS      JSR INSLINE         ; Insert the line

_END      PLA                 ; Restore registers

          RTS

_SYS      JMP RAISE_SYS       ; Indicate we're out of BASIC program memory

FINDLINE  PHA                 ; Preserve registers
          PHY

          LDA #<PROGMEM       ; Start at the beginning of program memory
          STA LINEPTR+0
          LDA #>PROGMEM
          STA LINEPTR+1

_LOOP     LDA LINEPTR+0       ; Ensure that we're not at the top of program memory already
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Finding a line's insert position is handled by FINDLINE.

Insertion of a line is handled by  INSLINE.  It  assumes that
appropriate space has already been allocated for the new line
(by  ENTERLINE)  and  doesn't  move  any  contents  within
program memory. Instead, it copies the contents of the token
buffer  TBUF into a specified address in program memory.  It
also somewhat modifies the line contents,  changing the first
byte from  $FF (representing the start of a number token) to
the line's length in bytes. When done, the value of PROGTOP

          CMP PROGTOP+0
          BNE _COMP

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _COMP

          BRA _NO

_COMP     LDY #2              ; Skip leading line size byte when doing line number comparison

          LDA (LINEPTR),Y     ; Compare current and desired line number high bytes
          CMP LINENUM+1
          BNE _TEST

          DEY                 ; Compare current and desired line number low bytes
          LDA (LINEPTR),Y
          CMP LINENUM

_TEST     BEQ _YES            ; Found a match

          BCS _NO             ; Current line greater than desired line number, doesn't exist

          CLC                 ; Current line less than desired line number, move to next line

          LDA LINEPTR+0       ; Add current line size to low address byte
          ADC (LINEPTR)
          STA LINEPTR+0

          LDA LINEPTR+1       ; Propagate carry to high address byte
          ADC #0
          STA LINEPTR+1

          BRA _LOOP

_NO       CLC                 ; No match found, clear carry
          BRA _END

_YES      SEC                 ; Match found, set carry

_END      PLY                 ; Restore registers
          PLA

          RTS
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is incremented by the line's length to reflect the increased size
of the program.

The  INSLINE routine is also used by the  LOADBAS routine
when a BASIC program is being loaded from storage over the
serial port. In this case lines are being appended to the top of
the program as they come in and get tokenized. This allows us
to skip over some unrelated code not needed for this special
case of line insertion.

INSLINE routine for inserting a line into the program.

INSLINE   LDA LINEPTR+1       ; If we're on the last page of program memory just say we're out
          CMP #>PROGEND
          BEQ _SYS

          LDA TBUFLEN         ; Store token buffer length as first byte in line
          STA TBUF

          STA MEMSIZE+0       ; Set size of memory to copy into program buffer
          STZ MEMSIZE+1

          LDA #<TBUF          ; Use token buffer as source pointer
          STA MEMSPTR+0
          LDA #>TBUF
          STA MEMSPTR+1

          LDA LINEPTR+0       ; Use line pointer found for line number as destination pointer
          STA MEMDPTR+0
          LDA LINEPTR+1
          STA MEMDPTR+1

          JSR MEMCOPYDN       ; Copy the memory

          CLC                 ; Update the top of memory to the new location
          LDA PROGTOP+0
          ADC TBUFLEN
          STA PROGTOP+0
          LDA PROGTOP+1
          ADC #0
          STA PROGTOP+1

          RTS

_SYS      JMP RAISE_SYS       ; Indicate we're out of BASIC program memory
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INTERPRETATION

Once Cody BASIC code is tokenized, it can be executed via
interpretation.  The  core  of  the  interpreter  is  a  recursive-
descent parser that goes through each tokenized line looking
for tokens and calling the appropriate routines to handle them.
The  PROGPTR zero-page variable  points  to  the  start  of  the
current  line  while  another  zero-page  variable,  PROGOFF,
stores  the  current  position  within  the  line.  For  evaluating
mathematical  expressions  or  passing  values  between
interpreter routines, a dedicated expression stack exists in zero
page (EXPRS_L for low bytes, EXPRS_H for high bytes).

The starting point for interpretation is the  EXSTMT routine
that interprets a single statement. It examines the first token in
the current line, converts it to an index into a jump table, and
jumps to the appropriate routine to handle the statement type.
When the called routine returns, because we did a jump rather
than a subroutine call, control will return back to the routine
that  called  EXSTMT.  While  somewhat  hackish,  this  works
around the 65C02's inability to perform an indirect subroutine
call.  (A  more  generic  way  around  the  same  problem  is  to
perform a subroutine call to the code that does the jump, but
for our specific purpose, what we have works quite well.)

Note that the routines that are part of the recursive-descent
interpreter  are  usually  prefixed  with  EX to  indicate  they're
used  to  execute  the  program.  You  can  see  many  of  these
routines in the jump table included below.

EXSTMT    STZ EXPRSNUM        ; Start at the bottom of the expression stack
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EXSTMT is the highest-level routine in the interpreter.

The  REPL loop relies on  EXSTMT to run the lines of BASIC
code the user enters. In this mode, each entered line that is not
an  edit  is  executed  immediately.  To  make  this  happen,

          JSR EXSKIP          ; Skip any whitespace before we run into a token

          LDY PROGOFF         ; Get the current offset in the current line

          LDA (PROGPTR),Y     ; Get the current byte

          CMP #CHR_NL         ; Was it a newline? If so the entire line was blank
          BEQ _END

          CMP #TOK_SYS+1      ; Check that the byte isn't too big to be a valid token
          BCS _SYN

          SEC                 ; Subtract from the first statement token to get the index
          SBC #TOK_NEW

          BCC _ASN            ; If the result was less than that, assume it was an assignment

          ASL A               ; Multiply by two to convert the number into a jump table index
          TAX

          INC PROGOFF         ; Increment the current offset since we consumed the token

          JMP (_JMP,X)        ; Jump to the code for the statement we have

_END      RTS

_ASN      JMP EXASSIGN        ; Jump to the assignment

_SYN      JMP RAISE_SYN       ; Raise syntax error

_JMP      .WORD EXNEW
          .WORD EXLIST
          .WORD EXLOAD
          .WORD EXSAVE
          .WORD EXRUN
          .WORD EXNOP
          .WORD EXIF
          .WORD _SYN
          .WORD EXGOTO
          .WORD EXGOSUB
          .WORD EXRETURN
          .WORD EXFOR
          .WORD _SYN
          .WORD EXNEXT
          .WORD EXPOKE
          .WORD EXINPUT
          .WORD EXPRINT
          .WORD EXOPEN
          .WORD EXCLOSE
          .WORD EXREAD
          .WORD EXRESTORE
          .WORD EXNOP
          .WORD EXEND
          .WORD EXSYS
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PROGOFF is  set  to  zero,  PROGPTR is  pointed  to  the  token
buffer, and EXSTMT is called to execute the line. Once the line
has been executed control returns to the REPL loop for further
input.

The _EXEC portion of the REPL code.

Running an entire program using the RUN command is very
similar, except that lines are interpreted in succession until the
program comes to a stop. Interestingly, it's the responsibility of
the interpreter itself to begin interpreting a full program, as
the  RUN statement  is  actually  implemented  within  the
interpreter itself. When a user enters the RUN statement in the
REPL loop, the interpreter calls the EXRUN routine to execute
it, running the program.

EXRUN starts out by clearing the current interpreter state
back  to  some  sane  default  values.  It  also  has  to  set  the
RUNMODE so other code, particularly the error handler, knows
that we're running a program. It positions the PROGPTR to the
start of the program, then begins evaluating each line one at a
time by calling EXSTMT.

_EXEC     STZ PROGOFF           ; Start at the beginning of the line

          LDA #<TBUF            ; Use the token buffer as the line we're going to run
          STA PROGPTR
          LDA #>TBUF
          STA PROGPTR+1

          JSR EXSTMT            ; Execute the statement in the token buffer

          STZ OBUFLEN           ; Move to beginning of output buffer

          LDA #MSG_READY        ; Print the ready message after each REPL operation
          JSR PUTMSG
          JSR FLUSH

          BRA REPL              ; Next read-eval-print loop
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As an additional complication, some statements can change
the interpreter's current position in the program. For example,
a  GOTO statement could move the current position far away
from the current line, and other statements related to control
flow have similar effects.

To  handle  these  situations,  EXRUN also  calculates  a
PROGNXT pointer to the next line to execute before executing
the current line. Once the current line is executed, it goes to
the line pointed to by PROGNXT. Under normal circumstances
this will be the line after the current one, but for statements
that modify the control flow, the value can be replaced with a
different one when the control statement runs.

EXRUN     JSR ONLYREPL        ; Only valid in REPL mode

          JSR NEWVARS         ; Reset variable memory

          JSR RESTORE         ; Reset data buffer for DATA/READ statements

          LDA #RM_PROGRAM     ; Set RUNMODE to running
          STA RUNMODE

          STZ GOSUBSNUM       ; Start out with empty GOSUB/RETURN and FOR/NEXT stacks
          STZ FORSNUM

          LDA #<PROGMEM       ; Use the start of program memory as our starting position
          STA PROGPTR
          LDA #>PROGMEM
          STA PROGPTR+1

_LOOP     LDA RUNMODE         ; Check that we're still running (e.g. no END statement was executed)
          BEQ _DONE

          JSR ISEND           ; Make sure that this line isn't actually the end of the program
          BEQ _DONE

_CONT     CLC                 ; Prepare to calculate the NEXT line we'll be running

          LDA PROGPTR         ; Calculate the low byte by adding our pointer to the line's size
          ADC (PROGPTR)
          STA PROGNXT

          LDA PROGPTR+1       ; Propagate the carry
          ADC #0
          STA PROGNXT+1

          LDA #4              ; Start at the first non-line-number position in the current line
          STA PROGOFF

          JSR EXSTMT          ; Execute the statement on this line
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EXRUN runs an entire program from within the interpreter.

The interpreter  supports  26 numeric  arrays,  A through  Z,
each capable of holding up to 128 numbers. An additional 26
string variables,  A$ through  Z$,  also exist  with a maximum
length of 255 characters plus a terminating NUL char. These
reside in the  DATAMEM portion of the interpreter's memory,
with each array or string aligned to a single 256-byte page in
the  65C02's  memory.  Numeric  variables  start  at  ARRA
through  ARRZ while  string  variables  start  at  STRA through
STRZ.  The  interpreter's  EXVAR routine  parses  variables  and
calculates  the actual  memory address associated with them,
including any array indexes for number variables.

          LDA PROGNXT         ; Copy the NEXT line's pointer over to use as the current line
          STA PROGPTR
          LDA PROGNXT+1
          STA PROGPTR+1

          BRA _LOOP           ; Repeat, run the next statement

_DONE     STZ RUNMODE         ; Clear run mode

          STZ IOMODE          ; Clear IO mode

          RTS                 ; Done

EXVAR     JSR EXSKIP          ; Consume leading space

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          INC PROGOFF         ; Consume the character

          JSR ISALPHA         ; If not a letter, it's a syntax error
          BCC _SYN

          SEC                 ; Calculate the page number assuming we have an array variable
          SBC #CHR_AUPPER

          CLC                 ; Determine the actual page location based on the start of vars
          ADC #>ARRA

          STZ NUMANS          ; Assume by default we DO NOT have an index into an array
          STA NUMANS+1

          LDY PROGOFF         ; Load another character
          LDA (PROGPTR),Y
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The EXVAR routine calculates a variable's memory address.

In  addition  to  the  many  interpreter  routines  that  execute
specific  statements  or  functions  in  Cody  BASIC,  there  are
helper routines used by the interpreter. Some are part of the

          CMP #CHR_DOLLAR     ; String variable so we need to adjust our pointer into string memory
          BEQ _STR

          CMP #CHR_LPAREN     ; Array index so we need to adjust our pointer within array memory
          BNE _NUM

          JSR EXLPAREN        ; Consume left parenthesis

          LDA NUMANS+1        ; Preserve high byte of variable address (will be clobbered by expr eval)
          PHA

          JSR EXEXPR          ; Evaluate expression for array index

          PLA                 ; Restore the high byte of the variable address (just got clobbered)
          STA NUMANS+1

          JSR EXRPAREN        ; Consume right parenthesis

          JSR POPONE          ; Pop the array index off the stack

          LDA NUMONE+1        ; High byte should be zero (or will be out of range)
          BNE _LOG

          LDA NUMONE          ; Low byte should be less than 128 (or will be out of range)
          BIT #$80
          BNE _LOG

          ASL A               ; Shift low byte by one (multiply by two because numbers are two bytes wide)

          STA NUMANS          ; Store the index as the low byte

_NUM      JSR PUSHANS         ; Store the address of the variable

          CLC                 ; Clear carry to indicate it's a number variable

          RTS                 ; All done

_STR      CLC                 ; Adjust pointer from array memory to string memory
          LDA #26
          ADC NUMANS+1
          STA NUMANS+1

          INC PROGOFF         ; Consume dollar sign

          JSR PUSHANS         ; Store the address of the variable

          SEC                 ; Set carry to indicate it's a string variable

          RTS                 ; All done

_SYN      JMP RAISE_SYN       ; Raise a syntax error

_LOG      JMP RAISE_LOG       ; Raise a logic error (array index out of bounds)
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BASIC  interpreter  itself,  such  as  EXSKIP (used  for  skipping
whitespace),  EXLPAREN and  EXRPAREN (used  for  parsing
parentheses),  and  EXCHARACT (used  for  requiring  that  the
next character in a line is  a certain value).  Routines such as
EXONEARG and  EXTWOARG consolidate  code  for  parsing
one-argument  and  two-argument  mathematical  functions,
while EXSTRARG does something similar for string functions.

EXTWOARG combines  helper  routines  into  another  helper
routine.

Other helper routines also exist outside the interpreter core.
Math  routines  such  as  MUL16,  DIV16,  RND16,  and  SQR16
perform 16-bit math calculations needed to implement some
of Cody BASIC's mathematical functions. Other routines such
as  POPONE,  POPBOTH,  and  PUSHANS,  assist  in  moving
values back and forth between the expression stack and the
NUMONE,  NUMTWO,  and  NUMANS zero-page  variables
used by many interpreter and helper routines.

EXTWOARG  JSR EXLPAREN
          JSR EXEXPR
          JSR EXCOMMA
          JSR EXEXPR
          JSR EXRPAREN
          RTS
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POPONE removes the top value from the expression stack.

NUMERIC AND STRING EXPRESSIONS

Cody BASIC supports  numeric  and string  expressions.  It's
not  possible  to  go  over  the  implementation  of  every  single
command  in  Cody  BASIC  (though  the  code  is  heavily
documented),  but  by  studying  how  some  of  the  math  and
string operations are implemented, it's possible to develop a
greater  understanding  of  how  the  BASIC  interpreter's
recursive-descent parser works in practice.

Numeric expressions, like everything in Cody BASIC, follow
the  language's  grammar.  A  numeric  EXPR  contains  a  TERM
followed by zero or more addition or subtraction operators and
TERMs. In turn, the TERM is defined much the same, except that
it  begins  with  a  single  FACTOR  followed  by  zero  or  more
multiplication  or  division  operators  and  FACTORs.  Lastly,  a
FACTOR can be any of a variety of numeric types,  including
number literals, numeric functions, variables, or even a nested

POPONE    PHA                 ; Preserve registers
          PHX

          LDX EXPRSNUM        ; Fetch the current size of the expression stack

          LDA EXPRS_L-1,X     ; Store the low byte into NUMONE
          STA NUMONE

          LDA EXPRS_H-1,X     ; Store the high byte into NUMONE
          STA NUMONE+1

          DEC EXPRSNUM        ; Decrement the count by one

          PLX                 ; Restore registers
          PLA

          RTS                 ; All done
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expression  in  parentheses.  Note  that  this  approach  also
preserves  operator  precedence,  as  individual  numbers  or
nested  expressions  end  up  evaluated  first,  followed  by
multiplication  and  division,  and  only  last  are  addition  and
subtraction performed.

An EXPR is implemented in the interpreter by the  EXEXPR
routine. It calls another routine,  EXTERM, to handle the initial
term, then loops as long as an addition or subtraction operator
is  present.  If  one  is  present,  it  parses  the  operator,  calls
EXTERM to  get  the  other  operand,  and  then  performs  the
calculation.  Because  the  operands  are  pushed  on  the
expression stack, the values are obtained from there and the
result stored there as well.

EXEXPR    JSR EXTERM          ; Evaluate the left side of the (possible) operator

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_PLUS       ; Addition operation
          BEQ _ADD

          CMP #CHR_MINUS      ; Subtraction operation
          BEQ _SUB

          RTS                 ; All done

_ADD      INC PROGOFF         ; Consume plus character

          JSR EXTERM          ; Evaluate the right side of the plus sign

          LDX EXPRSNUM        ; Find how many items we have on the expression stack

          CLC                 ; Prepare for addition

          LDA EXPRS_L-2,X     ; Add number low bytes together and put back on stack
          ADC EXPRS_L-1,X
          STA EXPRS_L-2,X

          LDA EXPRS_H-2,X     ; Add number high bytes together and put back on stack
          ADC EXPRS_H-1,X
          STA EXPRS_H-2,X

          DEC EXPRSNUM        ; Decrement stack by one (took two values off, put result back on)

          BRA _LOOP           ; Next
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EXEXPR executes the code for a numeric expression.

The EXTERM routine implements the same but for TERMs. In
this case,  EXFACTOR is called to put the first operand on the
expression stack. Then the code continues to loop as long as a
multiplication  or  division  operator  is  present,  calling
EXFACTOR for the other operand if so.

In this case the actual calculation is less straightforward as
the 65C02 does not support any hardware multiplication or
division. Instead, we perform the calculation in software, calling
POPBOTH to get the top values of the expression stack into
NUMONE and  NUMTWO.  We then call  MUL16 or  DIV16 to
perform the calculation.  Lastly,  we push the single result  in
NUMANS on the stack by calling PUSHANS.

_SUB      INC PROGOFF         ; Consume minus character

          JSR EXTERM          ; Evaluate the right side of the minus sign

          LDX EXPRSNUM        ; Find how many items we have on the expression stack

          SEC                 ; Prepare for subtraction

          LDA EXPRS_L-2,X     ; Subtract number low bytes and put back on stack
          SBC EXPRS_L-1,X
          STA EXPRS_L-2,X

          LDA EXPRS_H-2,X     ; Subtract number high bytes and put back on stack
          SBC EXPRS_H-1,X
          STA EXPRS_H-2,X

          DEC EXPRSNUM        ; Decrement stack by one (took two values off, put result back on)

          BRA _LOOP           ; Next

EXTERM    JSR EXFACTOR        ; Evaluate the left side of the (possible) operator

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_ASTERISK   ; Multiplication operation
          BEQ _MUL

          CMP #CHR_SLASH      ; Division operation
          BEQ _DIV
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Numeric terms are executed by the EXTERM routine.

The  EXFACTOR has  to  handle  the  many  possiblities  of  a
FACTOR in the grammar. Negative numbers beginning with a
unary  minus,  expressions  in  parentheses,  numeric  variables,
functions,  and  number  literals  all  need  to  be  handled.  To
decide what to do, it begins by examining the next token and
branching to an appropriate part of its code.

          RTS                 ; All done

_MUL      INC PROGOFF         ; Consume multiply operator

          JSR EXFACTOR        ; Evaluate the right side of the multiply sign

          JSR POPBOTH         ; Pop both values off the expression stack

          JSR PRE16

          PHA

          JSR MUL16           ; Multiply the numbers together

          PLA

          JSR ADJ16

          JSR PUSHANS         ; Push the result back on the stack

          BRA _LOOP           ; Next

_DIV      INC PROGOFF         ; Consume divide operator

          JSR EXFACTOR        ; Evaluate the right side of the division sign

          JSR POPBOTH         ; Pop both values off the expression stack

          JSR PRE16

          PHA

          JSR MOD16           ; Divide using the modulus operation (division result is also calculated)

          LDA NUMONE          ; Copy division result low byte (from the modulus) to the answer
          STA NUMANS

          LDA NUMONE+1        ; Copy division result high byte (from the modulus) to the answer
          STA NUMANS+1

          PLA

          JSR ADJ16

          JSR PUSHANS         ; Push the result back on the stack

          BRA _LOOP           ; Next
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For  number  literals,  it  simply  pushes  the  value  of  the
number on the stack. For minus signs, it attempts to interpret
the next value as a number by calling  EXFACTOR itself, then
flips its sign via subtraction. For nested expressions, it parses a
left  parenthesis  via  EXLPAREN,  an  EXPR by calling  EXEXPR,
and a right parenthesis via  EXRPAREN.  For variables,  it  calls
EXVAR to obtain the variable's memory address then loads the
value  from  there.  And  for  functions,  it  converts  the  token's
value  into  an  index  into  a  local  jump table,  jumping to  the
appropriate routine to handle the function.

EXFACTOR  JSR EXSKIP          ; Skip any leading spaces

          LDY PROGOFF         ; Get the offset in the current line

          LDA (PROGPTR),Y     ; Read the character there

          CMP #CHR_MINUS      ; Is it a negative number?
          BEQ _NEG

          CMP #TOK_NUM        ; Is it a number literal?
          BEQ _NUM

          CMP #CHR_LPAREN     ; Is it a nested expression?
          BEQ _EXP

          JSR ISALPHA         ; Is it a letter for a variable name?
          BCS _VAR

          CMP #TOK_ASC+1      ; Check that the byte isn't too big to be a valid token
          BCS _SYN

          INC PROGOFF         ; Consume the token

          SEC                 ; Subtract the start of the function tokens to get our index
          SBC #TOK_TIME

          BCC _SYN            ; If the result was less than that the token value was too low

          ASL A               ; Multiply by two to convert the number into a jump table index
          TAX

          JMP (_JMP,X)        ; Jump to the code for the function we have

_NUM      INY                 ; Skip the leading $FF tag at the start of the number

          LDA (PROGPTR),Y     ; Fetch number literal low byte
          STA NUMANS
          INY

          LDA (PROGPTR),Y     ; Fetch number literal high byte
          STA NUMANS+1
          INY
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          STY PROGOFF         ; Update the offset in the current line

          JSR PUSHANS         ; Push the number onto the expression stack

          RTS                 ; All done

_EXP      JSR EXLPAREN        ; Grab the left parenthesis

          JSR EXEXPR          ; Process the nested expression

          JSR EXRPAREN        ; Grab the right parenthesis

          RTS                 ; All done

_VAR      JSR EXVAR           ; Evaluate variable to get its address in memory

          BCS _SYN            ; If we read a string variable, it's a syntax error here

          JSR POPONE          ; Pop the variable's address off the stack

          LDA (NUMONE)        ; Read and store the low byte of the variable
          STA NUMANS

          INC NUMONE          ; Increment address by one (safe because of page alignment)

          LDA (NUMONE)        ; Read and store the high byte of the variable
          STA NUMANS+1

          JSR PUSHANS         ; Push the number (not its address) on the stack

          RTS

_NEG      INC PROGOFF         ; Consume the unary minus

          JSR EXFACTOR        ; Process the rest of the factor

          LDX EXPRSNUM        ; Get the current expression stack size

          SEC                 ; Prepare to subtract

          LDA #0              ; Subtract low byte from zero in place on stack
          SBC EXPRS_L-1,X
          STA EXPRS_L-1,X

          LDA #0              ; Subtract high byte from zero in place on stack
          SBC EXPRS_H-1,X
          STA EXPRS_H-1,X

_END      RTS

_SYN      JMP RAISE_SYN       ; Raise a syntax error

_JMP
          .WORD EXTIME
          .WORD EXPEEK
          .WORD EXRND
          .WORD EXNOT
          .WORD EXABS
          .WORD EXSQR
          .WORD EXAND
          .WORD EXOR
          .WORD EXXOR
          .WORD EXMOD
          .WORD EXINT
          .WORD EXLEN

143



EXFACTOR handles a variety of numeric literals and values.

String expressions  are  handled in  a  similar  way.  In  some
ways  string  expressions  are  more  complex,  while  in  others
they're significantly simpler. Instead of storing values on the
expression stack, string expressions are evaluated by copying
their contents into the output buffer OBUF.

This  is  possible  because  string  expressions  have  a
significantly  reduced  grammar,  being  limited  only  to
concatenation operations, string variables, string literals,  and
string functions that produce no intermediate values. In other
words,  a  string  expression  (or  STREXPR)  consists  of  one  or
more string terms, and string terms (STRTERMs) themselves
aren't particularly complicated.

EXSTREXPR handles a string expression.

The  EXSTRTERM routine is a bit more complicated, but not
much so.  The STRTERM can only be a string literal,  a  string

          .WORD EXASC

EXSTREXPR JSR EXSKIP

          JSR EXSTRTERM       ; Evaluate the string term we started with

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_PLUS       ; Concatenation operator is the only one supported
          BEQ _CAT

          RTS                 ; All done

_CAT      INC PROGOFF         ; Consume operator

          JSR EXSTRTERM       ; Evaluate the next string term to concatenate

          BRA _LOOP           ; Next

          RTS
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variable, or one of a small number of functions that return a
string value. String literals and string variables can be handled
by copying their contents into the output buffer.

Only three string functions exist,  CHR$,  STR$,  and  SUB$.
These are handled by checking for their token and jumping to
EXCHR,  EXSTR, or  EXSUB directly. Given the small number of
possibilities, a jump table probably isn't worth the overhead.

EXSTRTERM LDY PROGOFF         ; Load the next character
          LDA (PROGPTR),Y

          CMP #CHR_QUOTE      ; String literal
          BEQ _LIT

          CMP #TOK_CHR        ; CHR$ function (char code to string)
          BEQ EXCHR

          CMP #TOK_STR        ; STR$ function (number to string)
          BEQ EXSTR

          CMP #TOK_SUB        ; SUB$ function (substring to string)
          BEQ EXSUB

          JSR EXVAR           ; String variable is all we have left
          BCS _VAR

          JMP RAISE_SYN       ; Otherwise it's a syntax error, nothing we can do

_LIT      INY                 ; Skip the leading quote

_LITLOOP  LDA (PROGPTR),Y     ; Read the next character

          CMP #CHR_NL         ; Newlines shouldn't happen, but if they do, stop immediately
          BEQ _LITDONE

          INY                 ; Consume whatever character we read

          CMP #CHR_QUOTE      ; End quote means we're done with the string literal
          BEQ _LITDONE

          JSR PUTOUT          ; Otherwise just copy the character to the output buffer

          BRA _LITLOOP        ; Repeat

_LITDONE  STY PROGOFF         ; Update the offset in the current line

          RTS                 ; All done

_VAR      JSR POPONE          ; Pop the variable address off the stack

          LDY #0              ; Start at the beginning

_VARLOOP  LDA (NUMONE),Y      ; Read the character from the string (zero/NUL indicates end of string)
          BEQ _VARDONE

          JSR PUTOUT          ; Put the character from the string into the output buffer
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EXSTRTERM handles the few possibilities for a term in a string
expression.

The  general  approach  shown  for  expression  evaluation  is
also  the  core  of  the  recursive  descent  mechanism.  A  more
general routine handles a more complicated part of the BASIC
language,  then calls  down into  more specific  subroutines  to
handle more specific parts.

For example, printing a numeric calculation's result on the
screen  would  involve  EXSTMT determining  that  a  PRINT
statement  was  to  be  executed,  then jumping to  EXPRINT to
print  it.  EXPRINT would  look  ahead and see  that  a  numeric
expression was in play and call EXEXPR to evaluate it. EXEXPR
would call EXTERM, which in turn calls EXFACTOR.

CONTROL AND DATA STATEMENTS

Cody  BASIC  has  some  special  statements  that  handle
control  flow  and  data  literals  in  BASIC  programs.  While
implemented using the same interpreter logic as the rest of
Cody BASIC, they have additional effects that set them apart
from  more  straightforward  operations  such  as  math
calculations or updating variables. These statements also often
maintain  information  outside  of  the  core  BASIC  interpreter,

          INY                 ; Consume the character

          BEQ _SYS            ; If we wrapped around then we never found a terminating NUL

          BRA _VARLOOP

_VARDONE  RTS                 ; All done

_SYS      JMP RAISE_SYS       ; Raise system error indicating we didn't find a NUL
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such  as  line  pointers,  and  take  actions  that  in  some  ways
override the normal interpreter behavior.

One set of such statements are the control flow statements
that  change  the  course  of  a  running  program.  Cody  BASIC
supports the typical BASIC commands for such operations: IF, 
GOTO,  GOSUB/RETURN,  and  FOR/NEXT statements  are  all
implemented.

Many  of  these  statements  rely  on  a  similar  underlying
implementation. Under normal conditions the interpreter sets
the  value  of  PROGNXT to  the  start  of  the  next  line  after
PROGPTR, but individual statements can overwrite the value to
change  the  path  through  the  program.  Different  types  of
control  flow  statements  also  have  to  maintain  additional
information  unique  to  their  own  special  situations,  such  as
pointers to return lines or terminating loop values.

Another set of statements are those that handle reading of
data literals within a program. Many BASIC dialects supported
the  use  of  DATA statements.  A  user  could  enter  raw  data
separated by commas into these statements, which would be
ignored under normal operation of the interpreter.  However,
when a  READ statement was executed, values from the DATA
statements scattered through the program would be stored in
variables.

Cody  BASIC  supports  a  limited  form  of  this  mechanism
inspired by Commodore BASIC.  To do so,  it  maintains some
external  information  regarding  the  current  data  pointer
position and the contents of previous DATA statements.
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IF STATEMENTS

The  IF statement  is  one  of  the  most  simple  control  flow
statements. It evaluates a relational expression (an expression
that compares two terms). If the expression evaluates to true, it
runs the remainder of the statement after the THEN keyword.
If  the  expression  is  false  then  it  skips  over  the  rest  of  the
statement and proceeds to the next line.

The implementation is somewhat complicated because there
are two kinds of  relational  expressions.  One is  for  numbers
and  compares  the  results  of  two  numeric  expressions.  The
other is for strings and compares a string variable's contents to
a string expression. The typical equal, not-equal, greater-than,
less-than, greater-than-or-equal, and less-than-or-equal are
all available for both kinds of expressions.

Because there are different kinds of comparisons that must
be performed, the comparison testing logic is also somewhat
complicated.  Once  the  appropriate  comparison  has  been
performed, the code loads a constant indicating what relational
operators would be true given the inputs. This value is ANDed
with a constant for the relational operator to determine if the
result is true or false.

EXIF      JSR EXSKIP          ; Skip any leading space after the "IF"

          LDY PROGOFF         ; Read the first character to see if it could be a string var
          LDA (PROGPTR),Y

          JSR ISALPHA         ; If we have a string var it has to start with a letter
          BCC _NUM

          INY                 ; Read the next character to see if it's a dollar sign
          LDA (PROGPTR),Y

          CMP #CHR_DOLLAR     ; If we have a string var it ends with a dollar sign
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          BNE _NUM

_STR      JSR EXVAR           ; Parse a string variable (syntax error if not a string)
          BCC _SYN

          JSR _RELOP          ; Evaluate the relational operator and store the index temporarily
          PHA

          STZ OBUFLEN         ; Evaluate the right hand side as a string into the output buffer
          JSR EXSTREXPR

          LDX OBUFLEN         ; Append a NUL to the end of the buffer to make the comparison easier
          LDA #0
          STA OBUF,X

          JSR POPONE          ; Pop the string variable address off the stack

          LDY #0              ; Loop over the string in the buffer

_STRLOOP  LDA (NUMONE),Y      ; Compare the characters in the string and the output buffer
          CMP OBUF,Y

          BEQ _STRNEXT        ; Branch depending on the result of the comparison
          BCC _LT
          BRA _GT

_STRNEXT  CMP #0              ; If we have a null char for both, the strings are equal
          BEQ _EQ

          INY                 ; Increment the position in the output buffer to compare to

          BRA _STRLOOP        ; Next character

_SYN      JMP RAISE_SYN       ; Raise a syntax error (needs to be here for branch distance purposes)

_NUM      JSR EXEXPR          ; Evaluate left hand side of the relational operator

          JSR _RELOP          ; Evaluate the relational operator and store the index temporarily
          PHA

          JSR EXEXPR          ; Evaluate the right hand side of the relational operator

          JSR POPBOTH         ; Pop both numbers off the stack

          LDA NUMONE+1        ; Compare high bytes using a signed comparison
          CMP NUMTWO+1

          BEQ _LO
          BMI _LT
          BPL _GT

_LO       LDA NUMONE          ; Compare low bytes using an unsigned comparison
          CMP NUMTWO

          BEQ _EQ
          BCC _LT
          BRA _GT

_EQ       LDA #(REL_LE | REL_GE | REL_EQ)     ; Equals is true for "<=", ">=", or "="
          BRA _THEN

_LT       LDA #(REL_LE | REL_LT | REL_NE)     ; Less than is true for "<=", ">" or "<>"
          BRA _THEN

_GT       LDA #(REL_GE | REL_GT | REL_NE)     ; Greater than is true for ">=", ">" or "<>"
          BRA _THEN

_THEN     PLX                 ; Get the index in our table for the relational operator
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EXIF processes IF statements and their THEN clauses.

GOTO STATEMENTS

Another  simple  control  flow  statement,  the  GOTO
statement, simply looks up the line number to go to, then sets
the  PROGNXT pointer  to  that  line's  pointer.  On  the  next
iteration the interpreter will run the destination line.

          AND _BITS,X         ; AND the table entry with the possible matches we have

          BEQ _DONE           ; If nothing matches, then the result of the comparison was false

          LDA #TOK_THEN       ; We expect a "THEN" token after the string
          JSR EXCHARACT

          JMP EXSTMT          ; Then evaluate the rest of the line as its own statement

_DONE     RTS                 ; Nothing to do since condition was false

_BITS     .BYTE REL_LE        ; Lookup table that matches valid relop results with relops
          .BYTE REL_GE
          .BYTE REL_NE
          .BYTE REL_LT
          .BYTE REL_GT
          .BYTE REL_EQ

_RELOP    JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character from the line (should be a relop token)
          LDA (PROGPTR),Y

          INC PROGOFF         ; Consume the token

          CMP #(TOK_EQ+1)     ; Was the token out of the expected range (too high)?
          BCS _SYN

          SEC                 ; Adjust token into lookup table value (and check if too low)
          SBC #TOK_LE
          BCC _SYN

          RTS                 ; All done, leave index in accumulator
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The EXGOTO routine handles GOTO statements.

GOSUB AND RETURN STATEMENTS

GOSUB and  RETURN statements  are  somewhat  more
complicated as the line to return to must be stored somewhere.
In  Cody BASIC this  information  is  stored  in  a  gosub-return
stack  using  zero-page variables  GOSUBS_L (for  low bytes)
and  GOSUBS_H (for high bytes) containing the return line's
address.  When a  GOSUB is executed, the current  PROGNXT
pointer is stored on the stack before jumping to the destination
line  by  delegating  to  the  EXGOTO routine.  A  check  is
performed to ensure that sufficient space exists in the gosub-
return stack.

EXGOTO    JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXEXPR          ; Evaluate the line number to jump to

          JSR POPONE          ; Pop the number off the stack

          LDA NUMONE          ; Copy line number to LINENUM before we search
          STA LINENUM
          LDA NUMONE+1
          STA LINENUM+1

          JSR FINDLINE        ; Try to find a matching line (control flow error if none)
          BCC _LOG

          LDA LINEPTR         ; Use the pointer we found as the next line to execute
          STA PROGNXT
          LDA LINEPTR+1
          STA PROGNXT+1

          RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate the line number was invalid

151



EXGOSUB preserves the next line pointer before branching.

When a RETURN statement is executed, the top value on the
gosub-return stack is popped and used as the new value for
PROGNXT.  This  returns control  to the line after the  GOSUB
that pushed the value on the stack, working just as we'd expect.
We also have to do a check to ensure there's a value on the
stack at all, otherwise we have a  RETURN without a matching
GOSUB.

EXRETURN pops the line pointer and returns control to that
location.

EXGOSUB   JSR ONLYRUN         ; Only valid in RUN mode

          LDX GOSUBSNUM       ; Do we have room on the GOSUB/RETURN stack?
          CPX #MAXSTACK
          BCS _SYS

          LDA PROGNXT         ; Store the NEXT line pointer to execute as our return position
          STA GOSUBS_L,X
          LDA PROGNXT+1
          STA GOSUBS_H,X

          INC GOSUBSNUM       ; Increment stack count (we just pushed an item on it)

          JMP EXGOTO          ; The rest of our statement is just like a GOTO, so go there

_SYS      JMP RAISE_SYS       ; Indicate the GOSUB-RETURN stack is out of memory

EXRETURN  JSR ONLYRUN         ; Only valid in RUN mode

          LDX GOSUBSNUM       ; Load the number of GOSUB/RETURN entries (control flow error if none)
          BEQ _LOG

          LDA GOSUBS_L-1,X    ; Copy the top item on the GOSUB/RETURN stack as our next line to run
          STA PROGNXT
          LDA GOSUBS_H-1,X
          STA PROGNXT+1

          DEC GOSUBSNUM       ; Decrement count (we just removed an item from the stack)

          RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate we have a RETURN without a GOSUB
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FOR AND NEXT STATEMENTS

Implementing FOR and NEXT statements is somewhat more
complex.  The  line  to  return  to  in  the  FOR loop  must  be
preserved similar to the return line in a GOSUB. However, we
also have to keep a pointer to the  FOR loop's variable so we
can update  it  on  each loop.  We also  have to  keep the  stop
value so we know when the end of the loop has been reached.
Cody BASIC's solution is to use a stack that is similar to the
gosub-return loop, but with extra values for a variable pointer
and a stop value. This information is kept in the  FORLINE_L/
FORLINE_H,  FORVARS_L/FORVARS_H,  and  FORSTOP_L/
FORSTOP_H zero-page variables.

EXFOR     JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXVAR           ; Evaluate the loop variable as an lvalue (only number vars)
          BCS _SYN

          JSR EXEQUALS        ; Consume equals

          JSR EXEXPR          ; Evaluate starting expression

          LDA #TOK_TO         ; Consume "TO"
          JSR EXCHARACT

          JSR EXEXPR          ; Evaluate ending expression

          LDX FORSNUM         ; Do we have room on the FOR/NEXT stack?
          CPX #MAXSTACK
          BCS _SYS

          LDA PROGNXT         ; Store the line pointer to execute as our return position
          STA FORLINE_L,X
          LDA PROGNXT+1
          STA FORLINE_H,X

          JSR POPONE          ; Pop the ending value for the FOR loop off the stack

          LDA NUMONE          ; Store the ending value into the FORSTOPs
          STA FORSTOP_L,X
          LDA NUMONE+1
          STA FORSTOP_H,X

          JSR POPBOTH         ; Pop the variable address and the initial value off the stack

          LDA NUMONE          ; Store the variable address into the FORVARS
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EXFOR handles the beginning of a FOR-NEXT loop.

Surprisingly, much of the  FOR loop is actually handled by
the  NEXT statement. When a  NEXT statement is executed, it
checks to see if the value in the loop's variable is equal to the
stop value. If so, the loop is done and popped from the for-
next stack,  while control proceeds to the next line.  If  it's not
equal,  the  variable  is  incremented  by  one  and  PROGNXT
updated with the first line in the loop's body, similar to how a
RETURN statement works. A sanity check also ensures that a
matching FOR exists.

          STA FORVARS_L,X
          LDA NUMONE+1
          STA FORVARS_H,X

          LDA NUMTWO          ; Store the low byte of the initial loop value
          STA (NUMONE)

          INC NUMONE          ; Move to the high byte (relies on page alignment to be safe)

          LDA NUMTWO+1        ; Store the high byte of the initial loop value
          STA (NUMONE)

          INC FORSNUM         ; Increment stack count (we just pushed an item on it)

          RTS                 ; All done

_SYN      JMP RAISE_SYN       ; Raise syntax error

_SYS      JMP RAISE_SYS       ; Indicate the FOR-NEXT stack is out of memory

EXNEXT    JSR ONLYRUN         ; Only valid in RUN mode

          LDX FORSNUM         ; Load the number of FOR/NEXT entries (logic error if none)
          BEQ _LOG

          LDA FORVARS_L-1,X   ; Assemble the variable address from the low and high bytes
          STA MEMSPTR
          LDA FORVARS_H-1,X
          STA MEMSPTR+1

          LDY #0              ; Compare low bytes
          LDA (MEMSPTR),Y
          CMP FORSTOP_L-1,X
          BNE _LOOP

          INY                 ; Compare high bytes
          LDA (MEMSPTR),Y
          CMP FORSTOP_H-1,X
          BNE _LOOP
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Much of the loop is actually implemented by EXNEXT.

DATA AND READ STATEMENTS

Cody BASIC supports  a  form of  the  RESTORE,  DATA,  and
READ statements  common to  many  8-bit  BASIC  dialects.  A
DATA statement  specifies  comma-delimited  number  literals
that  can  be  read  into  variables  using  the  READ statement.
When data is to be read, the interpreter starts at the top of the
program, going through each line until a new DATA statement
is found.

To  repeat  the  process  from  the  beginning,  the  RESTORE
statement can be called to move the current data pointer back
to the beginning of the program. In many respects the behavior
is  a  number-only  subset  of  the  DATA statements  in
Commodore BASIC.

Some zero-page variables and memory locations are very
important to the processing of DATA statements. The DATAPTR

          DEC FORSNUM         ; This loop is done, remove it from the stack

          BRA _DONE           ; All done here

_LOOP     CLC                 ; Prepare to increment the variable by one

          LDY #0              ; Increment low byte
          LDA (MEMSPTR),Y
          ADC #1
          STA (MEMSPTR),Y

          INY                 ; Increment high byte (with carry)
          LDA (MEMSPTR),Y
          ADC #0
          STA (MEMSPTR),Y

          LDA FORLINE_L-1,X   ; Copy the top item on the FOR/NEXT stack as our next line to run
          STA PROGNXT
          LDA FORLINE_H-1,X
          STA PROGNXT+1

_DONE     RTS                 ; All done

_LOG      JMP RAISE_LOG       ; Indicate a NEXT-without-FOR error
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variable points to the next line to search for data. Because the
content read from DATA statements is stored in a buffer until it
is read, DBUFL and DBUFH point to the start of storage for the
data's  low and high bytes respectively.  DBUFLEN stores the
number  of  items  held  in  the  current  data  buffer,  while
DBUFPOS stores the current index within the buffer for READ
statements.

Loading data begins with the  MOREDATA routine, which is
called whenever a READ statement needs data and the buffer
is  empty.  MOREDATA starts  at  the  current  DATAPTR and
continues  until  a  line  with  a  DATA statement  is  found.  If  a
matching  DATA statement  is  found,  the  numbers  in  that
statement are parsed and stored in DBUFL and DBUFH.

Because parsing a DATA statement is in some ways similar
to the parsing of any other statement, the routine temporarily
replaces PROGPTR with the current value of DATAPTR to reuse
some  of  the  existing  routines.  When  a  DATA statement  is
encountered during the normal  interpretation of  a  program,
it's skipped over entirely. DATA statements only get processed
when  a  call  to  READ needs  more  data  and  reading  has
advanced to a given line.

MOREDATA  LDA PROGPTR         ; Preserve the current program pointer
          PHA
          LDA PROGPTR+1
          PHA

          LDA PROGOFF         ; Preserve the current program line offset
          PHA

          LDA DATAPTR         ; Temporarily use the line pointer as the data pointer
          STA PROGPTR
          LDA DATAPTR+1
          STA PROGPTR+1

_LINE     JSR ISEND           ; Are we at the end of the program?
          BNE _LINEOK
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          JMP _DONE           ; End of program (need JMP because of distance)

_LINEOK   LDA #4              ; Start after line number in the current line
          STA PROGOFF

          JSR EXSKIP          ; Skip whitespace

          LDY PROGOFF         ; Read the next token
          LDA (PROGPTR),Y
          INC PROGOFF

          CMP #TOK_DATA       ; If a DATA statement, process the line
          BEQ _LOOP

          JSR _NXTLINE        ; Otherwise go to the next line

          BRA _LINE

_LOOP     JSR EXSKIP          ; Skip whitespace

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          INY                 ; Consume number token symbol

          CMP #CHR_NL         ; Newline means we're done
          BEQ _EOL

          CMP #CHR_MINUS      ; Minus means a negative number
          BEQ _NEG

          CMP #TOK_NUM        ; Otherwise just a number (or a syntax error)
          BNE _SYN

_POS      LDX DBUFLEN         ; Load the current data buffer length

          LDA (PROGPTR),Y     ; Store data low byte
          STA DBUFL,X
          INY

          LDA (PROGPTR),Y     ; Store data high byte
          STA DBUFH,X
          INY

          BRA _NXT            ; Next number in list

_NEG      STY PROGOFF         ; Update program offset

          JSR EXSKIP          ; Skip any trailing space after the minus sign

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          CMP #TOK_NUM        ; Must be a number
          BNE _SYN
          INY

          LDX DBUFLEN         ; Load the current data buffer length

          SEC                 ; Prepare to subtract

          LDA #0              ; Subtract low byte from zero and store in buffer
          SBC (PROGPTR),Y
          STA DBUFL,X
          INY

          LDA #0              ; Subtract high byte from zero and store in buffer
          SBC (PROGPTR),Y
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MOREDATA fills the data buffer with more data when called.

The  EXREAD routine  implements  the  read functionality.  It
loops over one or more variables, attempting to populate each
of  the  variables  with  data.  When  the  data  buffer  is  empty
(DBUFLEN is zero), it  calls  MOREDATA to read more data. If
nothing is found, an out of data error condition exists. On the

          STA DBUFH,X
          INY

_NXT      STY PROGOFF         ; Update program offset

          INC DBUFLEN         ; Update data buffer length (overflow shouldn't happen)

          JSR EXSKIP          ; Skip any trailing space after the number

          LDY PROGOFF         ; Read and consume the next character in the line
          LDA (PROGPTR),Y
          INC PROGOFF

          CMP #CHR_NL         ; Newline means we're done
          BEQ _EOL

          CMP #CHR_COMMA      ; Otherwise it needs to be a comma
          BNE _SYN

          BRA _LOOP           ; Next data value in list

_EOL      JSR _NXTLINE

_DONE     PLA                 ; Restore the program line offset
          STA PROGOFF

          PLA                 ; Restore the program pointer
          STA PROGPTR+1
          PLA
          STA PROGPTR+0

          RTS

_SYN      JMP RAISE_SYN

_NXTLINE  CLC                 ; Move to the next line by adding the line length

          LDA PROGPTR
          ADC (PROGPTR)
          STA PROGPTR
          STA DATAPTR

          LDA PROGPTR+1
          ADC #0
          STA PROGPTR+1
          STA DATAPTR+1

          RTS
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other hand, if data was found and stored in the buffer, it begins
copying data out of the buffer and into the variable list.

EXREAD implements the READ statement.

For the last statement in this group, the RESTORE statement,
the  EXRESTORE routine is  called.  However,  EXRESTORE only
calls  the  RESTORE routine  already used when a  program is

EXREAD

_LOOP     JSR EXVAR           ; Read the variable to read into, it has to be a number variable
          BCS _SYN

          LDA DBUFLEN         ; Verify that we still have data in the buffer to read
          BNE _READ

          STZ DBUFPOS         ; Out of data, need to read more in from the program
          JSR MOREDATA

          LDA DBUFLEN         ; Did we find any more data in the program?
          BEQ _LOG

_READ     JSR POPONE          ; Pop the variable address into NUMONE

          LDX DBUFPOS         ; Read current index in the data buffer

          LDA DBUFL,X         ; Copy low byte
          STA (NUMONE)

          INC NUMONE          ; Move on to high byte (relies on page alignment)

          LDA DBUFH,X         ; Store high byte
          STA (NUMONE)

          DEC DBUFLEN         ; Decrement data buffer size and increment buffer position
          INC DBUFPOS

          JSR EXSKIP          ; Skip any whitespace

          LDY PROGOFF         ; Load the next character from the current line
          LDA (PROGPTR),Y

          CMP #CHR_NL         ; Newline means we're done with this statement
          BEQ _DONE

          CMP #CHR_COMMA      ; If it's not a comma then it's a syntax error
          BNE _SYN

          INC PROGOFF         ; Consume the comma

          BRA _LOOP           ; Next variable

_DONE     RTS

_SYN      JMP RAISE_SYN
_LOG      JMP RAISE_LOG
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being run. It resets the DBUFLEN and DBUFPOS to zero, then
moves the DATAPTR to the start of program memory.

RESTORE resets the handling of DATA statements.

INPUT AND OUTPUT STATEMENTS

Cody  BASIC  supports  input  and  output  similar  to  many
other  BASIC  dialects.  INPUT and  PRINT statements  handle
generic input and output.  OPEN and CLOSE statements select
either the keyboard and screen or a serial port as the current I/
O  device.  Within  the  BASIC  interpreter  there  are  several
routines that work together to implement input and output.

Input and output in Cody BASIC, much like Tiny BASIC, is
line-based,  with  two buffers  set  up  to  store  input  data  and
output  data.  IBUF is  an  input  buffer  that  stores  up  to  255
characters read from the keyboard or a serial port. OBUF is an
output buffer that also stores 255 characters to be printed to
the screen or sent to a serial port. The length of the contents of
each buffer are stored in IBUFLEN and OBUFLEN.

The  I/O  routines  support  a  combined  keyboard-screen
device  and  the  Cody Computer's  two  serial  ports.  Two zero
page variables, IOMODE and IOBAUD, contain the current I/O
mode  (the  device)  and  a  value  representing  the  baud  rate

RESTORE   STZ DBUFLEN         ; Reset data buffer positions
          STZ DBUFPOS

          LDA #<PROGMEM       ; Move data line pointer to start of program
          STA DATAPTR+0
          LDA #>PROGMEM
          STA DATAPTR+1

          RTS
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(only  used  for  serial  ports).  These  are  set  either  by  code
internal  to  the  interpreter  (such  as  when  loading  or  saving
programs) or by user code in the BASIC program.

OPEN AND CLOSE STATEMENTS

The OPEN and CLOSE statements are used to redirect input
and  output  to  specific  devices,  either  the  screen/keyboard
combination  (in  the  default  case)  or  one  of  the  Cody
Computer's two serial ports.

The  OPEN statement  is  implemented  by  the  EXOPEN
routine. It sets the  IOMODE and  IOBAUD values to configure
the input and output. If a serial port is selected, it also calls the
SERIALON routine to set up the UART for the selected serial
device.

The EXOPEN routine configures input and output.

The  CLOSE statement  is  implemented  by  the  EXCLOSE
routine. It calls SERIALOFF to disable the UART for the selected

EXOPEN    JSR ONLYRUN         ; Only valid in RUN mode

          JSR EXEXPR          ; Read device number

          JSR EXCOMMA         ; Comma separator

          JSR EXEXPR          ; Baud rate (1 through 15)

          JSR POPBOTH         ; Get both values off the stack

          LDA NUMTWO          ; Baud rate (1 through 15)
          STA IOBAUD

          LDA NUMONE          ; Device number
          STA IOMODE

          BEQ _DONE           ; If a UART was selected turn serial on
          JSR SERIALON

_DONE     RTS
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serial  port  (for keyboard/screen operation this  reduces to a
no-op). Once the UART is shut down, it clears out the IOMODE
and  IOBAUD variables  to  return  input  and  output  to  the
keyboard and screen.

The EXCLOSE routine restores I/O to the screen and keyboard.

PRINT STATEMENTS

The  EXPRINT routine  handles  a  PRINT statement  to  write
text to the screen. It accepts string expressions that are stored
in  the  output  buffer  and  later  written  to  the  current  I/O
device's output via FLUSH. It also supports some control codes
and format specifiers to handle clearing the screen, changing
text colors, aligning text, and moving the cursor, though these
are only relevant when the screen is the output device. Some
of the functionality for these features is actually implemented
in the screen routines rather than in EXPRINT itself.

EXCLOSE   JSR ONLYRUN         ; Only valid in RUN mode

          JSR SERIALOFF       ; Turn serial off (routine should check if IOMODE is actually set)

          STZ IOMODE          ; Clear IO mode and IO baud settings (defaults back to screen/keyboard)
          STZ IOBAUD

          RTS

EXPRINT   STZ OBUFLEN         ; Start at beginning of output buffer

_LOOP     JSR EXSKIP          ; Skip any leading space

          LDY PROGOFF         ; Load the next character in the current line
          LDA (PROGPTR),Y

          CMP #TOK_AT         ; "AT()" format specifier to change screen location
          BEQ _AT

          CMP #TOK_TAB        ; "TAB() format specifier to advance position in line
          BEQ _TAB
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Excerpt from EXPRINT showing possible arguments.

When  the  statement  is  done,  it  sends  its  output  via  the
FLUSH routine.  FLUSH goes over the contents in the output
buffer OBUF and sends them to the current IO device. It checks
the current value of  IOMODE and calls either  SCREENPUT or
SERIALPUT to print out the individual characters in the buffer.
Other routines that populate the output buffer also call FLUSH
to print out the contents.

          CMP #CHR_QUOTE      ; Quote means a string expression
          BEQ _STR

          CMP #TOK_STR        ; "STR$" function means a string expression
          BEQ _STR

          CMP #TOK_CHR        ; "CHR$" function means a string expression
          BEQ _STR

          CMP #TOK_SUB        ; "SUB$" function means a string expression
          BEQ _STR

          CMP #CHR_NL         ; Newline means the end of the line
          BEQ _ADV

          CMP #CHR_SEMICOLON  ; Semicolon means the end of the line without advancing
          BEQ _END

          JSR ISALPHA         ; At this point, the only possibility left is a string variable
          BEQ _NUM

          INY                 ; Look ahead one character
          LDA (PROGPTR),Y

          CMP #CHR_DOLLAR     ; String variables end with a dollar sign ("$")
          BEQ _STR

FLUSH     PHA                     ; Preserve registers
          PHX
          PHY

          LDY IOMODE              ; We'll be checking the IO mode a lot

          LDX #0                  ; Start at the beginning

_LOOP     CPX OBUFLEN             ; Check that we have more characters to print
          BEQ _END

          LDA OBUF,X              ; Load the next character from the output buffer
          INX

          CPY #0                  ; Determine whether to use screen or serial output
          BEQ _SCREEN

_SERIAL   JSR SERIALPUT           ; Print it to the serial port (current UART)
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The  FLUSH routine  writes  the  output  buffer  to  the  current
output.

INPUT STATEMENTS

The  EXINPUT routine  implements  the  internals  for  Cody
BASIC's  INPUT statement.  It  reads  a  line  of  input  from the
current I/O device into the input buffer and then attempts to
parse it  into  the variable  list  passed to  the statement.  Both
numbers and strings are supported. As part of its operations,
the routine has to check the current I/O mode and call either
READKBD or READSER depending on the mode.

Portion of EXINPUT selecting the input source.

Unlike the common  FLUSH routine for sending out printed
output,  no  similar  single  routine  for  reading  input  exists.
Instead, the READKBD routine populates the input buffer IBUF
from keyboard input, updating the screen contents as the user
types. This routine relies on a variety of other routines related

          BRA _LOOP

_SCREEN   JSR SCREENPUT           ; Print it on the screen
          BRA _LOOP

_END      STZ OBUFLEN             ; Clear the length of the output buffer (we're empty now)

_NOOFF    PLY                     ; Restore registers
          PLX
          PLA

          RTS                     ; All done

_READ     LDA IOMODE          ; Determine where to read from
          BEQ _KBD

_SER      JSR READSER         ; Read our input line from the UART
          BRA _INP

_KBD      JSR READKBD         ; Read out input line from the keyboard
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to screen output and keyboard scanning covered elsewhere in
this chapter.

READKBD   PHA                   ; Preserve registers
          PHX

          LDX #0                ; Start at beginning of input buffer

_NEXT     LDA JIFFIES

_WAIT     JSR BLINK             ; Wait for jiffies to change to know we got a new keyboard scan
          CMP JIFFIES
          BEQ _WAIT

          JSR KEYDECODE         ; Decode whatever key was pressed (if anything)

          LDA KEYCODE           ; Debounce keys by making sure we read the same code twice in a row
          CMP KEYDEBO
          STA KEYDEBO
          BNE _NEXT

          LDA KEYCODE           ; Suppress repeated key presses by comparing to last key read
          CMP KEYLAST
          STA KEYLAST
          BEQ _NEXT

          CMP #$60              ; Check for CODY + META (shift lock) toggle
          BEQ _TOG

          BIT #$1F              ; Suppress key codes when no keys (aside from modifiers) were pressed
          BEQ _NEXT

          JSR KEYTOCHR          ; Convert key code to CODSCII code and preserve on stack
          PHA

          LDA KEYLOCK           ; Check if the shift lock is set
          BEQ _KEY

          PLA                   ; Convert CODSCII code to lowercase
          JSR TOLOWER
          PHA

_KEY      PLA                   ; Restore keyboard CODSCII code from stack

          CMP #CHR_CAN          ; Skip cancel character
          BEQ _NEXT

          CMP #CHR_BS           ; Check for backspace character
          BEQ _DEL

          CPX #$FE              ; Check for space to store character
          BEQ _NEXT

          STA IBUF,X            ; Put the character in the buffer
          INX

          CMP #CHR_NL           ; Check for newline character (end of line)
          BEQ _DONE

          JSR SCREENPUT         ; Echo to the screen

          BRA _NEXT

_DEL      CPX #0                ; Check that we have something in the buffer to delete
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The READKBD routine reads a line from the keyboard.

For  serial  operations,  the  READSER routine  will  populate
IBUF with the contents read from the serial port's UART. The
routine stops when a carriage return or newline character are
read  from  the  serial  input.  This  is  essentially  the  serial
equivalent  of  the  READKBD routine.  It  relies  on  the  serial
routines covered later in the chapter.

          BEQ _NEXT

          DEX                   ; Back up one position the buffer and remove the char from the screen
          JSR SCREENDEL

          BRA _NEXT

_TOG      LDA KEYLOCK           ; Toggle shift lock
          EOR #$01
          STA KEYLOCK

          BRA _NEXT

_DONE     STX IBUFLEN           ; Update input buffer length

          LDA #20               ; TODO: CLEAR BLINKING CURSOR (MAKE THIS BETTER, ALSO SEE ABOVE)
          STA (CURSCRPTR)

          PLX                   ; Restore registers
          PLA

          RTS

READSER   PHA
          PHX

          LDX #0                ; Start at beginning of buffer

_READ     JSR SERIALGET         ; Poll for next character
          BCC _READ

          STA IBUF,X            ; Store the character and increment the buffer position
          INX

          CPX #$FE              ; Do we still have space in the buffer?
          BCS _SYS

          CMP #CHR_NL           ; Newline characters can be an end of line
          BEQ _DONE

          CMP #CHR_CR           ; Carriage return characters can be an end of line
          BEQ _DONE

          BRA _READ             ; Continue

_DONE     STX IBUFLEN           ; Store the input line length
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READSER uses  serial  routines  to  read a  line  of  text  from a
UART.

LOADING AND SAVING PROGRAMS

Cody BASIC supports the  LOAD and  SAVE commands for
loading and saving programs. With the exception of loading
binary programs over the serial port or from a cartridge, load
and save operations rely almost entirely on other functionality
in Cody BASIC.

When loading a BASIC program, input is redirected from the
serial port, and each incoming line is tokenized as though the
user  had  typed  the  program  in.  When  saving  a  program,
output is redirected to the serial port, and the program is listed
as though a LIST command had been executed.

LOAD STATEMENTS

The EXLOAD routine implements the BASIC portion of LOAD
statements. It parses parameters containing the device number
and  mode  before  calling  the  appropriate  routine  to  do  the
operation.  In  the  event  that  the  program  to  be  loaded  is  a
BASIC program, it calls LOADBAS, and for binary programs, it
calls LOADBIN instead.

          PLX
          PLA

          RTS

_SYS      JMP RAISE_SYS         ; Indicate we're out of space in the input buffer

EXLOAD    JSR ONLYREPL        ; Only valid in REPL mode
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EXLOAD implements the LOAD statement in Cody BASIC.

LOADBAS loads BASIC programs over the serial port. Each
line is  read into the input  buffer  IBUF just  as  a  user  would
enter the code line by line, with each line being tokenized and
appended  at  the  end  of  the  program.  When  the  routine
encounters  a  line  with  no  characters,  it  considers  the  load
completed and returns to the REPL loop.

Unlike many other 8-bit systems, Cody BASIC doesn't save
its  BASIC programs in  their  tokenized format.  This  makes it
easier to exchange BASIC files with other computers, but it also
makes it slower to load because of the retokenization. As the
speed of tokenization is  the main limit  to loading programs
quickly,  optimization of the tokenizer is very important.  This
also  means  that  terminal  programs  talking  to  the  Cody
Computer usually need to insert a delay after each line so that
the tokenizer can keep up.

          LDA #RM_COMMAND     ; Running without a line number so we can break
          STA RUNMODE

          JSR EXEXPR          ; Device argument

          JSR EXCOMMA         ; Comma separator

          JSR EXEXPR          ; Mode argument (0 for BASIC, 1 for binary)

          JSR POPBOTH         ; Pop results

          LDA #$F             ; Read at 19200 baud
          STA IOBAUD

          LDA NUMONE          ; Use device number as UART number
          STA IOMODE

          LDA NUMTWO          ; Read BASIC or binary file as appropriate
          BNE _BIN

_BAS      JSR LOADBAS         ; Load tne BASIC program

          STZ RUNMODE         ; Reset run mode and return
          RTS

_BIN      JMP LOADBIN
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Some simple optimizations and sanity checks are added to
this code path to speed up loading and guard against obvious
errors  (such as  out-of-order  line  numbers).  Much like  what
happens  when  input  statements  are  redirected  to  serial,
LOADBAS sends a question-mark character before waiting for
each  incoming  line.  If  the  device  sending  the  program
recognizes this, it can immediately skip to the program's next
line rather than waiting for a fixed period for each line.

LOADBAS   JSR NEWPROG         ; Clear out the current program

          STZ LINENUM         ; Start at "line zero" as the first line
          STZ LINENUM+1

          JSR SERIALON        ; Turn serial port on

_LOOP     LDA #CHR_QUEST      ; Send question mark prompt (for more advanced loaders)
          JSR SERIALPUT

          JSR READSER         ; Read a line of input

          LDX IBUFLEN         ; Make sure we actually read a full line
          CPX #2
          BCC _DONE

          DEX                 ; Replace trailing character with a newline (could be a carriage return!)
          LDA #CHR_NL
          STA IBUF,X

          JSR TOKENIZE        ; Tokenize the line

          LDA TBUF            ; Basic validity check (must start with line number)
          CMP #$FF
          BNE _SYS

          LDA TBUF+2          ; Another validity check (ensure line numbers ascending)
          CMP LINENUM+1
          BNE _LINE

          LDA TBUF+1
          CMP LINENUM
          BEQ _SYS
_LINE     BCC _SYS

          LDA PROGTOP         ; Set destination as the top of the program
          STA LINEPTR
          LDA PROGTOP+1
          STA LINEPTR+1

          JSR INSLINE         ; Insert the line into the program

          LDA TBUF+1          ; Update last line number for future tests
          STA LINENUM
          LDA TBUF+2
          STA LINENUM+1
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The LOADBAS routine loads a BASIC program into memory.

For  loading  binary  files,  the  LOADBIN routine  is  used
instead.  Loading  a  binary  file  is  somewhat  easier  as  it's
essentially  a  direct  read of  bytes  into  the Cody Computer's
memory, followed by a jump to the loading address. Because
binary  programs  can  be  loaded  from  the  serial  ports  (in
BASIC) or from a cartridge (on system startup), LOADBIN has
to take into account both possibilities.

The Cody Computer's  binary format  is  simple.  Two bytes
contain the start address, two bytes contain the end address,
and the remainder consists of raw bytes for the program. To
load  the  program  the  computer  needs  only  to  point  a
destination pointer at the start address, read and store a byte,
and continue reading until the destination pointer equals the
end address.

          BRA _LOOP           ; Read the next line

_DONE     JSR SERIALOFF       ; Turn off serial port

          STZ IOMODE          ; Clear I/O settings back to screen/keyboard
          STZ IOBAUD

          STZ RUNMODE         ; Not "running" any more

          RTS

_SYS      JMP RAISE_SYS       ; Indicate IO error during read

LOADBIN   LDA IOMODE
          BEQ _INITSPI

_INITSER  JSR SERIALON        ; Start running serial port

          BRA _LOAD

_INITSPI  JSR CARTON          ; Begin SPI transaction

          LDA #$03            ; Command 3 to begin reading
          JSR CARTXFER

          LDX #2              ; Assume a cartridge with a two-byte address
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          LDA VIA_IORB        ; If cart size bit is high, we have a three-byte address
          BIT #CART_SIZE
          BEQ _ADDR
          INX

_ADDR     LDA #$00            ; Send the appropriate number of zeroed address bytes
          JSR CARTXFER
          DEX
          BNE _ADDR

_LOAD     JSR _READ           ; Read starting address (low and high bytes)
          STA MEMSPTR
          STA PROGPTR

          JSR _READ
          STA MEMSPTR+1
          STA PROGPTR+1

          JSR _READ           ; Read ending address (low and high bytes)
          STA MEMDPTR

          JSR _READ
          STA MEMDPTR+1

_LOOP     JSR _READ           ; Read and store another byte
          STA (MEMSPTR)       ; Store it in memory

          LDA MEMSPTR         ; If not at the destination address, read another byte
          CMP MEMDPTR
          BNE _INCR

          LDA MEMSPTR+1
          CMP MEMDPTR+1
          BNE _INCR

          LDA IOMODE          ; Finished loading, shutdown for SPI vs serial is different
          BEQ _DONESPI
          BNE _DONESER

_INCR     INC MEMSPTR         ; Increment source pointer by one
          BNE _LOOP
          INC MEMSPTR+1
          BRA _LOOP

_DONESER  JSR SERIALOFF       ; Stop running serial port

          STZ IOMODE          ; Clear I/O settings back to screen/keyboard
          STZ IOBAUD

          BRA _DONE

_DONESPI  JSR CARTOFF

_DONE     STZ RUNMODE         ; Ensure run mode is zero before jumping to loaded binary

          SEI                 ; Disable interrupts for BASIC (keyboard scan and clock)

          LDX STACKREG        ; Roll back the BASIC stack
          TXS

          JSR _JUMP

          JMP MAIN            ; If it returns for some reason, start all over and hope

_JUMP     JMP (PROGPTR)       ; Jump to the load address (indirect JSR workaround)

_READ     LDA IOMODE          ; Determine what mode we're running in
          BNE _READSER
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READBIN loads  binary  programs  from  serial  ports  or
cartridges.

SAVE STATEMENTS

Saving programs is somewhat more straightforward because
Cody BASIC only supports saving the current BASIC program
in  memory  as  text.  No  provision  is  mode  for  dumping  an
arbitrary region of memory to serial output as raw bytes, and
BASIC  programs  can  only  be  saved  to  serial  ports,  not
cartridges.

To save a program, output is redirected to one of the serial
ports, the entire program is listed by calling LISTPROG, and a
blank line is written to mark the end of the program. Because
of  its  overall  simplicity  this  is  entirely  implemented  in  the
EXSAVE routine used by the interpreter.

_READSPI  LDA #$00            ; Read value and return as accumulator
          JSR CARTXFER
          RTS

_READSER  JSR SERIALGET       ; Busy-wait for another byte
          BCC _READSER
          RTS

EXSAVE    JSR ONLYREPL        ; Only valid in REPL mode

          LDA #RM_COMMAND     ; Running without a line number so we can break
          STA RUNMODE

          JSR EXEXPR          ; Read the device number for the UART
          JSR POPONE

          LDA NUMONE          ; Use it as the UART number
          STA IOMODE

          LDA #$F             ; Save at 19200 baud
          STA IOBAUD

          LDA #<PROGMEM       ; Start at the beginning of program memory
          STA LINEPTR
          LDA #>PROGMEM
          STA LINEPTR+1
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EXSAVE is  a  short  routine  that  implements  the  SAVE
command.

Most of the actual work in saving a program is done by the
LISTPROG routine. This same routine is also called when a user
enters the LIST statement at the BASIC prompt, except that in
this  case  we're  listing  the  program to  a  serial  port  instead.
LISTPROG works  opposite  to  a  tokenizer,  starting  at  the
beginning  of  the  BASIC  program,  going  through  each
tokenized line, and looking up the actual values of each token
to  put  them  into  the  output  buffer.  Once  an  entire  line  is
decoded, it's flushed to the current output device.

          LDA PROGTOP         ; Stop at the top of program memory
          STA STOPPTR
          LDA PROGTOP+1
          STA STOPPTR+1

          JSR SERIALON        ; Start the serial port

          JSR LISTPROG        ; List the program out the serial port to "save" it

          STZ OBUFLEN         ; Write an empty line to mark the end (the loader expects this!)
          LDA #CHR_NL
          JSR PUTOUT
          JSR FLUSH

          JSR SERIALOFF       ; Stop the serial port

          STZ RUNMODE         ; Reset run mode

          STZ IOBAUD          ; Go back to screen/keyboard IO when we're done
          STZ IOMODE

          RTS

LISTPROG  PHA                   ; Preserve registers
          PHX
          PHY

_LOOP     LDA LINEPTR+0         ; Always do a sanity check (data can come from LIST)
          CMP PROGTOP+0
          BNE _SANE

          LDA LINEPTR+1
          CMP PROGTOP+1
          BNE _SANE

          BRA _DONE
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_SANE     LDA LINEPTR+0         ; Are we at the line we're supposed to stop at?
          CMP STOPPTR+0
          BNE _LINE

          LDA LINEPTR+1
          CMP STOPPTR+1
          BNE _LINE

_DONE     PLY                   ; No more lines in program, restore registers
          PLX
          PLA

          RTS                   ; All done

_LINE     STZ OBUFLEN           ; Start at the beginning of the output buffer

          LDY #1                ; Start at beginning of line (skipping line length byte)

          LDA (LINEPTR),Y       ; Copy line number low byte
          STA NUMONE+0
          INY

          LDA (LINEPTR),Y       ; Copy line number high byte
          STA NUMONE+1
          INY

          JSR TOSTRING          ; Write the number's digits to the output buffer

_PART     LDA (LINEPTR),Y       ; Load the next byte in the line

          CMP #$FF              ; Do we have a number token?
          BEQ _NUM

          BIT #$80              ; Do we have a token to decode?
          BNE _TOK

          JSR PUTOUT            ; Normal character, put it into the output buffer
          INY

          CMP #CHR_NL           ; If it was a newline, move on to the next source line
          BEQ _NEXT

          BRA _PART             ; Next part of the current line

_TOK      AND #$7F              ; Mask out the number of the actual token

          CLC                   ; Adjust the token number into the message table
          ADC #MSG_TOKENS

          JSR PUTMSG            ; Put the token's text into the output buffer

          INY                   ; Consume the token

          BRA _PART             ; Next part of the current line

_NUM      INY                   ; Skip leading number token tag

          LDA (LINEPTR),Y       ; Copy integer low byte
          STA NUMONE+0
          INY

          LDA (LINEPTR),Y       ; Copy integer high byte
          STA NUMONE+1
          INY

          JSR TOSTRING          ; Print integer

          BRA _PART             ; Next part of the current line
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LISTPROG is used internally to both list and save programs.

SERIAL ROUTINES

When input and output have been redirected to one of the
serial ports (IOMODE of 1 or 2), serial routines are called to
configure the appropriate UART and perform reads and writes.
The  SERIALON routine starts up the serial UART,  SERIALPUT
places a byte in its transmit buffer,  SERIALGET reads a byte
from its receive buffer,  and  SERIALOFF turns it  off.  Together
these provide enough features to support Cody BASIC's line-
based input and output when a serial port is enabled.

Because the register layout for each UART is identical, the
relevant  assembly  code  uses  indirect  addressing  to  access
them. Either  UART1_BASE or  UART2_BASE is stored into the
UARTPTR zero page variable when SERIALON is called, and all
subsequent calls to serial routines use the specified pointer to
access the current UART.

_NEXT     JSR FLUSH             ; Flush the output buffer

          CLC                   ; Move the pointer to the next line
          LDA LINEPTR+0
          ADC (LINEPTR)
          STA LINEPTR+0
          LDA LINEPTR+1
          ADC #0
          STA LINEPTR+1

          BRA _LOOP             ; Next line

SERIALON  PHA
          PHY

          LDA IOMODE              ; What UART are we using?
          CMP #1
          BEQ _UART1
          BCS _UART2
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SERIALON configures a UART to transmit and receive.

Turning off serial communications is somewhat simpler, as it
only waits for any pending bytes to be transmitted and then
turns off the UART. The check for transmitting data is a two-
step process, ensuring that the transmit buffer is empty, then
checking to ensure no byte is currently stored and being sent
out.

          JMP RAISE_SYS           ; Indicate an IO error (should never happen!)

_UART1    LDA #<UART1_BASE        ; Running UART 1
          STA UARTPTR
          LDA #>UART1_BASE
          STA UARTPTR+1

          BRA _INIT

_UART2    LDA #<UART2_BASE        ; Running UART 2
          STA UARTPTR
          LDA #>UART2_BASE
          STA UARTPTR+1

_INIT     LDA #0

          LDY #UART_RXTL          ; Clear out buffer registers
          STA (UARTPTR),Y

          LDY #UART_TXHD
          STA (UARTPTR),Y

          LDA IOBAUD              ; Set baud rate
          AND #$0F
          LDY #UART_CNTL
          STA (UARTPTR),Y

          LDA #01                 ; Enable UART
          LDY #UART_CMND
          STA (UARTPTR),Y

          LDY #UART_STAT          ; Wait for UART to start up
_WAIT     LDA (UARTPTR),Y
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

SERIALOFF PHA
          PHY

          LDA IOMODE              ; Special check in case this was called incorrectly
          BEQ _DONE
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SERIALOFF turns off serial communication.

To  transmit  data,  the  SERIALPUT routine  is  called  with  a
single byte.  The routine checks to see if  there's room in the
transmit ring buffer, and if not, blocks until a space exists in
the buffer. Once a space exists, the byte is added to the buffer
and the head position of the buffer incremented. Calling this
routine when a UART is not running will cause the routine to
block indefinitely once the buffer is full.

_WAITBUF  LDY #UART_TXHD          ; Wait for any pending characters to transmit
          LDA (UARTPTR),Y
          LDY #UART_TXTL
          CMP (UARTPTR),Y
          BNE _WAITBUF

          LDY #UART_STAT          ; Wait for any pending byte to be sent out
_WAITBIT  LDA (UARTPTR),Y
          AND #$10
          BNE _WAITBIT

_SHUTOFF  LDA #0
          LDY #UART_CMND
          STA (UARTPTR),Y         ; Clear bit to stop UART

          LDY #UART_STAT
_WAITOFF  LDA (UARTPTR),Y         ; Wait for UART to stop
          AND #$40
          BNE _WAITOFF

_DONE     PLY
          PLA

          RTS

SERIALPUT PHA
          PHX
          PHY

          PHA                     ; Preserve character to store

_WAIT     LDY #UART_TXHD          ; Get current head position
          LDA (UARTPTR),Y

          INC A                   ; Increment by one (to test if overflow)
          AND #$07

          LDY #UART_TXTL          ; Compare to current tail position (equals means we overflow!)
          CMP (UARTPTR),Y
          BEQ _WAIT

          TAX                     ; Store new head position (we'll need it really soon)

          LDY #UART_TXHD          ; Use current head position to calculate offset
          CLC
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The SERIALPUT routine enqueues bytes for transmission.

Receiving  data  is  handled  by  the  SERIALGET routine.  It
checks whether a byte exists in the receive ring buffer, and if
so,  copies  the  byte  and  increments  the  receive  buffer's  tail
position to consume it.  If  no byte exists,  the routine returns
without any action being taken. Because a value of zero would
be valid, the 65C02's carry flag is used to indicate whether or
not a byte was read. Unlike the SERIALPUT routine, this routine
won't block if  the UART wasn't turned on, but neither will  it
read any data.

          LDA (UARTPTR),Y
          ADC #UART_TXBF
          TAY

          PLA                     ; Store character in buffer
          STA (UARTPTR),Y

          LDY #UART_TXHD          ; Update head position
          TXA
          STA (UARTPTR),Y

          PLY
          PLX
          PLA

          RTS

SERIALGET PHY

          LDY #UART_STAT          ; Get current control register
          LDA (UARTPTR),Y

          BIT #$06                ; Test that no error bits are set
          BNE _SYS

          LDY #UART_RXTL          ; Get current tail position
          LDA (UARTPTR),Y

          LDY #UART_RXHD          ; Compare to head position
          CMP (UARTPTR),Y

          BEQ _EMPTY              ; If they match then the buffer is empty

          CLC                     ; Calculate the buffer position and read the character
          ADC #UART_RXBF
          TAY
          LDA (UARTPTR),Y

          PHA                     ; Keep the character around for later
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The SERIALGET routine reads a byte from the receive buffer.

SCREEN OUTPUT

Cody BASIC has a set of routines to handle text output to
the  screen.  Similar  in  some  ways  to  a  terminal  device,  the
routines not only display characters but will move the cursor
location,  clear  the  screen,  and  change  the  foreground  and
background  colors  of  text  based  on  control  codes.  The
SCREENPUT,  SCREENDEL,  SCREENCLR,  SCREENADV,  and
SCREENPOS routines  contain  the  necessary  code  for  screen
output.

Screen display routines share a few zero page variables that
encapsulate  the  current  state  of  screen  output.  The  cursor
position  is  actually  represented  two  different  ways.  The
CURCOL and  CURROW zero-page  variables  contain  the
current  x  and  y  coordinates  of  the  cursor,  while  the
CURSCRPTR and  CURCOLPTR values  point  to  the
corresponding positions in screen and color memory. Because
the routines also allow changes to foreground and background

          LDY #UART_RXTL          ; Update tail position since we read from the buffer
          LDA (UARTPTR),Y
          INC A
          AND #$07
          STA (UARTPTR),Y

          PLA                     ; Pull the character we read off the stack

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_SYS      JMP RAISE_SYS           ; Indicate we detected an IO error
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colors,  another  zero-page  variable,  CURATTR,  contains  the
current  foreground  and  background  colors  to  use  for  new
output.

The  SCREENPUT routine displays a single character on the
screen at the current cursor position. It also takes into account
special  control  codes  that  change  the  foreground  and
background colors or clear the screen, and must also account
for scrolling the screen when the cursor reaches the bottom.

Excerpt showing control codes handled by SCREENPUT.

Like other screen routines, it also has to ensure that certain
critical sections of code aren't changed by the timer interrupt,
which could happen if the user attempts to break out of the
program. If this happened at a particularly bad time, internal
variables related to the cursor position could be corrupted. This
would cause future output to be broken and could potentially
have knock-on effects for the rest of the system, particularly if
the values of the pointers are corrupted.

SCREENPUT CMP #CHR_CLEAR            ; Clear screen
          BEQ _CLR

          CMP #CHR_REVERSE          ; Reverse field
          BEQ _REV

          CMP #CHR_NL               ; Newline (advance screen)
          BEQ _NL

          CMP #$F0                  ; Foreground color special character
          BCS _FG

          CMP #$E0                  ; Background color special character
          BCS _BG

          PHP                       ; Store flags and disable interrupts (cursor/pointer updates are critical section)
          SEI

          STA (CURSCRPTR)           ; Store the character in the screen buffer

          PHA                       ; Store the cursor attribute in the color memory buffer
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Critical section in SCREENPUT that writes a character.

When the user is typing and wants to delete a character, we
need  to  have  a  way  to  remove  it  from  the  screen.  In  this
situation SCREENDEL is called, which clears the screen content
for the cursor and the previous position. To ensure everything
matches  up,  it  also  moves  the  cursor  position  and  memory
pointers  back  by  one,  also  taking  into  consideration  the
possibility that the cursor went back an entire line. This routine
is needed by READKBD when the user wants to delete part of
their newly-typed input.

          LDA CURATTR
          STA (CURCOLPTR)
          PLA

          INC CURSCRPTR+0           ; Increment screen memory location
          BNE _ATTR
          INC CURSCRPTR+1

_ATTR     INC CURCOLPTR+0           ; Increment color memory location
          BNE _DOIT
          INC CURCOLPTR+1

_DOIT     LDA CURCOL                ; Increment the cursor x position
          INC A
          STA CURCOL
          CMP #40
          BNE _INT

          STZ CURCOL                ; Increment the cursor y position (when needed)
          LDA CURROW
          INC A
          STA CURROW
          CMP #25
          BNE _INT

          STZ CURCOL                ; Move the cursor to the start of the last row (0, 24)
          LDA #24
          STA CURROW

          PLP                       ; Out of critical section, copying memory can take a lot of cycles

          JMP _SCR                  ; Jump to scroll the memory (moved outside to make branches fit)

_INT      PLP                       ; Pull processor flags to re-enable the previous interrupt status

SCREENDEL PHA

          DEC CURCOL        ; decrement column
          BPL _DEL
          LDA #39           ; wrapped to previous column
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SCREENDEL deletes  a  character  and  handles  related
calculations.

Other  routines  also  exist  to  handle  particular  aspects  of
screen output.  The  SCREENADV routine advances the screen
by a single line, while SCREENPOS moves the cursor position
and  memory  pointers  based  on  new  column  and  row
coordinates. SCREENCLR clears the contents of screen memory
and sets the contents of color memory, also moving the cursor
back to the top of the screen. These routines are used within
the codebase to handle special output needs.

          STA CURCOL
          DEC CURROW        ; decrement row since we wrapped around
          BPL _DEL
          STZ CURCOL        ; wrapped off screen, need to correct that
          INC CURROW
          BRA _DONE

_DEL      LDA #$20          ; clear current cursor position
          STA (CURSCRPTR)
          SEC               ; subtract one from the cursor pointer
          LDA CURSCRPTR+0
          SBC #1
          STA CURSCRPTR+0
          LDA CURSCRPTR+1
          SBC #0
          STA CURSCRPTR+1
          LDA #$20          ; replace the character with the current cursor attributes to clear it
          STA (CURSCRPTR)

          LDA CURATTR       ; clear current cursor position
          STA (CURCOLPTR)
          SEC               ; subtract one from the cursor pointer
          LDA CURCOLPTR+0
          SBC #1
          STA CURCOLPTR+0
          LDA CURCOLPTR+1
          SBC #0
          STA CURCOLPTR+1
          LDA CURATTR       ; replace with the current cursor attributes to clear it
          STA (CURCOLPTR)

_DONE     PLA

          RTS

SCREENCLR PHA

          PHP                   ; Disable interrupts (critical section)
          SEI
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SCREENCLR clears the screen and moves the cursor back to the
top left.

          STZ CURCOL            ; Reset the cursor x and cursor y to (0, 0)
          STZ CURROW

          STZ TABPOS            ; Reset tab position

          LDA #<SCRRAM          ; Reset the cursor pointer to the start of text memory
          STA CURSCRPTR+0
          LDA #>SCRRAM
          STA CURSCRPTR+1

          LDA #<COLRAM          ; Reset the cursor color pointer to the start of color memory
          STA CURCOLPTR+0
          LDA #>COLRAM
          STA CURCOLPTR+1

          PLP                   ; Restore interrupts (critical section)

          LDA #<SCRRAM          ; Fill the contents of text memory with spaces
          STA MEMDPTR+0
          LDA #>SCRRAM
          STA MEMDPTR+1
          LDA #<1000
          STA MEMSIZE+0
          LDA #>1000
          STA MEMSIZE+1
          LDA #$20
          JSR MEMFILL

          LDA #<COLRAM          ; Fill the contents of color memory with the current attribute
          STA MEMDPTR+0
          LDA #>COLRAM
          STA MEMDPTR+1
          LDA #<1000
          STA MEMSIZE+0
          LDA #>1000
          STA MEMSIZE+1
          LDA CURATTR
          JSR MEMFILL

          PLA

          RTS
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INTRODUCTION

This  chapter  describes  how  to  build  your  own  Cody
Computer,  including  the  assembly  of  a  small  mechanical
keyboard, the main printed circuit board, and the computer's
case. Each part is broken out into its own section, and inside
each section the assembly is broken into multiple steps. Photos
are also provided to point out aspects of the assembly process.
You should read the chapter in its entirety before beginning
the build.

Just  because  something  worked  well  for  me  doesn't
mean it will work as well for you. As you go through the
build,  you'll  want  to  consider  what  you're  doing  and
evaluate  your  own results.  The Cody Computer  is  more
like a garage kit, particularly with the 3D printing side, so
you'll want to build accordingly.

NOTES ON 3D PRINTING

The Cody Computer is heavily dependent on 3D printing for
its  construction,  so  you  will  need  to  either  print  the  parts
yourself or find someone who can print them for you. When
developing the Cody Computer we were able to print all the
parts on a more or less stock Ender 3 Pro, with the only major
modifications  being  a  glass  bed  and  an  eventual  extruder
replacement.
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Because of differences between 3D printers, you may need
to make adjustments to obtain suitable results.  It's  assumed
your  printer  is  dialed  in  with  a  reasonably  high  level  of
accuracy. If not you should be comfortable making your own
adjustments to the printer and ensuring the fit of finished parts
as  they  come  off.  The  OpenSCAD  design  files  are  also
provided if you need to make major adjustments to some of
the dimensions for the build.

It's  also  worth  planning  the  order  in  which  you  print  the
parts. One option is to print the parts for each step as needed,
checking for proper fit at that time. Another option is to print
the  parts  up  front,  perhaps  even  batching  some  of  them
together, and perform many of the basic test-fits up front as
well. Whatever approach you use, make sure that you perform
the test fits mentioned in the various assembly steps. If  you
decide  to  group  your  prints  together  by  color,  see  the
following:

Black PLA filament (Hatchbox Black, Inland Black, or
equivalent): 

Alphanumeric keycaps (KeycapA.stl through 
KeycapZ.stl)
Cody keycap (KeycapCody.stl)
Meta keycap (KeycapMeta.stl)
Arrow keycap (KeycapArrow.stl)
Spacebar (Spacebar.stl)
Keyboard plate (KeyboardPlate.stl)
Case badge (CaseBadge.stl)
LED holder (LEDHolder.stl)

• 

◦ 

◦ 
◦ 
◦ 
◦ 
◦ 
◦ 
◦ 

186



Left mounting bracket
(KeyboardBracketWithoutHoles.stl)
Right mounting bracket
(KeyboardBracketWithHoles.stl)

Beige PLA filament (Inland Light Brown or equivalent): 
Case top (CaseTop.stl)
Case bottom (CaseBottom.stl)

White PLA (if using paint) or various color PLA: 
Case badge inlay, red (CaseBadgeInlay.stl)
Case badge inlay, orange (CaseBadgeInlay.stl)
Case badge inlay, yellow (CaseBadgeInlay.stl)
Case badge inlay, green (CaseBadgeInlay.stl)
Case badge inlay, blue (CaseBadgeInlay.stl)

When printing consider the orientation of the parts on the
print bed. For large pieces such as the case top and bottom, we
printed  them  upside  down  to  avoid  the  large  overhead  of
supports for such pieces. The keyboard brackets were printed
upright  despite  a  need  for  some  supports  to  avoid
dimensionality problems for the magnet and screw pilot holes.
Keycaps  were  printed  face-down  on  a  glass  bed  with  good
leveling to minimize gaps for later application of the air-dry
clay.

◦ 

◦ 

• 

◦ 
◦ 

• 

◦ 
◦ 
◦ 
◦ 
◦ 
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A Creality Ender 3 Pro printing the Cody Computer's case top.
Note  the  upside-down  print  orientation  to  avoid  printing
supports.

Also consider the infill and resolution settings when you run
the STL files through your slicer.  For parts with very specific
dimensional  requirements,  such  as  the  keycaps  and  their
stems, use a standard or high resolution. For larger parts that
take a long time and require significant strength, such as the
case top and bottom, consider a lower resolution or draft print.
You  will  want  to  take  into  account  your  own  printer's
characteristics and your tolerance for long builds when making
such decisions.
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KEYBOARD ASSEMBLY

Your first step in building the Cody Computer is to assemble
its  keyboard  module.  It's  a  good  place  to  start  because  it
combines all the things you'll need to do in later steps, from
3D printing (with reasonably tight tolerances) to soldering up
a circuit board.

If you have any problems in this step, it may indicate that
you want to work them out before going on to later steps. For
example, if your printer isn't calibrated enough or you need to
make your own adjustments to the design files, there's a good
chance  you'll  find  that  out  here.  Likewise,  if  you  run  into
problems with soldering,  it's  better  to solve those problems
now  before  you  start  soldering  the  main  logic  board.  In
general,  the keyboard is going to be a lot more forgiving of
mistakes.

MAKING THE KEYCAPS

In  this  step we'll  print  out  and make the keycaps for  the
keyboard. The keycaps have Cherry MX compatible stems, but
they have a smaller spacing, so you can't use standard keycaps
with  the  Cody Computer.  There  are  30 keycaps  including  a
spacebar key.

Many  early  computer  keycaps  were  manufactured  using
"double-shot" injection moulding. This meant that one color of
plastic was shot into the mould for the keycap itself, while a
second color of plastic was shot into the mould for the legend
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on it. You can do something similar with 3D printing in multiple
colors (and we actually did that as well), but we obtained the
best results using air-dry clay deposited into recessed legends
in the 3D printed keycaps.

Before  your  get  too  far  into  the  build  process,  it's  a
good idea to print a single keycap and test the fit against
one  of  the  Cherry  MX  switches  if  you  haven't  done  so
already.  If  adjustments are needed to your printer or to
the  OpenSCAD  models  to  work  with  your  printer  or
keyswitches,  you want to do that  before you've made a
useless set of keycaps.

For this step, you'll need the following:

26 alphanumeric keycaps (KeycapA.stl through 
KeycapZ.stl)
1 Cody keycap (KeycapCody.stl)
1 Arrow keycap (KeycapArrow.stl)
1 Meta keycap (KeycapMeta.stl)
1 Spacebar keycap (Spacebar.stl)
White air-dry clay (Sculpey Air-Dry or equivalent)
Wet cloth
Dry cloth

Before beginning the assembly, wash and dry the keycaps.
This will help the air-dry clay adhere to the plastic. Once the

• 

• 
• 
• 
• 
• 
• 
• 
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keycaps are dry, do the following for each keycap except the
spacebar:

Take a small amount of air-dry clay and roll it into the
keycap legend.
Wipe away the excess from the keycap using your finger.
Clean up any remainder from the keycap surface with the
wet cloth. Be careful not to wipe away much of the clay in
the legends.
Dry off the top of the keycap by gently blotting with the
dry cloth. Be careful not to dislodge the clay in the
legends.

1. 

2. 
3. 

4. 
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A close-up of some keycaps after the air-dry clay has been
applied.  From left  are  the Cody key,  the Meta key,  and the
Arrow key.

MAKING THE KEYBOARD CABLE

You'll  also  need  to  make  an  11-pin  cable  to  connect  the
keyboard to the Cody Computer's main circuit board.  Rather
than making a real cable it's a minimal approach using some
jumper wires and electrical tape to create a cable by taping the
connectors  together.  One of  the  actual  connectors  the  cable
will connect to is used as a jig to hold the connectors during
the assembly.
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For the jumper wire in this step, use the kind that comes in a
strip and can be peeled apart. You're basically trying to make a
custom cable on the cheap, so if the wires are connected, you
can just tape the connectors together with electrical tape and
end up with a reasonable substitute. Jumper wire like this is
colloquially referred to as "jumper jerky" and can be found at
many retailers.

For this step you'll require only a few parts:

1 11-pin male .100" header, right angle
11 10cm jumper wire with .100" female connector (from
"jumper jerky")
Electrical tape
Scissors

Once  you've  collected  the  above,  proceed  with  the
assembly:

Insert one end of the connected jumper wire onto the
right-angle header.
Wrap electrical tape around the female connectors on
that end to secure them together.
Remove the connected jumper wire from the right-angle
header.
Insert the untaped end of the connected jumper wire onto
the right-angle header.
As before, wrap electrical tape around the female
connectors to secure them together.
Remove the cable from the connector.

• 
• 

• 
• 

1. 

2. 

3. 

4. 

5. 

6. 
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The  assembled  keyboard  cable.  Note  the  electrical  tape
holding the connectors on each end together.

ASSEMBLING THE KEYBOARD

Once you have the keycaps it's time to build the keyboard.
You need to be careful and follow the steps in order. You'll be
soldering a connector onto a board that ends up hidden by a
keyboard  plate.  You'll  also  be  inserting  switches  through  a
keyboard plate into a printed circuit board and then soldering
them. If you do the steps in the wrong order, you'll end up in a
situation  where  further  assembly  may  be  mechanically
impossible.
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This step requires the following:

30 keycaps including spacebar
31 keyswitches, 5 pin, PCB mount (Cherry MX or
equivalent)
1 11-pin male .100" header, right angle
Keyboard plate (KeyboardPlate.stl)
Keyboard cable
Solder
Soldering iron

Refer  to  the  above  caution  about  following  the  assembly
steps.  As  with  anything,  it's  worth  going  through  the
instructions  using  the  parts  as  a  dry  run,  making  sure  you
understand  what  you're  doing.  When  adding  the  spacebar
keycap,  equal  force  on  both  switches  is  necessary,  and  you
may  need  to  sand  the  interior  of  the  spacebar  to  avoid
jamming. When you're ready, assemble the keyboard module
through the following steps:

Solder the 11-pin right angle male connector to J1. Ensure
the connector is flat and the solder joints are good.
Place the keyboard plate over the keyboard printed circuit
board. Ensure the notch in the keyboard plate aligns with
the connector.
Insert the Cherry MX switches into the circuit board
through the keyboard plate. Ensure the keyswitches are
fully seated into the circuit board and hold the plate
securely.
Solder each of the keyswitches to the circuit board.

• 
• 

• 
• 
• 
• 
• 

1. 

2. 

3. 

4. 
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Press each of the keycaps onto the appropriate switch.
Use the photo below to determine the location for each
key.
Connect one end of the keyboard cable to connector J1.
The cable should fit through the notch in the keyboard
plate.

The back of the assembled keyboard. Note the placement of
the printed circuit  board inside  the  keyboard plate  with  the
keyswitches soldered from the bottom. Also note connector J1
soldered from the now-hidden front  of  the board,  now with
attached keyboard cable.

5. 

6. 
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The  front  of  the  assembled  keyboard.  Use  this  photo  as  a
reference when placing the keycaps.

PRINTED CIRCUIT BOARD ASSEMBLY

The next step is to assemble the printed circuit board for the
Cody Computer. This board is the motherboard or logic board
for the entire computer, containing all the chips and discrete
components  necessary  for  the  computer  to  run  (with  the
exception of the keyboard).

It's  important  to  proceed  with  the  assembly  methodically
and use good soldering technique at  each step.  Ensure that
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components are held to the board by a clamp or piece of tape
if needed and check for cold solder joints or solder bridges.

INSTALLING INTEGRATED CIRCUIT SOCKETS

To begin we'll install the sockets for the integrated circuits.
Rather than solder the chips directly to the board, we install
sockets and add them at a later step. While unlikely to ever
happen,  this  makes  it  easier  to  replace  one  of  them  if
something goes wrong. It also makes it less likely to mess one
of them up while soldering, as they're not installed until the
end. This step requires:

3 40-pin wide DIP sockets
1 32-pin wide DIP socket
1 20-pin DIP socket
1 16-pin DIP socket
1 8-pin DIP socket

When installing the sockets, note if your socket contains a
notch, dot, half-circle, or other identifier to indicate the top of
the  IC.  If  so,  ensure  they  are  rotated  the  same  way  as  the
silkscreen on the printed circuit board. Once the sockets have
been collected, proceed with the assembly:

Solder a 40-pin wide DIP socket into U3 rotated 180
degrees.
Solder a 40-pin wide DIP socket into U5 rotated 180
degrees.

• 
• 
• 
• 
• 

1. 

2. 
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Solder a 40-pin wide DIP socket into U7 rotated 180
degrees.
Solder the 32-pin wide DIP socket into U6.
Solder the 20-pin DIP socket into U1 rotated 180 degrees.
Solder the 16-pin DIP socket into U8 rotated 90 degrees
counterclockwise.
Solder the 8-pin DIP socket into U4.

The printed circuit board with the IC sockets soldered in. Note
the varying orientations and corresponding notches in the IC
sockets.

3. 

4. 
5. 
6. 

7. 
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INSTALLING DIODES

In this step we'll install the diodes for the joystick ports. The
Cody Computer uses the same circuit to read the joystick ports
as  it  does  to  scan  the  keyboard.  Without  these  diodes,  the
joystick  ports  could  interfere  with  each  other,  causing  false
reads when both joysticks are in use. You will need:

10 1N4148 small-signal diodes

Note  that  diodes  have  a  polarity.  This  means  that  if  you
solder them in backwards, they won't work as expected. Each
diode has a stripe on it indicating the diode's cathode, and this
should  be  aligned  to  the  corresponding  stripe  on  the
silkscreen. Proceed with the assembly starting in order on the
PCB:

Solder 1N4148 diodes into D5, D3, D2, D1, D4, D9, D6, D7,
D8, and D10.

• 

1. 
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The diodes soldered next to U7 and the future joystick port
connectors. Note the stripes and their orientation.

INSTALLING DECOUPLING CAPACITORS

Next we'll install the decoupling capacitors. These are small
capacitors  that  help  filter  out  tiny  blips  in  the  Cody
Computer's  power  supply  and  ensure  reliable  operation.
They're  located  next  to  the  power  supply  pins  for  the
integrated circuits.  (One of these,  C6,  is  actually part  of  the

201



audio  circuit,  but  as  it  has  the  same  capacitance  value,  we
include it in this step.) You'll need the following:

9 0.1µF ceramic capacitors (KEMET C315C104K1R5TA or
equivalent)

These are ceramic capacitors and have no polarity, so you
don't  have to  worry about  the direction you solder  them in
(other than, perhaps, for aesthetic purposes). Make sure you
solder all of the following:

Solder 0.1µF ceramic capacitors into C1, C2, C6, C3, C4, C8,
C9, C10, and C11.

• 

1. 
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The  board  with  decoupling  capacitors  (plus  C6,  part  of  the
audio circuit) installed.

INSTALLING THE EXPANSION CONNECTOR

The  Cody  Computer  has  an  expansion  port  for  DIY
experiments,  cartridges,  or  third-party  peripherals.  The
mechanical  connection is  a  20-pin  right  angle  .100"  female
connector. For this step you'll need the following:

1 Raspberry Pi Pico stackable header

Because of their ubiquity, we use one from a set of stackable
Raspberry Pi Pico headers (the kind with the long pins) and

• 
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bend it to fit. Note that the port isn't electrically compatible.
We're  just  using  the  header,  and  any  standard  right-angle
female header cut to size would also suffice. For this step do
the following:

Insert the stackable header into J6 and bend until aligned
with the board edge.
Solder the stackable header to J6.

The board with the Raspberry Pi  Pico stackable header bent
into place and soldered.

1. 

2. 
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INSTALLING PULL-UP RESISTORS

In  this  step we'll  install  several  pull-up resistors.  Most  of
these  are  used  by  the  keyboard  matrix,  but  there  are  also
others. R2 is used to pull up the Propeller's RESET pin, R3 is
used  as  a  pull-up  for  I2C  EEPROM  communication,  and  R8
pulls the 65C02's RDY pin high to protect it in the event of a
wait-for-interrupt instruction. This step requires the following
resistors:

8 10kΩ (brown-black-orange) resistors, 1/4 watt, 5%
tolerance
1 3.3kΩ (orange-orange-red) resistors, 1/4 watt, 5%
tolerance

Installation should proceed as follows:

Solder 10kΩ resistors to R3, R9, R10, R11, R12, and R13.
Solder 10kΩ resistors to R2 and R14 in a vertical
orientation (see photo).
Solder the 3.3kΩ resistor to R8.

• 

• 

1. 
2. 

3. 
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A close-up of some of the resistors after being soldered to the
board. Note the vertical orientations of R2 and R14.

INSTALLING POWER SUPPLY COMPONENTS

The Cody Computer's power supply circuit is located at the
top right of the printed circuit board. It  consists of a voltage
regulator, a large electrolytic capacitor, some connectors, and a
resistor. This step requires the following parts:

1 LM2937ET-3.3 voltage regulator IC
1 1000µF electrolytic capacitor (Rubycon
10ZLH1000MEFC8X16 or equivalent)
1 1kΩ (brown-black-red) resistor, 5% tolerance

• 
• 

• 
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1 2.0x6.5mm DC barrel jack (CUI PJ-102A or equivalent)
1 2-pin male .100" vertical header pin

The  voltage  regulator  needs  to  be  bent  at  a  90-degree
angle so that the body and heat sink match the silkscreen on
the  circuit  board.  The  electrolytic  capacitor  is  polarized  and
must be installed according to the silkscreen. For this assembly
step do the following:

Solder the LM2937ET-3.3 to U2. Ensure the IC is placed
and bent horizontally as shown in the photo.
Solder the 1000µF capacitor to C5. Verify the longer lead
is on the positive side and the stripe on the case is on the
negative side, following the silkscreen.
Solder the 1kΩ resistor to R1.
Solder the DC barrel jack to J1.
Solder the male header pins to J2.

• 
• 

1. 

2. 

3. 
4. 
5. 
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The  power  supply  circuit  including  the  horizontally-aligned
voltage regulator and properly-oriented electrolytic capacitor.
Also note the DC barrel jack.

INSTALLING PROPELLER COMPONENTS

There are still some discrete components to install for the
Propeller.  These include a  5 MHz crystal  that  serves  as  the
Propeller's external clock signal as well as some resistors and
capacitors used for audio and video output. This step uses the
following:

1 5Mhz 20pF HC-49/US crystal (ECS ECS-50-20-4X or
equivalent)

• 
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1 10µF electrolytic capacitor (KEMET ESL106M050AC3AA
or equivalent)
1 1.1kΩ (brown-brown-red) resistor, 1/4 watt, 1% tolerance
1 560Ω (green-blue-brown) resistor, 1/4 watt, 1%
tolerance
1 270Ω (red-violet-brown) resistor, 1/4 watt, 1% tolerance
1 220Ω (red-red-brown) resistor, 1/4 watt, 1% tolerance

Once you've found all the components solder the following:

Solder the 20pF crystal to Y1.
Solder the 1.1kΩ resistor to R6.
Solder the 560Ω resistor to R5.
Solder the 270kΩ resistor to R4.
Solder the 220kΩ resistor to R7.
Solder the 10µF capacitor to C7.

• 

• 
• 

• 
• 

1. 
2. 
3. 
4. 
5. 
6. 
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The extra components needed for the Propeller. To the left of
the socket, note from the top the crystal oscillator, video DAC
resistors, and capacitors and resistor for the audio circuit.

INSTALLING ADDITIONAL REAR CONNECTORS 

In  this  step  we'll  finish  adding  the  remaining  connectors
along the back of the Cody Computer. These include the audio
and video jacks, a jumper used for firmware programming, and
a four-pin connector wired into the Propeller as a serial port.
The RCA jack colors are not required but are specified to help
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tell the video and audio jacks apart once the Cody Computer is
assembled. You'll need the following parts for this step:

1 RCA jack, black color (CUI RCJ-011 or equivalent)
1 RCA jack, yellow color (CUI RCJ-014 or equivalent)
1 2-pin male .100" header, vertical
1 4-pin male .100" header, right-angle

Add the following connectors:

Solder the 4-pin right-angle male header to J3.
Solder the 2-pin vertical male header to JP1.
Solder the black RCA jack to J5.
Solder the yellow RCA jack to J4.

• 
• 
• 
• 

1. 
2. 
3. 
4. 
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Additional connectors on the back of the Cody Computer. Note
from left to right the NTSC video output jack, audio output jack,
jumper  pins  (without  jumper  attached),  and  Propeller  Plug
connector.

INSTALLING KEYBOARD AND JOYSTICK
CONNECTORS 

In this step we'll  add the connectors for the joystick ports
and the keyboard.  The DB9 connectors used for the joystick
ports  as  they  must  have  a  very  specific  shape  to  fit  in  the
alloted space on the board. When ordering you should check
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the mechanical diagrams to ensure the parts will actually fit.
Collect the following:

2 male DB9 connectors, .318" footprint (NorComp
182-009-113R531 or equivalent)
1 11-pin male .100" header, vertical

Solder the remaining components:

Solder the 11-pin vertical male header to J7.
Solder the two male DB9 connectors to J8 and J9.

The  Cody  Computer's  keyboard  connector  soldered  at  the
bottom of the board.

• 

• 

1. 
2. 
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The Cody Computer's joystick ports soldered along the right
side of the board.

POWER TEST

Now  that  the  printed  circuit  board  has  been  assembled
(except for inserting the ICs), we can begin to test the circuit.
We'll start by testing the power supply to ensure we're getting
the expected 3.3 volts. If we're not, it's likely a sign of a solder
bridge, PCB problem, or an issue with the power supply. It's
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better  to  find that  out  before we insert  any chips into their
sockets. For this step you will need:

5-volt (or similar) DC power supply with 5.5mm x 2.1mm
connector
Voltmeter/multimeter

Any wall-wart transformer or power supply with a suitable
plug and an output voltage of 5V (or slightly above) should
work well for this test. To test the circuit do the following:

Ensure the printed circuit board is resting on a
nonconductive surface.
Plug the power supply's barrel plug into the DC power
jack on the circuit board.
Connect the power supply into a wall outlet.
Use your voltmeter to measure the voltage across pins 1
(GND) and 2 (3.3V) on the expansion port.
Verify the voltage is 3.3V or very close to it.
For advanced builders, find the power supply pins on
some of the IC sockets, and test those also.
Disconnect the power supply.

If the test fails, check the power supply circuit on the printed
circuit board. Also check the voltage from the DC power supply
is correct. If none of this yields a result, examine the rest of the
printed circuit board for defective traces or solder bridges.

• 

• 

1. 

2. 

3. 
4. 

5. 
6. 

7. 
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Use  a  voltmeter  to  check  that  the  output  from  the  power
supply circuit is correct. You should measure a steady voltage
around 3.3 volts.

FIRMWARE PROGRAMMING

In this step we'll program the Propeller's firmware. To do so
you'll  need  to  insert  the  first  two  integrated  circuits,  the
Propeller  and  its  32-kilobyte  EEPROM,  into  the  matching
sockets  on  the  board.  Once  you've  done  that  you'll  use
Propeller  software  to  write  the  program  into  the  EEPROM.
Before  you  begin,  you'll  want  to  download  the  software
(Propeller  IDE or  similar)  for  your computer and familiarize
yourself with it.
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Also pay attention to the jumper JP1 during assembly. When
closed,  the Propeller's  reset  pin connects  to the Prop Plug's
reset  pin,  allowing the Prop Plug to reset  the Propeller  and
enter  programming  mode.  When  open,  the  two  are
disconnected and the Propeller's  reset  pin  is  held high.  The
latter configuration is the normal mode of operation, but you'll
want to remember the jumper exists in case you ever program
your own custom firmware.

You will need the following for this step:

1 Propeller P8X32A integrated circuit (DIP-40)
1 24LC256 32-kilobyte I2C EEPROM or equivalent (DIP-8)
1 Prop Plug with USB cable
1 2-pin jumper/shunt (Harwin M7583-46 or equivalent)
Computer running Propeller IDE (or similar programming
software)

When inserting the integrated circuits,  ensure that they're
fully seated into their sockets and none of the pins are bent.

The  exact  steps  for  programming the  firmware  will  differ
depending on the IDE you use, so you will need to refer to the
tool's documentation for exact steps. The overall procedure will
be the same:

Ensure power is turned off to the printed circuit board.
Insert the Propeller IC into U3 rotated 180 degrees.
Insert the 24LC256 I2C EEPROM into U4.
Place the jumper over both pins of JP1.
Plug the Prop Plug into J3. Verify the pinout (pin 4 is
GND).

• 
• 
• 
• 
• 

1. 
2. 
3. 
4. 
5. 
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Plug the Prop Plug's USB cable into your computer.
Connect power to the printed circuit board.
Launch your Propeller software (for example, Propeller
IDE).
Open the main firmware (cody_computer.spin) and write
it.
Verify that the software states the program was
successfully written.
Turn off power to the printed circuit board.
Unplug the Prop Plug from J3.
Remove the jumper. To avoid losing it reattach to only 1
pin on JP1.

If  your  programming software doesn't  recognize the Prop
Plug,  try  disconnecting  and  reconnecting  the  cable  and/or
Prop Plug. If that does not work, ensure that the programming
software  has  permissions  to  the  Prop  Plug's  USB.  If
programming the Propeller fails, check the solder connections
and ensure the Propeller and its EEPROM are properly seated
in their sockets. Also ensure the jumper is correctly attached.

6. 
7. 
8. 

9. 

10. 

11. 
12. 
13. 
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The  Prop  Plug  connected  to  the  serial  port  on  the  printed
circuit  board.  Note jumper JP1 in the firmware programming
position with both pins covered.

INSTALLING THE INTEGRATED CIRCUITS

In this step we'll insert the remaining ICs into their sockets.
It's very important to make sure that power is disconnected for
this step. You will need:

1 74HC541 octal line driver (DIP-20)
1 W65C02 microprocessor (DIP-40)
1 AS6C1008 128-kilobyte static RAM (DIP-32)
1 W65C22 Versatile Interface Adapter (DIP-40)

• 
• 
• 
• 
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1 CD4051 1-of-8 analog multiplexer (DIP-16)

It's also very important to check that the orientation of the
integrated circuits matches the silkscreen. Many of the ICs are
installed rotated by 90 or 180 degrees. As before, make sure
that each IC goes into the socket fully with no bent pins. Insert
the ICs as follows:

Insert the 74HC541 into U1. Note U1 is rotated 180
degrees.
Insert the W65C02 into U5. Note U5 is rotated 180
degrees
Insert the AS6C1008 into U6.
Insert the W65C22 into U7. Note U7 is rotated 180
degrees
Insert the CD4051 into U8. Note U8 is rotated 90 degrees
counterclockwise.

• 

1. 

2. 

3. 
4. 

5. 
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Close up of  several  integrated circuts  securely inserted into
their  sockets.  Note  the  differing  orientations  and  how  the
notches  on  the  ICs  match  with  the  sockets  and  silkscreen
markings.

CASE ASSEMBLY

Once  the  printed  circuit  board  and  keyboard  have  been
assembled, it's time to begin assembling the Cody Computer's
case. We'll start with the top of the case and its components,
including  the  case  badge  and  power  LED.  From  there  we'll
assemble the rest from the bottom up, installing the printed
circuit board and keyboard brackets into the case bottom. Once
the bottom portion is finished we'll attach the keyboard to it as
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well, connecting the keyboard cable to the main printed circuit
board.  Lastly,  we'll  affix  magnets  to  hold  the  case  together,
connect the power LED, and finish our assembly.

CASE BADGE ASSEMBLY

First  we'll  assemble  the  case  badge.  You  should  have
already  printed  the  case  badge  and  the  case  badge  inlays
before beginning this  step.  Note that  if  you didn't  print  the
case badge inlays in different colors, you'll have to paint them
as part of this assembly step. For this step you'll need: 

1 case badge (CaseBadge.stl)
5 case badge inlays (CaseBadgeInlays.stl)
White air-dry clay
Cyanoacrylate glue
Optional: Paint (red, orange, yellow, green, and blue) for
inlays

Once you're prepared and have collected the parts, proceed
with the following:

Wash and dry the case badge and case badge inlays. This
will help the air-dry clay (and paint if needed) adhere to
the plastic.
Test-fit the case badge inlays into the slots on the case
badge. Sand if necessary.
Insert air-dry clay into the "CODY" legend on the case
badge. Wipe away excess with a cloth and water.

• 
• 
• 
• 
• 

1. 

2. 

3. 
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If the inlays were not printed using color filaments, paint
the inlays (red, orange, yellow, green, and blue).
Allow the air-dry clay to dry completely. If you painted
the inlays, allow these to dry then remove any paint from
the gluing surfaces.
Glue the inlays into the case badge slots (top: red,
orange, yellow, green, and blue).

An  almost-completed  Cody  Computer  case  badge.  Air-dry
clay was pressed into the legend and all  but the blue inlay
have been glued into place.

4. 

5. 

6. 
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POWER LED ASSEMBLY

Next we need to assemble the power LED. We're going to
solder  some  leads  to  the  LED  and  make  some  other
adjustments  so  that  it  can  be  inserted  into  the  Power  LED
holder. It may be helpful to refer to the attached photo. This
step requires the following parts and tools:

1 10mm LED (blue)
1 10cm jumper wire with .100" female connector
Electrical tape
Solder
Soldering iron
Scissors
Wire cutters
Sharpie (or other marker)

The assembly steps are as follows:

Bend the female jumper wire into two equal lengths and
secure the connector end with the tape.
Cut the jumper wire into two pieces at the bend and strip
two or three millimeters from the cut ends.
Twist and affix the wire ends onto the LED leads, marking
the wire connected to the cathode (longer lead).
Solder the wire ends to the LED leads, then trim the
excess from the soldered LED leads.
Wrap some electrical tape around the soldered portions
of the leads to prevent shorts.

• 
• 
• 
• 
• 
• 
• 
• 
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5. 
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The  power  LED  soldered  to  the  jumper  wire  and  female
connector.

CASE TOP ASSEMBLY

Once  the  case  badge  and  power  LED  are  ready,  we  can
attach them to the top of the case. In this step we'll glue the
case badge and power LED holder to the case, then place the
power LED in the holder. You'll need the following:

1 case top (CaseTop.stl)
1 LED holder (LEDHolder.stl)
1 assembled case badge
1 assembled LED with connector

• 
• 
• 
• 
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Cyanoacrylate glue

After collecting the parts proceed with the assembly:

Test-fit the power LED in the power LED holder. It should
fit without a great deal of force.
Glue the case badge into the rectangular slot on the case
top.
Glue the LED holder (without the LED) into the round slot
on the case top.
Allow the glue to dry.
Place the LED into the LED holder from the front. Don't
worry if the LED is too loose as we'll be removing it
temporarily in a following assembly step.

• 

1. 

2. 

3. 

4. 
5. 
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The case badge being glued into the case top. The LED holder
is visible in the background.
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The power LED being inserted into the LED holder from the
front.

CASE BOTTOM ASSEMBLY

In  this  step  we  assemble  the  bottom  portion  of  the  case
including the printed circuit board and keyboard brackets. This
step is  somewhat  trick  as  it  involves  lining up the  brackets,
board, and case bottom in an inverted position, then screwing
the  case  bottom  to  the  brackets.  For  this  portion  you  will
require:

1 case bottom (CaseBottom.stl)• 

228



1 left mounting bracket
(KeyboardBracketWithoutHoles.stl)
1 right mounting bracket
(KeyboardBracketWithHoles.stl)
4 M3 x 10mm self-tapping screws, round/pan head (US
#4 x 3/8")
Screwdriver

Once you have the parts collected, assemble the bottom of
the case:

Place the printed circuit board flat on a table (or other
surface) with the components facing up.
Align the right mounting bracket on to the right side of
the printed circuit board. Test the fit for the joystick and
power connectors.
Align the left mounting bracket on to the left side of the
printed circuit board.
Flip the entire assembly upside down so that the tops of
the brackets are on the table and the bottom of the board
is facing up.
Align the case bottom (upside down) to the top of the
brackets. The rear ports should align with the slots in the
back of the case and the screw holes should align with
those in the brackets.
Screw the parts together ensuring that the alignment is
not disturbed. It may help to screw in from opposite
corners to ensure the case and brackets remain aligned.

• 

• 

• 

• 
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Testing the keyboard bracket's fit with the joystick and power
connectors.
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Assembling  the  case  bottom,  printed  circuit  board,  and
keyboard brackets using screws.

INSTALLING THE KEYBOARD

Once the bottom of the Cody Computer is assembled the
keyboard module must be attached.  The keyboard module's
cable  must  be  connected  to  the  keyboard  connector  on  the
main  printed  circuit  board.  Once  the  cable  is  connected  the
keyboard  module  must  be  inserted  into  place.  This  step
requires:

1 assembled case bottom
1 assembled keyboard module

• 
• 
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Proceed with installing the keyboard as follows:

Test-fit the keyboard module ends against the slots in the
brackets. This can be done by sliding from the outside of
the brackets.
Ensure that the keyboard cable is snugly attached to the
connector on the keyboard module.
Note the wire that corresponds to pin 1 on the keyboard
module side of the conector.
Identify the matching pin 1 annotation on the main
printed circuit board.
Attach the keyboard connector to the main printed circuit
board. The cable will need to be twisted around to line up.
Ensure the keyboard connector is still snugly attached to
both connectors.
Slide the keyboard into the slots in the brackets from the
inside, first one side, then the other.
Line up the sides of the keyboard module with the sides
of the brackets.

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 
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Connecting  the  keyboard  to  the  main  printed  circuit  board.
Note the intentional twist in the cable.
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Sliding the keyboard module into the mounting slots on the
brackets. Start with one side and then slide in the other.

INSTALLING MAGNETS

The  case  is  held  together  with  a  set  of  eight  rare-earth
magnets to permit easy access.  As an educational computer,
the  intention  is  to  make  it  as  open  as  possible,  both
metaphorically  and  literally.  With  magnets  the  case  can  be
opened to show off the interior. Be careful that your magnets
are glued in with the proper orientation. If you don't the case
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won't  fit  together  correctly  because  the  magnets  will  repel
instead of attract. You'll need the following:

1 assembled case top
1 assembled case bottom
8 8mm x 2mm rare earth disc magnets (US 5/16" x
5/64")
Cyanoacrylate glue

Assembly is rather straightforward except for the warning
about ensuring the magnets are aligned. One option is to mark
each magnet with a Sharpie or other semi-permanent means.
Proceed as follows:

Temporarily remove the power LED from the case top.
Place it in a safe location.
Test-fit the magnets into their holes and the assembled
case with the magnets in place.
Mark one side of each magnet with a marker. Be sure that
you are consistent with the side you are marking or the
case will not attach correctly.
Glue four magnets into the holes in the keyboard slots
with the marked side visible, ensuring that the magnets
are fully inserted. Be careful not to get glue onto the
keyboard by accident.
Glue four magnets into the holes in the case top with the
marked side not visible. Again, ensure that the magnets
are fully inserted.
Allow the glue to dry thoroughly.

• 
• 
• 

• 
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Installing magnets into the case top. Remember that magnets
with  opposite  orientation  need to  be  installed  into  the  case
bottom as well.

Watch  out  for  the  magnets  as  they're  not  to  be
swallowed by man or beast.  If  you have issues with the
glue  holding  them  into  place,  you  may  want  to  try  a
different  adhesive.  If  this  happens,  consider  printing  an
extra part off for testing purposes.
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FINAL ASSEMBLY

Once the keyboard is connected the only remaining step is
to  attach  the  top  part  of  the  case  to  the  rest  of  the  Cody
Computer. We'll also have to connect the power LED prior to
snapping the case together.  You'll  need the two parts of the
computer:

1 assembled case top
1 assembled case bottom

The assembly steps are as follows:

Reinsert the power LED into the LED holder on the case
top. If the LED is too loose, the LED leads can be bent and
tape affixed from the bottom to hold it in place.
Connect the power LED connector to the printed circuit
board. Ensure that the wire you previously marked as the
cathode (the long LED lead) is aligned to pin 1 on the LED
connector.
Align the case top and place it onto the case bottom and
brackets, using the magnets to hold the case tight. You
may need to push on the LED and/or LED wires to ensure
a successful fit without the LED popping out.

• 
• 

1. 

2. 

3. 

237



Close-up of the connected power LED and magnets. Note the
magnets on the brackets have their marked side outward while
the magnets on the case have their marked side inward.
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The fully-assembled Cody Computer from the front. The case
is held together with magnets.

INITIAL SETUP

Now that the Cody Computer is built, it's time to plug it in
and test it out. You'll need a few last items that you may have
to get from the audiovisual section of your local store:

RCA video and audio cable (red, white, and yellow plugs)
RCA audio Y-splitter
DC power supply (from earlier steps)
Inline switch for power supply cable (recommended)
Television with NTSC composite RCA inputs

• 
• 
• 
• 
• 
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You're ready to connect the Cody Computer and power it up
for the first time:

Plug the splitter into the computer's audio port.
Plug the red and white audio cables into the splitter.
Plug the yellow cable into the computer's video port.
Plug the red, white, and yellow cables into the TV.
Plug the DC power supply cable into the inline switch.
Plug the inline switch into the computer's power jack.
Plug the DC power supply into the wall.
Turn on the television.
Flip the inline switch to turn on the Cody Computer.

1. 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
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The Cody Computer with audio,  video, and power connected.
Note the inline power switch to the right of the computer.

If all goes well, after a second or two the Cody Computer will
boot into Cody BASIC. You'll see a short welcome message, the
READY prompt, and a blinking cursor. From here you can learn
to  program  the  Cody  Computer  as  well  as  load  and  save
programs, all of which we'll be covering in the next chapters.
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On startup the Cody Computer boots into Cody BASIC.
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INTRODUCTION

Now that you have your Cody Computer set up and running,
it's time to learn how to use it. In this chapter you'll learn the
fundamentals  of  Cody  BASIC,  the  simple  programming
language  built  into  the  Cody  Computer.  Cody  BASIC  is
inspired  by  Tiny  BASIC,  a  1970s  programming  language
written  for  resource-constrained  hobbyist  computers.  It  also
has  a  lot  of  influence  from  Commodore  BASIC,  a  BASIC
originally written by Microsoft and modified by Commodore.
Cody BASIC is  a  very  simple  BASIC but  it  provides  a  good
starting point for your explorations.

This  chapter  assumes  that  you  have  at  least  some
programming background. If you don't, you can probably still
follow along,  but it  won't  be as easy.  It  doesn't  assume any
particular familiarity with BASIC dialects of the 8-bit era, which
themselves were quite different from any modern BASIC you
may have encountered.

USING THE KEYBOARD

You'll  be using the keyboard to enter commands in Cody
BASIC, so before we begin, we need to cover a little bit about
how to use the Cody Computer's keyboard and its special keys.
The keyboard is a simplified QWERTY layout with a total of 26
alphabetic  characters.  Each  key  contains  a  letter  of  the
alphabet, and most contain special characters on the top-left
and  top-right.  Pressing  the  key  by  itself  will  give  you  the
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letter, but pressing it with other special keys will give you the
special characters instead.

The  QWERTY  keys  as  an  example  of  the  Cody  Computer's
keyboard layout. Note the additional characters on the top left
and top right.

The  Cody  Computer's  keyboard  also  contains  three
additional keys used for special functions: The  Cody key, the
Meta key, and the Arrow key. These are similar to the modifier
keys on more modern computers. On the Cody Computer, they
let  you type the other special  characters just  discussed,  but
they also have some other special functions.

The Cody Computer's special keys. From left, the Cody key (a
stylized depiction of Cody's pawprint), the Meta key (depicted
as  a  hollow  square),  and  the  Arrow  key  (containing  a  left-
pointed arrow).

The  Arrow key is the simplest of the three. When pressed
by itself, it acts as a Return key and enters the current line of
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input.  In combination with other keys it  can also be used to
delete content or break out of running programs.

The  Meta key is used to make existing keys assume some
other  function.  Pressing  it  with  one  of  the  alphabetic  keys
generates the punctuation or math symbol printed on the top
right of the key. For example, if you pressed Meta followed by
Q, you would get an exclamation mark. Holding it down when
pressing Arrow deletes the character previously typed.

The Cody key is another special key. It can be used to obtain
extra  characters  or  for  system-related  functions.  When  it's
pressed with an alphabetic key, it generates the digit printed
on the key's top left. If you pressed Cody followed by Q, you
would actually get the number 1. When pressed with Arrow it
signals Cody BASIC to break out of the current program. When
pressed with Meta, it toggles the shift mode so that alphabetic
keys will be lowercase instead of uppercase (or vice-versa).

THE READ-EVAL-PRINT LOOP

Cody  BASIC  is  an  interpreted  language  as  opposed  to  a
compiled one.  You can directly interact  with Cody BASIC by
typing in statements and getting the results back.  If  you do
something that doesn't make sense to it, Cody BASIC will tell
you as  soon as  it  finds out  about  it.  You'll  interact  with  the
Cody  BASIC  interpreter  in  what's  called  a  Read-Eval-Print
Loop (REPL), where the Cody Computer reads what you typed,
attempts  to  evaluate  it,  and  prints  out  a  result  of  what
happened if relevant.
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To see this in action, start up your Cody Computer. After a
moment  you  should  see  the  welcome message  and  READY
prompt  at  the  top  of  the  screen.  This  indicates  the  Cody
Computer is ready for your commands. At the blinking cursor,
type PRINT 3 + 4. Once it's typed in, press Arrow. Cody BASIC
should print the result,  7, on the screen, followed by another
READY prompt.

Your first statement and its output.

If you encountered a syntax error, carefully review what you
typed in. Remember that when typing a line, you can use Meta
+ Arrow to delete characters. Also remember that you can use
the  Cody and  Meta keys to enter special characters such as
numbers or punctuation. In the above example, to enter 3 + 4,
you would type  Cody +  E to get a 3,  Meta +  F to get a plus
sign, and Cody + R to get a 4.

TYPING AND EDITING PROGRAMS

When you want to run more than one command at a time,
you need to type in a program. Cody BASIC has a built-in way

   **** CODY COMPUTER BASIC V1.0 ****

READY.
PRINT 3+4
7

READY.
■
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to enter programs using line numbers.  First you type in the
line number followed by the content for that line, then press
Arrow. The line is entered into the program. The cursor moves
on to the next line.

Entering a single line into the current program.

To see the current program in memory, you can use the LIST
command.  Entering  LIST and pressing  Arrow will  show each
line in the program.

Listing your simple single-line program.

Because the  program is  stored in  memory,  it  doesn't  run
when you type it in. It's waiting for you to tell Cody BASIC to
run it, which you can do by entering the RUN command.

10 PRINT "HELLO"
■

LIST
10 PRINT "HELLO"

READY.
■
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Running the single-line example program from above.

If you later want to remove a line, entering the line number
by itself (with no spaces) and pressing Arrow will delete it.

Removing line 10 from the program.

If you want to delete the entire program in memory, you can
use the NEW command instead of turning the Cody Computer
off and on. The NEW command performs a soft reset of Cody
BASIC,  clearing  out  program memory along with  associated
data and variables.

Using NEW before each new program is entered.

RUN
HELLO

READY.
■

10
LIST

READY.
■

NEW

READY.
■
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INPUT AND OUTPUT

An important part of writing computer programs is making
them  interact  with  the  user.  In  Cody  BASIC  the  PRINT and
INPUT statements handle the most common user interaction.
PRINT lets you print out information to the user, while INPUT
lets you get information from the user.

Both statements can use a variety of different types of data,
but  for  now,  we'll  begin  with  a  simple example you should
type in. Remember to run NEW first if you had already typed
other programs in.

A small program demonstrating PRINT and INPUT statements.

Line 10 prints  out  a  message asking for  the user's  name,
while line 20 prompts the user and stores the result as text in
a variable called N$. Line 30 prints out a message asking for
the user's age, while line 40 stores the result as a number in a
variable called  A.  The last line, line 50, prints out the user's
name and age in a message to the user. The semicolons are a
special  hint  to  the  PRINT statement  to  avoid  advancing  to

10 PRINT "WHAT IS YOUR NAME";
20 INPUT N$
30 PRINT "HOW OLD ARE YOU";
40 INPUT A
50 PRINT N$," IS ",A," YEARS OLD."
■
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another  line  on  the  screen,  while  the  commas  split  up  the
arguments to the PRINT statement.

If  you  run  the  program  you'll  get  something  like  the
following:

An example run of the above program.

If  you encounter  any errors,  remember that  you can  LIST
your program and check the offending line for any typos.  If
you find any, retype the line correctly and re-run the program.
A more detailed discussion of error messages is found later in
the chapter if you get stuck, but for this program, you probably
won't need it. Just make sure what you typed in matches the
program, and refer to the earlier section on typing in programs
whenever you need to.

VARIABLES, NUMBERS, AND STRINGS

Variables are used to store data in your programs.  In  the
previous input-output  example,  variables held the name (in
variable  N$)  and  age  (in  variable  A)  of  the  user.  Most
programs will use variables for a variety of purposes, so it's
important to understand them and what they can hold.

RUN
WHAT IS YOUR NAME? CODY
HOW OLD ARE YOU? 14
CODY IS 14 YEARS OLD.

READY.
■
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Variables can be one of two types, corresponding to the two
data  types  supported  by  Cody  BASIC.  Number  variables
contain numbers, while string variables contain text.  The two
cannot be directly substituted for one another in a program,
but  functions exist  to  convert  between the two types.  Other
functions also exist for special operations that pertain to each
type,  such  as  square  roots  for  numbers  or  extracting
substrings for strings.

NUMBERS AND NUMBER VARIABLES

Numbers in Cody BASIC are 16 bits and represent integers
between -32768 and 32767, inclusive. Numbers can be used in
mathematical  expressions,  such  as  addition,  subtraction,
multiplication, and division, as well as in various mathematical
functions. They are also the return type of most Cody BASIC
functions. Most data in a Cody BASIC program is likely to be
numeric in nature.

Number literals are just the number typed in, for example
10 or 1234. These values can be used just about anywhere that
a number is required.

Number  variables  are  represented by a  letter  between  A
and  Z.  Number variables are temporary storage for numeric
data  in  a  program,  and  each  can  hold  one  number  in  its
assigned memory.

Number variables in Cody BASIC are somewhat unique in
that they also act as arrays. There are a total of 128 indexes
into a number array, with each index itself a number between
0 and 127. The use of a number variable without an index is
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actually  just  a  shorthand for  the  first  element  in  the  array,
meaning that A(0) and A are actually the same variable.

An  example  type-in  program  demonstrating  numbers,
number variables, and arrays. Note how A is used as an alias
for A(0).

STRINGS AND STRING VARIABLES

Strings in Cody BASIC are text information. Each string can
consist  of  up  to  255  characters  plus  a  terminating  NULL
character,  and  internally  strings  are  represented  as  C-style
byte  arrays.  Cody BASIC  has  somewhat  limited  support  for
strings and string handling, but it does support a minimum set
of string functions suitable for most beginner-to-intermediate
programs. These functions include limited string concatenation
and substring extraction.

String  literals  consist  of  characters  contained  in  double
quotes.  For  example,  "HELLO" and  "1234" are  both  string
literals, even though the latter is a string containing numbers.

Cody BASIC also  has  26 string variables  A$ through  Z$,
each of which contains a single string. Each variable has its own

10 A(0)=10
20 A(1)=20
30 PRINT A+A(1)*3
RUN
70

READY.
■
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assigned memory and there  is  no  overlap  with  the  number
variables A through Z. String arrays are not supported.

An example type-in program demonstrating strings and string
variables.

CONTROL STATEMENTS

Cody  BASIC  has  several  statements  that  allow  you  to
change the course of a running program. Most programs need
to  be  able  to  do  this  to  respond  to  internal  or  external
situations as well as to perform processing within a running
program. The IF statement allows the program to take different
branches  based  on  conditional  expressions.  The  GOTO
statement allows the program to jump to a different line in a
program.  GOSUB and  RETURN allow  programs  to  call
subroutines  on  other  lines  and  return  back  to  the  calling
location. FOR and NEXT allow a program to loop for a defined
number of iterations, incrementing a variable as a side effect.

10 M$ = "HELLO "
20 N$ = "WORLD!"
30 PRINT M$,N$
RUN
HELLO WORLD!

READY.
■
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IF STATEMENTS

The IF statement makes a decision based on the result of an
expression.  These  statements  are  the  primary  way  of
controlling the behavior of a program based on data or user
input.  When  the  expression  is  true,  the  portion  of  the
statement after  THEN is evaluated. If not, then the remainder
of the statement is skipped entirely.  IF statements are often
combined with GOTO or GOSUB to pass control to other parts
of the program based on the results of decision criteria.

For  numeric  data,  the  expression  consists  of  numeric
expressions  on  the  left  hand  and  right  hand  sides.  The
expression also contains a relational operator that acts as the
decision-maker, with the less-than (<), greater-than (>), less-
than-or-equal  (<=),  greater-than-or-equal  (>=),  equal-to
(=), and not-equal (<>) relations supported.

Example program using if-statements and relational operators
for numbers.

10 INPUT N
20 IF N<0 THEN PRINT "NEGATIVE"
30 IF N=0 THEN PRINT "ZERO"
40 IF N>0 THEN PRINT "POSITIVE"
RUN
? 3
POSITIVE

READY.
■
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IF statements can also use strings in their expressions. The
same  relational  operators  are  used  and  comparisons  are
performed lexicographically using the CODSCII value for each
character.

Example program using if-statements with strings.

GOTO STATEMENTS

The GOTO statement behaves like a high-level version of a
jump  instruction,  moving  control  to  another  line  in  the
program  without  any  direct  possibility  of  returning.  GOTO
statements are often frowned upon in modern programming,
but they were a common technique in the early days of BASIC
programming.

10 INPUT S$
20 IF S$<"B" THEN PRINT "LESS"
30 IF S$="B" THEN PRINT "EQUAL"
40 IF S$>"B" THEN PRINT "GREATER"
RUN
? BA
GREATER

READY.
■
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A program using GOTO to skip to another line.

GOSUB AND RETURN STATEMENTS

The GOSUB and RETURN statements implement subroutine
calls in Cody BASIC. The GOSUB statement tells the program
to  call  a  subroutine  starting  at  a  specific  line  number.  The
RETURN statement tells  the program to go back to the line
after the most recent GOSUB.

Using these together allows Cody BASIC programs to have a
simple  form of  subroutines  similar  to  those  in  early  BASIC
interpreters. The statements don't support additional features
of  more  modern  languages,  such  as  parameter  passing  or
return values. Such features need to be explicitly handled by
passing data in variables.

10 PRINT "A"
20 GOTO 40
30 PRINT "B"
40 PRINT "Z"
RUN
A
Z

READY.
■
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An example of a subroutine using GOSUB and RETURN.

FOR AND NEXT STATEMENTS

The FOR and NEXT statements implement a counting loop in
Cody  BASIC.  Each  FOR statement  takes  a  number  variable
(which  can  include  an  array  index),  a  starting  number  or
expression, and an ending number or expression.

The following NEXT statement repeats the body of the FOR
loop  until  the  variable  equals  the  ending  number  from the
FOR statement.  On  each  loop,  the  value  of  the  variable  is
incremented by one.

10 PRINT "A"
20 GOSUB 50
30 PRINT "C"
40 END
50 PRINT "B"
60 RETURN
RUN
A
B
C

READY.
■
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A simple for-loop that prints out the loop variable's value.

LOADING AND SAVING PROGRAMS

You don't  always have to type in programs to load them.
Cody BASIC supports LOAD and SAVE statements for loading
existing  programs  and  saving  the  current  program.  These
commands rely on the existence of another device connected
to the Cody Computer via the Prop Plug, typically a computer
or  mobile  device  running  some  type  of  terminal  program.
BASIC  programs  are  stored  as  plain  text  files  that  can  be
transmitted and received by any terminal software that has the
appropriate features.

To load and save BASIC programs the terminal software you
use  will  need  to  support  regular  serial  communications  at
19200 baud, 8-N-1 (eight data bits, no parity bit, and 1 stop
bit), and ASCII linefeeds for the end-of-line character. When

10 FOR I=1 TO 5
20 PRINT I
30 NEXT
RUN
1
2
3
4
5

READY.
■
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transmitting files,  it  should allow for a configurable per-line
delay of up to 40 or 50 milliseconds. This final requirement is
necessary  so  that  Cody  BASIC  can  tokenize  an  incoming
program.

Loading  a  Cody  BASIC  program  from  a  Chromebook  Pixel
running Ubuntu. The Linux version of CoolTerm is used as the
terminal program.
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You should be able to use any terminal program that
meets the above requirements. I used Roger Meier's cross-
platform  CoolTerm during  development  because  it
supports all the necessary features to transmit and receive
files with Cody BASIC. For Android devices,  Kai Morich's
Serial USB Terminal is a good choice once you have the
configuration sorted out.

SAVING A PROGRAM

To save a program we'll need a program to save in the first
place. Type in the following and verify the program contents
using the LIST command.

A  boilerplate  program  to  use  for  our  saving  and  loading
example.

Once you have the program entered in, go to your terminal
program on the other computer. Using the software, save a text
file from the Prop Plug at 19200 baud, serial setting 8-N-1,
and  line  feeds  for  the  end  of  line.  The  software  should  be
waiting for you to save the program.

At this time, run the SAVE command on I/O port 1, the Prop
Plug:

10 PRINT "SAVED PROGRAM"
■
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Saving the sample program.

Once you see  the  READY prompt,  the  program has  been
sent. In your terminal software, stop receiving, then verify the
contents of the received file. You should see a two-line text file,
one  containing  the  print  statement,  and  another  completely
blank line indicating the end of  the BASIC program.  (If  you
encounter problems during this step or the next, you may want
to examine the file in more detail using a hex editor.)

Saved program from the terminal program. Note the required
blank line marking the end of the program in the saved file.

LOADING A PROGRAM

Now that you've saved a program, it's time to load it  and
verify that all is in working order. To begin, clear out program
memory  using  the  NEW command,  then  LIST the  current
program  to  verify  nothing  is  there.  The  LOAD command
replaces  the  current  program,  but  for  testing  purposes,  we
want to be sure before we proceed.

SAVE 1

READY.
■

10 PRINT "SAVED PROGRAM"
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Once you're sure there's  no program in memory,  run the
LOAD command, We're loading from I/O port 1, the Prop Plug,
in  mode  0.  Mode  0  indicates  we're  loading  a  Cody  BASIC
program, while mode 1 indicates that we're loading a binary
program, something we'll cover later.

Loading the previously-saved program.

Now that the Cody Computer is waiting for the program, go
back to your terminal  and send the program. You'll  want to
send it as a text file, again at 19200 baud and 8-N-1 with ASCII
linefeeds  as  the  end-of-line  character.  Also  remember  to
insert  a  per-line  delay,  perhaps  starting  around  40  or  50
milliseconds to be conservative.

Once the program has been received, the  LOAD command
will stop with a  READY prompt. List the program to verify its
contents, then run it.

LOAD 1,0
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Transcript of loading and verifying the sample program.

If you encounter any problems, verify the serial connection
and serial software is working correctly. Also note that the per-
line delay can be raised or lowered on a per-program basis, as
the  time required  to  parse  the  longest  line  in  the  program
depends on the line's complexity.

Cody  BASIC  actually  sends  an  ASCII  question  mark
before waiting for the next line of the incoming program.
A dedicated program or peripheral  could also check for
this as an optimization along with the normal line delay.
This would speed up the loading of Cody BASIC programs
without having an effect on anything else.

UNDERSTANDING ERROR MESSAGES

Sometimes when entering or running a program, things can
go wrong. Cody BASIC has a small set of error messages to try

READY.
LIST
10 PRINT "SAVED PROGRAM"

READY.
RUN
SAVED PROGRAM

READY.
■
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and help you diagnose the underlying problem. Cody BASIC is
patterned after Tiny BASIC and has only three error types, but
given Cody BASIC's relative simplicity, these are sufficient. The
error messages are inspired by the later Commodore BASIC,
and while they may not tell you everything, they should tell
you enough to investigate what happened.

The three error types represent syntax errors (when Cody
BASIC couldn't parse what you typed in),  logic errors (when
your program tried to do something that made no sense), and
system errors (something about the current computer's state
made it impossible to do what was asked).

Errors can occur when entering lines into the REPL or when a
program is run. If an error occurs while a program is running
the line number in the program will be included in the error
message.  If  the  error  occurs  in  REPL  mode,  there  isn't  any
associated line number, and none will be shown.

An example error message that includes a line number.

RUN

LOGIC ERROR IN 10

READY.
■
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SYNTAX ERRORS

Syntax errors occur when something you've typed in doesn't
fit  with  Cody  BASIC's  grammar.  Cody  BASIC,  like  any
programming  language,  is  defined  by  a  strict  grammar
specifying what statements and expressions are valid.  If  you
type in something that's invalid, Cody BASIC can't understand
what you mean and prints out a syntax error.

A syntax error in REPL mode resulting from invalid characters
in a PRINT statement.

LOGIC ERRORS

Logic  errors  result  when  Cody  BASIC  is  asked  to  do
something nonsensical. This can be something obvious, such as
attempting to divide by zero or specifying an invalid value for
a character or constant. It can also be something less obvious,
such as attempting to read data that doesn't exist or trying to
change  the  current  position  in  the  program  in  a  way  that
doesn't make sense.

PRINT !!!

SYNTAX ERROR

READY.
■
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A logic error in REPL mode resulting from a division by zero.

SYSTEM ERRORS

System  errors  happen  when  Cody  BASIC  isn't  able  to
perform a requested operation that's otherwise valid. This can
occur if  some of Cody BASIC's internal  data areas overflow,
making it impossible to run some of its control structures or
evaluate complex expressions. It can also happen during I/O
operations if errors are detected or if invalid data is passed to
certain functions.

A system error in a program caused by infinite recursion in a
GOSUB.

PRINT 1/0

LOGIC ERROR

READY.
■

10 GOSUB 10
RUN

SYSTEM ERROR IN 10

READY.
■
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INTRODUCTION

Now that you're familiar with some of the basics of Cody
BASIC,  it's  time  to  learn  about  its  more  advanced  features.
While "advanced" is relative and Cody BASIC is intentionally
simplified, it has a set of features consistent with many 8-bit
BASIC dialects.  It  has  support  for  minimal  mathematics  and
string  operations,  literal  data,  text  file  input  and  output,
reading and writing memory, and even the ability to call into
machine code from BASIC programs.

WORKING WITH NUMBERS

Cody  BASIC  supports  many  of  the  more  common
mathematical  operations,  although  with  some  limitations.
Numbers in Cody BASIC are integers ranging from -32768 to
32767,  so  many  mathematical  operations  are  limited  by
necessity. A handful of math functions are also implemented.
More complicated functions must be implemented by the user
either in BASIC or using machine language and calling it from
your program.

ARITHMETIC OPERATIONS

For arithmetic operations, the standard addition, subtraction,
multiplication, and division are supported. Cody BASIC obeys
the  normal  order  of  operations,  with  multiplication  and
division performed first, followed by addition and subtraction.
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Expressions that are very complex may cause Cody BASIC's
expression stack to overflow and produce a system error.

Cody BASIC follows the order of operations.

Because all numbers in Cody BASIC are integers, the result
of division will sometimes be different than you would expect.
The  result  of  a  division  is  the  integer  portion  without  any
remainder  because  fractional  or  decimal  values  aren't
supported.

Numbers  in  Cody BASIC are  integers,  so  integer  division  is
used.

Parentheses are used to group subexpressions. Expressions
in  parentheses  are  evaluated  first,  starting  with  the  most
nested  set  of  parentheses  and  working  outward.  As  with
expressions,  deeply nested parentheses can cause problems
with the interpreter, so it's best to keep expressions simple.

PRINT 4+5*6-10
24

READY.
■

PRINT 16/5
3

READY.
■
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Using nested expressions in Cody BASIC.

Negative numbers are supported by adding a leading minus
sign (known as a unary minus). The leading minus works like it
does  in  normal  arithmetic,  so  it  can  be  used  in  front  of
variables and expressions as well as in front of numbers.

An example of a leading minus sign in front of an expression.

In fact, number variables can be used just about anywhere
that  a  number  would  be  used in  Cody BASIC.  Unlike  many
BASIC dialects, both numbers and numeric expressions can be
used as the destination for GOTO and GOSUB statements.

PRINT 3*((8+2)/2)
15

READY.
■

PRINT -(1+2)
-3

READY.
■
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A program showing the use of variables in an expression.

MATHEMATICAL FUNCTIONS

Cody BASIC has a limited set of mathematical functions. The
ABS() function  returns  the  absolute  value  of  a  number.
Another function,  SQR(), returns the square root of a number
with the limitation that only the integer part  is  represented.
MOD() returns  the  modulus  (remainder  left  over  after  a
division) of two numbers.

10 A=20
20 B=2
30 PRINT -A*B
RUN
-40

READY.
■
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Examples of the ABS, SQR, and MOD functions.

The  RND() function  exists  to  generate  random  numbers
between  0  and  255.  The  function  has  two  forms,  one  that
accepts  a  number  as  the  random  seed  value,  and  a  no-
argument form that returns the next random number in the
sequence. For a given seed value the resulting sequence will
always be the same. A seed value of zero is invalid and will be
replaced with the system's default seed value.

PRINT ABS(-10)
10

READY.
PRINT SQR(10)
3

READY.
PRINT MOD(8,5)
3

READY.
■
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Using the RND function to generate pseudorandom numbers.

A  common  trick  is  to  use  the  TI time  variable  to  seed  a
random number sequence at the start of a program, discarding
the  initial  result.  The  TI variable  is  discussed  later  in  the
section on timekeeping.

Seeding the RND function with the current timekeeping value.

PRINT RND(10)
0

READY.
PRINT RND()
186

READY.
PRINT RND()
57

READY.
■

PRINT RND(TI)
52

READY.
PRINT RND()
81

READY.
■
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BITWISE FUNCTIONS

Cody BASIC also has bitwise functions that perform binary
operations  on numbers.  These work  on the raw bits  in  each
number,  which  means  it's  important  to  consider  how  the
numbers  themselves  are  stored  as  zeroes  and  ones.  NOT()
returns the negation of the bits in the number, AND() returns
the bitwise and, OR() returns the bitwise or, and XOR() returns
the bitwise exclusive-or.

A program that lets you experiment with the output of bitwise
functions.

10 INPUT A
20 INPUT B
30 PRINT "NOT ",NOT(A)
40 PRINT "AND ",AND(A,B)
50 PRINT "OR ",OR(A,B)
60 PRINT "XOR ",XOR(A,B)
RUN
? 1
? 0
-2
0
1
1

READY.
■

275



TEXT MANIPULATION AND STRINGS

Cody BASIC supports rudimentary string manipulation. Each
of the 26 string variables is a separate buffer that can store up
to 255 characters plus a terminating null character (similar to
a string in the C programming language).  A separate buffer
allows  string  concatenation  in  string  expressions,  and  a
handful of functions exist to work with string data.

STRING CONCATENATION

Strings can be concatenated together in string expressions.
Unlike mathematical expressions, string expressions are very
simple and can contain only strings, string variables, and string
functions, and the only supported operator is the addition sign
(representing string concatenation in this case).

Because  Cody  BASIC  has  minimal  string  support,  string
expressions  can  appear  in  a  limited  number  of  places.  The
most common case is in assignment to string variables where
the right hand side of the assignment is a string expression.
String  expressions  can  also  appear  as  arguments  in  PRINT
statements, where string functions are often used to print out
only portions of a string.
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An example of a string expression in an assignment.

STRING COMPARISONS

As mentioned in the previous chapter, IF statements in Cody
BASIC have a special  case that supports string comparisons.
This form is more limited and requires a string variable as the
left hand side of the comparison and a string expression as the
right hand side of the comparison. Usually the right hand side
is just a string or another string variable, but the right hand
side may be a full string expression if needed.

10 A$="HELLO"
20 B$="WORLD"
30 C$=A$+", "+B$+"!"
40 PRINT C$
RUN
HELLO, WORLD!

READY.
■
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A  contrived  example  of  using  string  concatenation  in  an  IF
statement.

FUNCTIONS IN STRING EXPRESSIONS

Cody BASIC has three string functions which may appear in
a string expression. The  SUB$() function returns a substring
from a string variable. The CHR$() function, on the other hand,
lets you build a string from one or more numbers representing
CODSCII characters. The last function, STR$(), returns a string
representation of a number. Functions that return strings are
marked by a dollar-sign ($) as their last character, similar to
Commodore BASIC.

The  SUB$() function  takes  three  parameters,  a  string
variable, a starting position within the string, and the number
of characters to extract. The first argument must always be a
string  variable  because  of  Cody  BASIC's  internal
implementation.  String literals are not supported, and string
expressions cannot be nested like mathematical expressions.

10 INPUT A$
20 INPUT B$
30 IF B$=A$+"!" THEN PRINT "MATCH"
RUN
? HELLO
? HELLO!
MATCH

READY.
■
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Printing out a substring using the STR$ function.

To generate a string from a series of character values, you
use the  CHR$() function.  Much like a secret  code,  strings in
Cody BASIC are made up of  CODSCII  characters  between 0
and  255.  (CODSCII  is  just  an  extended  ASCII  with  the
Commodore  graphical  characters  moved  into  the  extended
ASCII  range.)  You  simply  pass  one  or  more  numbers  (or
numeric expressions) to the function and it will return a string
with  the  equivalent  characters.  This  is  typically  used  for
printing control codes or graphical characters, but can be used
with any valid character code.

Converting numbers to characters using the CHR$ function.

The last  string function,  STR$(),  converts  a  number  to  its
string  equivalent.  For  example,  the  number  10 would  be

10 A$="POMERANIAN"
20 PRINT SUB$(A$,0,3)
RUN
POM

READY.
■

PRINT CHR$(67,111,100,121)
Cody
READY.

■
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converted to a string equivalent to the literal  "10".  Many of
these conversions happen automatically in  PRINT statements,
but using the STR$() function directly lets you use the result
in string expressions and assignments.

A silly example of converting a number to a string for later
use.

ADDITIONAL STRING FUNCTIONS

Cody BASIC also has some functions that work with strings
but  return  numbers.  To  parse  a  string  variable  containing  a
number, the VAL() function can be used. For finding the length
of a string, the  LEN() function is available. And for returning
the CODSCII value of a character in a string, the ASC() function
exists.

The  VAL() function  is  relatively  simple  to  use.  It  takes  a
string variable and returns the number it  was able to parse
from  the  beginning  of  the  string.  Leading  minus  signs  are
supported.  In  situations  where  there  were  no  valid  digits  to

10 INPUT N
20 S$=STR$(N)
30 PRINT S$
RUN
? 123
123

READY.
■
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parse, the function returns zero. In many respects this function
can be considered the inverse of the STR$() function.

Converting  a  string  containing  a  number  into  an  actual
number.

The  LEN() function returns the length of a string variable,
not including the terminating null character. If a stored string is
somehow corrupted or poorly-formed,  LEN() raises a system
error when the terminating null is not found.

Finding the length of a string.

The  ASC() function returns the character code for the first
character in a string variable.  If  the string is empty, the null

10 INPUT S$
20 N=VAL(S$)
30 PRINT N*2
RUN
? 10
20

READY.
■

10 INPUT S$
20 PRINT LEN(S$)
RUN
? KODACHROME
10

READY.
■

281



character  is  returned  instead.  In  many  respects  this  is  the
inverse  operation  of  the  CHR$() function,  except  that  the
ASC() function only works on the first character of the string.

Obtaining the character code for the first character in a string.

To find character codes for other than the first character, you
need to use the  STR$() function to extract a substring into a
temporary variable. The temporary variable can then be used
as the input for  ASC().  This has significantly more overhead
because of the temporary string, but in situations where it is
needed, this is the typical solution.

10 INPUT S$
20 PRINT ASC(S$)
RUN
? CARRABELLE
67

READY.
■
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Obtaining a different character code using a temporary string.

PRINT FORMATTING

Cody BASIC's PRINT statement provides ways of formatting
your  output.  The  formatting  can  be  very  simple,  such  as
moving the cursor on the screen or aligning data in columns.
More complicated formatting can include clearing the screen,
changing  the  foreground  and  background  colors  on  a  per-
character  basis,  or  using  graphical  characters  alongside  the
typical letters, digits, and punctuation marks.

PRINT statements support  output  formatting in  two ways.
One is using the special formatting functions AT() and TAB().
The other is to print special control character codes using the
CHR$() function which are later handled by the Cody BASIC
interpreter.

10 INPUT S$
20 INPUT N
30 T$=SUB$(S$,N,1)
40 PRINT ASC(T$)
RUN
? FOLKSTON
? 2
76

READY.
■
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POSITIONING THE CURSOR

The  current  cursor  position  can  be  updated  within  PRINT
statements using the AT() function. The AT function takes two
numbers as arguments, one for the new cursor column and the
other for the new cursor row. When called the current output
buffer (anything before this that hasn't been printed yet) will
be  printed  to  the  screen  and  the  cursor  moved  to  the  new
position.

Moving the cursor using the AT() function. When the program
is actually run the output will start at the top left corner of the
screen.

10 FOR I=0 TO 9
20 PRINT AT(I,I),"HELLO, WORLD!"
30 NEXT
RUN
HELLO, WORLD!
 HELLO, WORLD!
  HELLO, WORLD!
   HELLO, WORLD!
    HELLO, WORLD!
     HELLO, WORLD!
      HELLO, WORLD!
       HELLO, WORLD!
        HELLO, WORLD!
         HELLO, WORLD!

READY.
■

284



Note that the  AT() function only works when the output is
going to the screen. If  you are writing to a file over a serial
device (discussed below), cursor positioning makes no sense.

ALIGNING OUTPUT WITH TABS

In  many  programs,  particularly  those  concerned  with
displaying calculations, summaries, or reports, it  helps to be
able to align output into columns. Cody BASIC doesn't handle
every possible case, but the TAB() output function does allow
you to align output to specific columns on the screen.

The function takes only one argument, the column number
from 0 to 39. When it runs, it generates spaces in the output
buffer  until  the  next  output  position  matches  the  desired
position.  This  means  that  on  a  line-by-line  basis  you  can
ensure  the  same  information  will  be  printed  on  the  same
columns, so long as the data isn't so big that it overflows the
available space.
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Aligning output to specific columns using the TAB() function.

This function is also useful when writing to output files. As
you'll learn in the upcoming section on reading and writing to
files,  it's usually easier to store one piece of information on
each line when writing to a file. However, if you decide to store
multiple pieces of information on the same line, aligning each
piece to known columns will make it easier to split apart when
you read it back in later.

CLEARING THE SCREEN

The simplest control code clears the screen. Character code
222 will clear the screen and move the cursor back to the very
top. This can be useful to start from a known position in your

10 FOR I=1 TO 10
20 PRINT I,TAB(5),I*I,TAB(20),"MESSAGE"
30 NEXT
RUN
1    1              MESSAGE
2    4              MESSAGE
3    9              MESSAGE
4    16             MESSAGE
5    25             MESSAGE
6    36             MESSAGE
7    49             MESSAGE
8    64             MESSAGE
9    81             MESSAGE
10   100            MESSAGE

READY.
■
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Cody BASIC programs. It's also a good way to focus the user
on what you want them to see by clearing out any leftover
input or output from earlier.

Clearing the screen using the clear control code. When run in
Cody BASIC the last READY statement will appear at the top of
a new, blank screen.

SETTING THE FOREGROUND COLOR

The foreground color can be changed using character codes
between 240 and 255.  Each code maps to  one of  the Cody
Computer's  16  colors,  each  of  which  can  be  found  in  the
reference  in  the  back  of  the  manual.  To  choose  a  specific
foreground color,  just take the color's number and add it  to
240.

Printing out each foreground color using control codes.

10 PRINT CHR$(222)
RUN

READY.
■

10 FOR I=0 TO 15
20 PRINT CHR$(240+I),240+I
30 NEXT
40 PRINT CHR$(241)

RUN
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The  Cody  Computer's  foreground  colors  displayed  using
control codes.

SETTING THE BACKGROUND COLOR

The background color can be changed using character codes
between  224  and  239.  This  works  in  a  very  similar  way  to
setting  the  foreground  color  except  that  the  background  is
changed instead. Just add the color code to 224 to calculate the
appropriate character code for the new background color.
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Printing out each background color using control codes.

The  Cody  Computer's  background  colors  displayed  using
control codes.

10 FOR I=0 TO 15
20 PRINT CHR$(224+I),224+I
30 NEXT
40 PRINT CHR$(230)

RUN
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REVERSING FOREGROUND AND BACKGROUND

It'a  also  possible  to  reverse  the  current  foreground  and
background  colors.  Character  code  223  reverses  the
foreground  and  background  colors.  The  current  foreground
color will be replaced with the current background color, while
the  current  background  color  is  replaced  with  the  current
foreground color.

This is the Cody Computer's equivalent of the "reverse field"
mode  on  Commodore  computers.  The  Cody  Computer  has
unique foreground and background attributes for each screen
location and its character set doesn't contain inverted versions
of  each  character.  Instead  it  just  swaps  the  attributes
themselves.

Swapping foreground and background colors using the reverse
control code.

10 INPUT S$
20 PRINT CHR$(223),S$,CHR$(223)
RUN
? HELLO, WORLD!
HELLO, WORLD!

READY.
■
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PRINTING GRAPHICAL CHARACTERS

As  mentioned  elsewhere,  the  Cody  Computer's  CODSCII
character set is just a customized, extended ASCII. The normal
control codes, letters, digits, and punctuations are all the same
as any other ASCII or ASCII-derived character set. As you've
just learned, at the high end of the CODSCII range are control
codes that can control various output attributes on the screen.
However,  there's  one  part  of  the  CODSCII  character  set  we
haven't discussed yet.

Commodore computers used their own character set called
PETSCII,  named  after  the  Commodore  PET  computer  it  first
appeared  in.  Because  the  Commodore  PET  had  no  graphics
functionality  of  its  own,  the  designers  included  graphical
characters  that  could  be  used  to  make  pictures  and  even
games.  This  character  set  continued  on  for  the  rest  of  the
Commodore 8-bit computer line.

The Cody Computer includes the graphical PETSCII subset in
its  own  character  set  starting  at  character  128.  You  can  use
these characters  in  your  own programs and games just  like
people did in the Commodore days, and all you need to do is
include the appropriate character code for each one.
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Program that prints a table of the Cody Computer's PETSCII
subset. In the actual output the ellipsis will be replaced by a
table.

The program output showing the PETSCII subset in the Cody
Computer's CODSCII character set.

10 FOR I=0 TO 66
20 IF MOD(I,6)=0 THEN PRINT
30 PRINT 128+I," ",CHR$(128+I)," ";
40 NEXT
50 PRINT

292



FILE INPUT AND OUTPUT

Cody BASIC has the ability to read and write text files from
within  BASIC  programs.  Within  a  program,  the  OPEN and
CLOSE statements can be used to redirect the program's input
and output to one of  the Cody Computer's  two serial  ports.
From that point on,  PRINT statements write to the serial port,
while  INPUT statements  read  from  it.  A  CLOSE statement
returns back to the screen and keyboard.

Note  that  this  approach,  while  simple,  also  has  its  own
challenges.  Much  like  loading  programs,  the  user  must  be
careful that data lines aren't sent to the Cody Computer faster
than  the  BASIC  program  can  process  them.  Large  per-line
delays  may  be  necessary.  It  also  makes  no  provision  for
reading or writing binary data as only text is supported. For
binary data, dropping into machine language is recommended,
and  it  may  be  advisable  to  write  your  entire  program  in
assembly  or  another  compiled  language  if  speed  is  that
critical.

A similar strategy of reading and writing data files by
input  and  output  redirection  was  used  in  the  OSI
Challenger's  version of  Microsoft  BASIC.  In  that  system,
LOAD  and  SAVE  commands  within  a  program  directed
output  to  the  cassette,  allowing  INPUT  and  PRINT
statements to read and write from the cassette port.
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Note that when running programs that read and write files
to  the  serial  ports,  the  other  device  must  be  configured
appropriately.  The  steps  required  are  the  same  as  those
discussed in the previous chapter. The baud rate specified in
Cody  BASIC  must  match  that  configured  for  the  external
device,  the external  device must be configured for 8-N-1 (8
data bits, no parity bit, 1 stop bit), and a single ASCII linefeed
should be set as the newline character. When reading from the
device,  line delays will  be required on a  per-program basis
depending on the processing required.

WRITING TO A FILE

Writing to a file from within a Cody BASIC program requires
you to open the correct I/O device, write your data to it, and
then close the I/O device. For most purposes your I/O device
will  be  device  1,  the  serial  port  wired  to  the  Prop  Plug
connector at the back of the computer. A second serial port is
wired to pins on the expansion slot and can be used to interact
with your own projects and custom peripherals.

Opening  the  I/O  device  is  performed  by  the  OPEN
statement,  which  takes  two  arguments.  The  first  is  the  I/O
device  number  (1  or  2)  and  the  second  is  a  constant
representing one of 15 different baud rates. This constant is the
same as the value passed directly to the UART in the Propeller
and can be any number between 1 (50 baud) and 15 (19200
baud). Once the port is opened, PRINT statements will print to
the serial port until a CLOSE statement is encountered.
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A program that  writes  the names of  the space shuttles  and
number of flights to a text file.

Because  the  INPUT statement  in  Cody BASIC works  on  a
per-line basis, it's important that the data you write also be
readable  on  a  per-line  basis.  One  option,  such  as  in  this
example, is to put each unique piece of data on its own line.
The other option is to split up a line of data when read using
the  STR$() function,  though  this  brings  other  complications
with it.

10 OPEN 1,15
20 PRINT "ENTERPRISE"
30 PRINT 5
40 PRINT "COLUMBIA"
50 PRINT 28
60 PRINT "CHALLENGER"
70 PRINT 10
80 PRINT "DISCOVERY"
90 PRINT 39
100 PRINT "ATLANTIS"
110 PRINT 33
120 PRINT "ENDEAVOUR"
130 PRINT 25
140 PRINT "EOF"
150 CLOSE
160 PRINT "DONE"
RUN
DONE

READY.
■
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The data file generated by the above sample program. Note
how each piece of data is on its own line.

READING FROM A FILE

Reading from a  file  is  very  similar  to  writing to  one.  The
device must be opened using  OPEN and closed using  CLOSE.
All the same caveats about baud rates and serial modes also
apply. The main difference is that instead of writing data using
PRINT you  read  data  line  by  line  using  INPUT.  Another
difference is that, as your program is reading data, you may
need to configure a line delay on the device sending you data
so that your program can keep up.

As mentioned above, the  INPUT statement in Cody BASIC
works a little differently than in Commodore BASIC or similar.
Each input variable reads an entire line, so each piece of data
should also be on its own line in the data file. The only way
around this would be to read the line, then split out each part
of it into its own substring, something we won't tackle here.

Remember that while a device is open, both input and output
are redirected to it. That means that while you're reading from

ENTERPRISE
5
COLUMBIA
28
CHALLENGER
10
DISCOVERY
39
ATLANTIS
33
ENDEAVOUR
25
EOF
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the external device, whatever you print will be sent to it, not to
the screen.  You will  need a temporary storage area to keep
whatever counts or tallies are needed until reading is done. In
some cases this can be easy, while in other cases, designing
your temporary storage can be difficult given the constraints
of Cody BASIC.

A  program  that  reads  the  space  shuttle  data  file  from  the
previous example.  As a  simple example,  a  string is  used to
collect the output until processing is complete. Note the check
for a special  end token to determine the end of the file.  (A
blank line is another good option.)

10 OPEN 1,15
20 INPUT S$
30 IF S$="EOF" THEN GOTO 70
40 INPUT N
50 O$=O$+S$+" ("+STR$(N)+")"+CHR$(10)
60 GOTO 20
70 CLOSE
80 PRINT O$
RUN
ENTERPRISE (5)
COLUMBIA (28)
CHALLENGER (10)
DISCOVERY (39)
ATLANTIS (33)
ENDEAVOUR (25)

READY.
■
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Even when input and output have been redirected to a
serial  port,  the  INPUT statement  still  sends  an  ASCII
question mark before waiting for the next line. Just like we
discussed in the last  chapter about loading programs,  a
terminal program or other application that recognizes this
could send the next line as soon as it's asked for rather
than  waiting  for  a  delay  on  each  line.  This  would  help
speed up the loading of data files over serial connections.

INCLUDING DATA IN PROGRAMS

Another  way  to  use  data  in  a  Cody  BASIC  program  is
hardcode it  using  DATA statements.  Like Commodore BASIC
and many other Microsoft BASIC dialects, Cody BASIC lets you
add data  in  DATA statements  and read it  later  using  READ
statements.  Unlike  other  BASICs,  however,  Cody  BASIC
requires  that  all  data  be  numeric  in  nature.  Strings  are  not
supported.

The data is read using READ statements. A READ statement
takes one or more number variables as arguments and fetches
the next entries from DATA statements, starting at the top of
the program. If no more data exists, a logic error is raised to
indicate an out of data condition.

DATA statements can be placed anywhere in the program. If
one is encountered by the program, it is ignored. Only  READ
statements use DATA statements.
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To reread data starting from the beginning of the program,
the RESTORE statement can be used.

Calculating  totals  and  averages  from  numbers  in  DATA
statements. A negative number is used as a sentinel value to
stop processing.

DATA and READ statements can be very helpful in programs
that  contain  a  lot  of  raw  data  or  data  tables.  Games  are  a
classic  example  as  they  contain  sequences  of  bytes
representing the game's sprites, tiles, backgrounds, and more.
If a program needs to use portions of machine code to speed
up  operations  or  perform  special  operations,  storing  the
assembled code in  DATA statements is also common. Lastly,
programs  with  mathematical  computations  can  use  DATA
statements to store lookup tables for part of their calculations.

10 READ I
20 IF I<0 THEN GOTO 60
30 T=T+I
40 C=C+1
50 GOTO 10
60 PRINT "TOTAL ",T
70 PRINT "COUNT ",C
80 PRINT "AVERAGE ",T/C
90 DATA 3,10,12,7,6
100 DATA 3,15,8,2,-1
RUN
TOTAL 66
COUNT 9
AVERAGE 7

READY.
■
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Consider, for example, a program that estimates model rocket
flights using tables of rocket engine data.

TIMEKEEPING

Cody BASIC has a limited form of timekeeping using the TI
variable.  More of  a  pseudovariable,  TI stores the number of
jiffies since the computer powered on. The value starts at zero,
counts up through the positive numbers, wraps around through
the negative numbers, and repeats. A single jiffy is 1/60th of a
second, so the full range of  TI is a little over 18 minutes. For
longer time periods you can check in on the  TI variable and
update a seconds or minutes counter accordingly.

Using  TI is  preferable  to  hardcoded delays from loops in
your  Cody  BASIC  programs.  However,  direct  comparisons
between two values are not meaningful because  TI will  loop
around through both positive and negative values. Instead, you
must subtract the current value of TI from your previous value,
then compare the difference. Because of the nature of signed
arithmetic  and  modular  arithmetic,  this  will  calculate  the
correct difference in jiffies.
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Sample  program  that  waits  for  a  given  number  of  seconds
before  stopping.  Note  the  conversion  of  the  delay  from
seconds  to  jiffies  (multiplying by 60),  as  well  as  the  inline
calculation subtracting the current TI from the initial value.

READING AND WRITING MEMORY

While  Cody  BASIC  is  more  high-level  than  assembly
language, it's still  very low-level compared to most modern
languages.  In  the  8-bit  era,  interpreted  BASICs  commonly
manipulated hardware directly, generally through reading and
writing  to  memory.  Communication  with  support  chips  and
peripherals  often  occurred  by  direct  reads  and  writes  to
registers,  and  passing  data  to  machine  language  routines
required similar access to reserved memory locations.

Cody BASIC, like most BASICs, provides the POKE statement
to write to memory and the PEEK statement to read from it. It's
important to be careful when using these parts of Cody BASIC
as  you  can  easily  freeze  up  the  Cody  Computer  or  worse.
However, once you understand how they work and learn the
Cody  Computer's  memory  map,  most  of  the  computer's

10 INPUT D
20 D=D*60
30 I=TI
40 IF TI-I<D THEN GOTO 40
RUN

READY.
■
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features will be open to you from BASIC alone. While many
programs at this level are better written in assembly language,
BASIC provides a solid foundation to begin from.

It's  worth  noting  that  the  65C02's  address  space  ranges
from 0 to 65535 because its address bus is 16 bits wide. Cody
BASIC numbers are also 16 bits, but they are signed numbers,
not  unsigned,  and  they  range  from  -32768  to  32767.
Fortunately,  Cody  BASIC  automatically  parses  unsigned
number literals as the equivalent signed value, so you won't
have  a  problem  working  with  memory  addresses  in  Cody
BASIC. For example, you can type 50176 (the default start of
screen memory) directly into your program and have it work.
However, if you print the number out, Cody BASIC will print
-15360, the signed number equivalent for the same bit pattern
as 50176.

WRITING TO MEMORY

The  POKE statement  writes  to  memory.  It  takes  two
arguments,  a  memory  address  and  a  value  to  write  to  that
address.  The  address  can  be  anything  within  the  65C02's
address  space,  ranging  from  0  to  65535  (or  the  signed-
number equivalent as discussed above). The value written to
that address should be a byte from 0 to 255.
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Program that  directly writes to screen and color memory to
draw graphical  characters in a variety of colors.  Exactly why
this  works  is  discussed  in  the  chapter  on  graphics
programming.

A  POKE statement  won't  work  correctly  in  memory areas
that are read-only on the Cody Computer. The top 8 kilobytes
of the Cody Computer's memory are essentially a ROM with
Cody BASIC and the default character set, and these can't be
modified by writing to  them.  Some registers  are  also  read-
only.

READING MEMORY

The  PEEK() function reads a memory address. It takes one
argument, a memory address just like those used in the POKE
statement. It returns the byte at that address in memory as a
number between 0 and 255.

10 S=50176
20 C=55296
30 FOR I=0 TO 999
40 POKE S+I,128+MOD(RND(),32)
50 POKE C+I,RND()
60 NEXT
RUN

READY.
■
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Program that reads a memory location representing the first
keyboard row. The memory location is automatically updated
by a keyboard scanning routine in Cody BASIC. Your program
can read the memory location and determine what keys are
held down at the moment.

PEEK() functions  aren't  dangerous  like  POKE statements
because they don't change the contents of memory. However,
it's still important to understand the memory map and use the
correct  addresses.  Otherwise your programs might  not  work
correctly, and at such a low level, it can be difficult to debug
them.

USING MACHINE CODE

High-performance programs for the Cody Computer should
probably  be  written  in  assembly  language  and  loaded  as
binary programs. However, it's possible to include some of the
benefits of assembly language in your Cody BASIC programs.
To  do  this,  you  write  small  portions  of  assembly  language

10 PRINT "PRESS Q TO QUIT..."
20 IF AND(PEEK(16),1)=1 THEN GOTO 10
30 PRINT "Q PRESSED"
RUN
PRESS Q TO QUIT...
PRESS Q TO QUIT...
PRESS Q TO QUIT...
Q PRESSED.

READY.
■
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(either using an assembler or by hand), then load the machine
code into memory as part of your program.

When you  want  to  call  the  machine  code,  you  use  Cody
BASIC's SYS command, which temporarily passes control to a
machine-language  subroutine  of  your  choosing.  It  even
handles swapping the 65C02's accmulator, X, and Y registers
in and out of special memory locations so you can use them in
your code.

This  topic  is  difficult  enough  that  it's  worth  a  detailed
walkthrough. For a very simple example,  imagine we want a
machine code routine that takes the values in the accumulator,
X register, and Y register, then increments each by one before
returning  to  BASIC.  First  we  need  to  write  the  assembly
language routine that would do this for us.  (Our example is
simple  enough  to  assemble  by  hand,  but  an  assembler  is
recommended for more advanced ones.)

A  snippet  of  65C02  assembly  that  increments  the
accumulator, X, and Y registers.

Once we have the assembly language code, we need to load
it  into  a  memory  location  that's  otherwise  not  in  use.
Somewhere very high in BASIC program memory or another
free  spot  in  the  memory  map  are  ideal.  We  include  the
numbers  for  our  assembled  machine  code  in  one  or  more
DATA statements, using  READ to get each byte and  POKE to
load it into memory starting at that address.

  INC A       ; $1A (decimal 26)
  INX         ; $E8 (decimal 232)
  INY         ; $C8 (decimal 200)
  RTS         ; $60 (decimal 96)
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To actually call the code, we would use the SYS statement. It
takes  only  one  argument,  the  address  to  call.  It  calls  that
address using the 65C02's JSR instruction and returns back to
your  program  once  your  machine  code  executes  an  RTS
instruction.

You can pass parameters back and forth to your machine
code from Cody BASIC using  POKE and  PEEK to  addresses
used  by  the  machine  code  routine.  However,  SYS also  has
another way to do much of this for you. It copies the values at
the first three memory locations, $00 through $02, into the
accumulator,  X  register,  and  Y  register  before  calling  your
machine code. When done, it copies the current values of those
registers back to those same memory locations.  Your BASIC
program  only  needs  to  POKE values  into  those  addresses
before the call,  then  PEEK them to get  the results  after  it's
done.
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Using the above machine code in a Cody BASIC program. The
instructions  are  poked  into  memory,  user-entered  data  is
moved  into  designated  memory  locations,  and  the  routine
called using the SYS statement. When done the updated data
is read back and displayed.

Using machine code from within a Cody BASIC program isn't
an easy thing to do, but in certain situations, it can be quite

10 P=25856
20 READ B
30 IF B<0 THEN GOTO 70
40 POKE P+I,B
50 I=I+1
60 GOTO 20
70 INPUT A
80 INPUT X
90 INPUT Y
100 POKE 0,A
110 POKE 1,X
120 POKE 2,Y
130 SYS P
140 PRINT "A=",PEEK(0)
150 PRINT "X=",PEEK(1)
160 PRINT "Y=",PEEK(2)
170 DATA 26,232,200,96,-1
RUN
? 1
? 4
? 9
A=2
X=5
Y=10

READY.
■
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beneficial. Effectively doing so requires a good understanding
not only of Cody BASIC but of the Cody Computer's memory
map and of 65C02 assembly language itself.

If  you  find  yourself  using  this  approach,  it  might  be
worth asking yourself if you're better off just writing the
entire program in assembly or a compiled language. On
the  other  hand,  some BASIC  programs in  the  8-bit  era
took advantage of similar features. The most critical parts
of the code were written in assembly language, but most
of the program was written in BASIC.

PROGRAMMING HINTS

Along  with  all  the  details  involved  in  Cody  BASIC
programming, it's important to be aware of some of the other
important aspects when writing your programs. Many of these
are  less  technical,  but  no  less  important.  You  want  your
programs  to  be  understandable  both  for  yourself  and  for
others. You also want your programs to be easily changeable
as your requirements change, or if someone else uses one of
your  programs  and  needs  to  modify  it.  These  skills  are
generally  the  same  as  in  any  programming  language,  but
Cody BASIC's quirks add some additional things to consider.
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DOCUMENTING YOUR PROGRAMS

In your program you should make use of  REM,  or remark,
statements.  These  are  the  8-bit  BASIC  equivalent  of  code
comments  and  were  used  to  document  programs.  Programs
often started with remarks about the name of the program, its
author, and a description of what it did. In the program itself,
remarks often marked different sections or routines within the
program.  They  were  also  added  to  provide  some additional
information on particularly complicated parts.

Unlike  comments  in  modern  compiled  languages,  REM
statements take up space in the interpreter, have to be loaded
and  saved,  and  also  have  to  be  skipped  over  at  runtime.
Therefore,  while they're a no-op,  they don't  come without a
cost. That said, it's good to document your programs.

Many programs were shared in books or magazine articles
that  provided  the  main  documentation  for  both  users  and
programmers (in that era,  more often than not one and the
same). In today's world it might be helpful to include a text
file, a Markdown document, or even a simple HTML file with
your programs. 

USING LINE NUMBERS

Along with  documenting your  programs,  it's  important  to
structure them so that they're easy to read and modify. While
that's  harder  in  an  environment  like  Cody  BASIC,  it's  not
impossible. Because Cody BASIC, like most retro basics, has a
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line-oriented  editing  system,  much  of  your  structure  will
relate to the line numbering you use.

One tactic for maintainable programs is to be generous with
your use of  line numbers.  For example,  numbering lines by
multiples of 10 gives you additional room to go back and make
changes without having to renumber an entire program. It also
gives  someone  else  the  ability  to  experiment  and  make
changes more easily.

It can also be helpful to have gaps between line numbering
in unrelated parts of the program. Doing this along with REM
statements  at  the  beginning  can  help  show  where  your
subroutines begin and end, as well as what they do.

You also  have  the  option  to  cheat  and use  a  modern  PC.
Cody  BASIC  programs  are  stored  as  plain  text,  unlike
Commodore  BASIC  programs that  were  kept  in  a  tokenized
format.  They're  also  written  in  extended  ASCII  with  the
important  non-graphical  characters  understood  by  any
modern computer. This means you can load saved Cody BASIC
files in any text editor that won't mangle the file's encoding or
line endings, make changes, and send them along. You can also
write  programs from scratch  in  a  text  editor  and then send
them over to the Cody Computer just like any saved program.
You just need to be careful about line endings. You also must
ensure that your programs end with a blank line indicating the
end of the file.
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AN EXAMPLE PROGRAM

Below  is  an  example  program  using  some  of  the  above
advice.  It's  a  very  contrived  example  that  only  adds  two
numbers  together,  and  in  real  life,  such  a  simple  program
wouldn't  need  nearly  so  much  boilerplate.  The  example  is
intentionally simple to demonstrate how the techniques above
might  be used in  a  larger  program,  without  having to wade
through the code of a larger and more complex program itself.
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An admittedly overengineered program demonstrating some
of the techniques in this section. Note the REM statements, line
numbering, and spacing of subroutines.

10 REM ADDITION BY FJ MILENS III
20 GOSUB 1000
30 GOSUB 2000
40 GOSUB 3000
50 END
1000 REM GET 1ST NUMBER
1010 PRINT "1ST NUMBER";
1020 INPUT A
1030 RETURN
2000 REM GET 2ND NUMBER
2010 PRINT "2ND NUMBER";
2020 INPUT B
2030 RETURN
3000 REM CALC AND PRINT ANSWER
3010 C=A+B
3020 PRINT "THE SUM IS ",C,"."
3030 RETURN
RUN
1ST NUMBER? 6
2ND NUMBER? 5
THE SUM IS 11.

READY.
■
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INTRODUCTION

The  Cody  Computer  is  equipped  with  its  own system for
generating video graphics, the VID or Video Interface Device.
Implemented  as  a  software  peripheral  inside  the  Parallax
Propeller chip, it presents itself as hardware on the 65C02's
system  bus.  Writing  to  dedicated  registers  and  memory
regions allows you to construct 8-bit mulitcolor graphics.

The VID produces a character-based screen with a resolution
of 160 pixels by 200 pixels. Each character is four pixels by
eight pixels in size, using a fat-pixel ratio similar to that used
by the Commodore 64's multicolor graphics mode. Up to 256
different characters can exist within a single character set, and
multiple character sets can be used on different parts of the
screen.  A  bitmapped  mode  is  available  that  essentially
configures  all  of  screen  memory  to  become  addressible  in
character-like tiles. Screen contents can also be fine-scrolled
in hardware by setting appropriate values.

Sprites are also supported by the VID, allowing you to have
multicolor graphics that hover over the normal screen. These
are 12 pixels across and 21 pixels tall, and each also has a fat-
pixel  ratio.  The  memory  layout  is  very  similar  to  the
Commodore 64's multicolor sprites except that the colors are
less  constrained.  The  Cody  Computer's  VID  doesn't  support
other  sprite  features  like  scaling  or  collision  detection.  It's
there to move sprites around and draw them.

The VID supports 16 colors inspired by the Commodore 64's
color palette. These colors can be used on the screen and on
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sprites,  though are there are some limitations in  how many
colors can be used together. Characters on the screen have two
unique colors  and two colors  shared with  the  entire  screen,
while sprites have two unique colors and one color shared with
other sprites.

Lastly,  the  VID  allows  you  to  change  graphics  on  the  fly
using what are called row effects. Similar to old-school raster
interrupts,  where video options were switched out at specific
character  rows  on  the  screen,  you  can  program  the  VID  to
change sprite banks, character banks, scroll amounts, and even
the colors on each character row as it draws a frame. Further
intervention by the programmer is not required.

CHANGING THE BORDER COLOR

A good introduction  to  graphics  programming is  learning
how to change the Cody Computer's border color. The border
can be set to any of the sixteen colors supported by the Cody
Computer. To change it, all you have to do is update the low
four  bits  of  the  color  register  located  at  position  $D002 in
memory.

The high four bits of the color register contain the position of
color memory, something we don't want to change right now.
Instead, what we have to do is read the current value of the
color register,  mask out the low four bits with an  AND,  and
then OR them together with our desired color code.

This  can be done from assembly language,  but  the  Cody
BASIC  PEEK and  POKE will  let  us  directly  read  and  write
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memory. We just need to use the correct address, 53250, the
decimal equivalent of $D002.

Simple program that changes the border color. The user types
in a number which is put into the low four bits of the color
register. Entering 7 will return the screen to its normal yellow
border.

WORKING WITH SCREEN MEMORY

Now that you know how to change the border color using
PEEKs and  POKEs, we'll start using those same operations to
change the screen contents themselves. The Cody Computer's
screen  is  set  up  as  a  range  of  1000  bytes,  each  of  which
represents a single character on a 40 column by 25 row screen.
You can change the screen contents by changing the contents
of memory in this region, and in fact that's what Cody BASIC
does internally to display text.

10 PRINT "BORDER COLOR (0-15)";
20 INPUT C
30 IF C<0 THEN END
40 POKE 53250,OR(AND(PEEK(53250),240),C)
50 GOTO 10
RUN
0
1
2
-1

READY.
■
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UPDATING SCREEN MEMORY

As a simple example,  we can fill  the screen with data.  By
default the screen starts at memory address $C400 or decimal
50176. If we populate the 1000 bytes starting at that location
with numbers corresponding to CODSCII characters, we'll see
them show up on the screen. Each number references a single
character in the character set, so the number we POKE will be
the character that we see.

Directly populating screen memory. Each  POKE writes one of
the  lowercase  characters  in  the  CODSCII  character  set  to  a
position  in  screen  memory.  When  run,  the  program  will
overwrite the screen with lowercase letters.

RELOCATING SCREEN MEMORY

The default screen starts at $C400, but it's possible to move
the screen elsewhere,  a  capability  often used in  games and
other  graphics-intensive  applications.  Theoretically,  screen
memory can exist anywhere in a 16-kilobyte area of memory
starting at memory address  $A000,  with the restriction that
the memory must be on a 1-kilobyte boundary.

However,  in  practice  we  have  to  avoid  certain  parts  of
memory.  The  VID  itself  uses  a  page  at  $D000 for  its  own

10 FOR I=0 TO 999
20 POKE 50176+I,97+MOD(I,26)
30 NEXT
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register banks. The SID and UARTs take up a page at  $D400.
Memory  must  also  be  set  aside  for  color  memory  and
character memory, two video-related topics we'll get to in this
chapter. When using such techniques in your own programs,
begin with the Cody Computer's memory map and sketch out
where you want things to be placed.

Setting up another region to use as screen memory is just
like  the  previous  example.  You  just  need  to  write  the
appropriate bytes to reference the characters that should be
drawn. However, once you've done that, you still need to tell
the Cody Computer where it lives. The base register at $D003
sets the starting location of both character memory and screen
memory, with screen memory stored in the high four bits.

To determine what value to plug into the high four bits, you
need to do a simple math calculation. Four bits can contain one
of 16 values, which is convenient because a 16-kilobyte area of
memory  can  contain  16  regions  aligned  at  1-kilobyte
boundaries (just what we have). Just subtract the start of your
desired screen memory location from  $A000, then divide by
1024  to  get  the  result.  If  your  screen  memory  started  at
$A000 you  would  use  a  value  of  0  because  you're  in  the
initial  1-kilobyte  region.  For  the  default  screen  memory
location at $C400, you would use a value of 9.
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Temporarily  relocating  screen  memory.  Another  region  in
memory is specified and its base calculated. That same region
is populated with lowercase letters. The base register is then
updated with the new screen memory base, the program waits
for five seconds, and then sets the screen memory base back to
the default.

WORKING WITH COLOR MEMORY

Screen  memory  specifies  what  characters  to  draw  on  the
screen, but color memory specifies what colors to draw them
in.  Characters  on  the  Cody  Computer  can  have  up  to  four
colors,  two  of  which  can  be  unique  for  each  column-row
position on the screen. These two colors are loaded from the
corresponding color memory for the screen.

Much  like  screen  memory,  color  memory  is  a  contiguous
array  of  1000  bytes,  and  there  is  a  one-to-one
correspondence  between screen memory and color  memory
locations. Cody BASIC updates color memory locations for you

10 A=41984
20 B=(A-40960)/1024
30 FOR I=0 TO 999
40 POKE A+I,97+MOD(I,26)
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),15),B*16)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),15),9*16)
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in PRINT statements, but you can also do so by yourself using
POKEs.

UPDATING COLOR MEMORY

Color  memory  begins  by  default  at  address  $D800 or
decimal  55296.  Much  like  for  screen  memory,  we  need  to
POKE data into this region to see the contents of the screen
change.  In  this  case,  instead  of  poking  in  numbers  for
characters, we poke in numbers that represent the foreground
and  background  colors  for  each  character.  The  foreground
color code goes into the top four bits of the number and the
background color code goes into the bottom four bits.

Program  that  updates  the  default  color  memory  with  new
foreground and background colors.

10 A=55296
20 PRINT "FOREGROUND COLOR (0-15)";
30 INPUT F
40 PRINT "BACKGROUND COLOR (0-15)";
50 INPUT B
60 C=F*16+B
70 FOR I=0 TO 999
80 POKE A+I,C
90 NEXT
RUN
FOREGROUND COLOR? 13
BACKGROUND COLOR? 0

READY.
■

320



RELOCATING COLOR MEMORY

Just like screen memory, color memory can be moved to a
different  location.  As  with  screen  memory,  the  region  of
memory starting at  $A000 is divided into 1-kilobyte blocks,
and the same caveats and restrictions on their use apply here
as well.  To calculate the base for a particular color memory
location,  you  can  use  the  same  formula  that  you  used  for
screen memory in the prior section.

Once you've decided on a new location for color memory,
you need to update the color register at  $D002. You updated
the low four bits of this register to change the border color at
the beginning of this chapter, but now you'll update the high
four bits to specify the base location for color memory.
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Program  that  temporarily  relocates  color  memory  to  a
different location. A second color memory region is set up with
the  colors  selected  by  the  user.  The  color  register  is  then
temporarily  updated  to  point  to  the  new  region  before
returning back to the default location.

CHARACTERS AND CHARACTER
MEMORY

Screen memory specifies what characters to draw and color
memory specifies what colors to draw them in, but character
memory specifies what the characters themselves look like. A

10 PRINT "FOREGROUND COLOR (0-15)";
20 INPUT F
30 PRINT "BACKGROUND COLOR (0-15)";
40 INPUT B
50 C=F*16+B
60 A=41984
70 B=(A-40960)/1024
80 FOR I=0 TO 999
90 POKE A+I,C
100 NEXT
110 POKE 53250,OR(AND(PEEK(53250),15),B*16)
120 T=TI
130 IF TI-T<300 THEN GOTO 130
140 POKE 53250,OR(AND(PEEK(53250),15),14*16)
RUN
FOREGROUND COLOR? 15
BACKGROUND COLOR? 12

READY.
■
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character  set  on  the  Cody  Computer  consists  of  up  to  255
unique characters, each of which is four pixels across and eight
pixels tall.

CHARACTERS IN ROM

The  Cody  Computer  contains  the  full  default  CODSCII
character  set  in  a  2-kilobyte  area  of  memory  starting  at
$E000 or decimal 57344. When the computer starts up, the
BASIC ROM copies this character set into memory at  $C800,
where it can be seen by the Video Interface Device and used to
draw  the  screen.  You  can  always  access  these  characters
yourself to see what data they contain in numeric format.

323



A Cody BASIC program that reads a character's bytes from the
character ROM.

This means that in your own programs, you don't have to
worry  about  clobbering  the  existing  characters  in  video
memory,  or  preserving  them  somewhere  else.  You  can  just
modify  or  overwrite  them,  and  then  copy  the  original
characters from the ROM back to video memory to clean up.

10 INPUT S$
20 C=ASC(S$)
30 A=57344+C*8
40 FOR I=0 TO 7
50 PRINT PEEK(A+I)
60 NEXT
RUN
? A
0
4
17
17
21
17
17
17

READY.
■
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A  program  that  copies  the  lowercase  characters  over  the
uppercase characters,  temporarily  making everything on the
screen lowercase. When done it copies the original uppercase
characters from ROM back into video memory. Note that this
isn't changing the screen memory contents at all. Instead, it's
changing the characters themselves.

CUSTOM CHARACTERS

As mentioned,  characters  on  the  Cody Computer  actually
have four colors. Two of the colors, 0 and 1, are unique to each
character position on the screen.  Those colors are read from
the color  memory you learned about  earlier.  The  other  two
colors, 2 and 3, are shared as common colors by every location
on the screen.

The shared colors are kept in the screen colors register at
location $D005 or decimal 53253 and have a similar format to

10 S=51200+97*8
20 D=51200+65*8
30 FOR I=0 TO 207
40 POKE D+I,PEEK(S+I)
50 NEXT
60 T=TI
70 IF TI-T<300 THEN GOTO 70
80 S=57344+65*8
90 D=51200+65*8
100 FOR I=0 TO 207
110 POKE D+I,PEEK(S+I)
120 NEXT
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color memory. Color 2 is stored in the low four bits and color 3
is stored in the high four bits of the register.

You  don't  notice  these  colors  when  the  Cody  Computer
starts up because the default character set only uses colors 0
and 1, the two colors that are unique to a given screen position.
This works nicely for the character set as we can specify the
foreground  and  background  colors  independently  for  each
position on the screen. However, in more graphical applications
such as games, it helps to have more colors.

To use them, you have to define your own characters. Each
character consists of eight bytes, with each pixel in a character
represented by two bits. Bit combinations 00 and 01 reference
the two screen colors at that location, while bit combinations 10
and 11 reference the common colors in the screen register. Each
character is four pixels wide and eight pixels high, and the data
in character memory is stored from the top of the character to
the bottom.  Within each byte,  the pixel  data  goes from the
leftmost pixel in the two highest bits to the rightmost pixel in
the two lowest bits.

To  design  your  own  character  you  work  out  the  bit
combinations for your own 4-by-8 pixel pattern, then  POKE
that data somewhere in the current character set.  Remember
that  characters don't  actually have to be characters as such.
They can be any kind of image, including tiles for games or
portions of a background picture. You can even use different
character  sets  on  different  screen  rows  if  you  need  more
unique characters (for example, using one character set for the
user interface and another for the game world itself). This can
even be a substitute for bitmap graphics if used wisely.

326



Example program that defines a new character that consists of
four colored blocks, then fills the screen with it. Two of the new
character's colors are unique to the character itself and stored
in  the  color  memory.  The  other  two  are  shared  by  all  the
characters on the screen and are stored in the screen colors
register.

RELOCATING CHARACTER MEMORY

Like screen memory and color memory, character memory
can  be  relocated.  Like  screen  memory,  the  base  location  of
character memory is specified in the base register at $D003 or
decimal 53251. The base for character memory is stored in the
low four bits of the register,  and the base can be calculated
similar to that for screen and color memory: Subtract the base
address from $A000 or decimal 40960, then divide by 2048
in  this  case.  Character  sets  take  2  kilobytes  and  must  be
aligned  on  a  2048-byte  boundary,  unlike  screen  and  color
memory that take 1000 bytes and must be aligned on a 1024-
byte boundary.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 POKE 53253,1
100 DATA 80,80,80,80,250,250,250,250
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A program that fills another 2-kilobyte region of memory with
test  patterns,  then  temporarily  points  the  base  of  character
memory to it. In a real application the character data would be
a new character set, game tiles, or similar. Note the 2-kilobyte
alignment of the character set's start address and division by
2048 for calculating the base.

Relocating character memory becomes very important when
used in combination with row effects, which we'll cover later in
this chapter. Row effects let you specify a different base for the
character set on each character row, allowing you to switch out
character sets within a single video frame.

This  technique can be used for  video games,  for  example
using  different  character  sets  for  the  main  game  area  as
opposed to the surrounding graphics and status displays. It's
also  how  the  Cody  Computer  can  display  fully-bitmapped
graphics by breaking a bitmap into a series of tiles.

10 A=40960
20 B=(A-40960)/2048
30 FOR I=0 TO 2047
40 POKE A+I,MOD(I,2)*85
50 NEXT
60 POKE 53251,OR(AND(PEEK(53251),240),B)
70 T=TI
80 IF TI-T<300 THEN GOTO 80
90 POKE 53251,OR(AND(PEEK(53251),240),5)
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WAITING FOR BLANKING

In this section you've been making a lot of changes to the
Cody  Computer's  video  registers.  One  thing  we  haven't
discussed yet is what happens if you make changes when the
video hardware is in the middle of drawing a frame. The answer
is  that  while  it  won't  break anything,  there's  the chance for
screen tearing,  jerky motion,  and other weird visual  glitches
popping up in the middle of a frame.

One way to  avoid  those  problems is  to  update  the  video
registers and the active video memory only when the video
device  isn't  generating  a  frame.  The  blanking  register  at
$D000, or decimal 53248, indicates the current state. A zero
indicates  that  the visible  area of  the screen is  being drawn,
while a 1 indicates that the blanking area or top and bottom
borders are being drawn instead.

A common technique is to poll the blanking register until it
transitions from a 0 to 1, then perform any required updates
for  the  next  frame.  This  usually  works  better  in  assembly
language because of its increased speed, but we can still use
the same approach in Cody BASIC as an example.
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A  program  that  prints  a  message  whenever  a  new  frame
begins, then waits for it to end before repeating. The program
will run forever until you break using the  Cody + Arrow key
combination. Note that the program likely won't print on every
frame in reality because of the time required for Cody BASIC
to execute each line.

SCROLLING THE SCREEN

The  Cody  Computer's  Video  Interface  Device  also  has
features  to  support  vertical  and  horizontal  scrolling  with
hardware assistance. Two types of scrolling exist with different
levels of support. One type of scrolling, fine scrolling, allows
you to adjust the vertical and horizontal position up to a full
column or row. Once you've adjusted it up to that level, you
need  to  use  coarse  scrolling,  where  scrolling  occurs  at  a
column or row basis. Fine scrolling is supported by the scroll

10 IF PEEK(53248)=0 THEN GOTO 10
20 PRINT "NEW FRAME"
30 IF PEEK(53248)=1 THEN GOTO 30
40 GOTO 10
RUN
NEW FRAME
NEW FRAME
NEW FRAME
NEW FRAME
BREAK IN 10

READY.
■
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register,  while  coarse  scrolling  is  usually  implemented as  a
side effect of relocating screen memory.

FINE SCROLLING WITH REGISTERS

Two different  registers  are  involved  in  fine  scrolling.  Fine
scrolling  is  enabled  using  the  control  register  at  $D001 or
decimal 53249. When set to a 1, bit 1 enables vertical scrolling
and bit 2 enables horizontal scrolling. Vertical and horizontal
scrolling can be enabled individually or at the same time.

Enabling  scrolling  affects  the  screen  dimensions.  Vertical
scrolling decreases the displayed vertical screen size by one
row. Horizontal scrolling on decreases the displayed horizontal
screen  size  by  two  columns.  The  actual  screen  and  color
memory layout are unaffected but the space on the screen is
replaced by expanded borders.

Once scrolling has been enabled for a particular direction,
the amount to scroll must be specified in the scroll register at
$D004 or  decimal  53252.  The  horizontal  scroll  amount  is
stored in the higher four bits while the vertical scroll amount is
stored in the lower four bits.  Horizontal scrolling supports a
value between 0 and 3 while vertical scrolling supports a value
between  0  and  7.  The  difference  occurs  because  pixels  are
wider than they are tall on the Cody Computer, much like how
a character has 4 horizontal pixels but 8 vertical pixels.
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A  program  that  lets  you  experiment  with  vertical  and
horizontal scrolling at the same time. The code accepts vertical
and  horizontal  scroll  values  from  the  user,  then  turns  on
scrolling and pokes the values into the scroll register. At the
end the normal settings are restored.

COMBINED SCROLLING

Fine scrolling works well for simple effects, but to make a
scrolling game it's not enough by itself. For that you need to
combine it  with coarse scrolling,  where you move the entire
screen  by  a  row  or  column.  Unfortunately,  much  like  its
Commodore  inspiration,  the  Cody  Computer  has  no  direct
support  for  coarse scrolling.  Instead,  what  you do is  draw a

10 PRINT "H SCROLL (0-3)";
20 INPUT H
30 IF H<0 THEN GOTO 100
40 PRINT "V SCROLL (0-7)";
50 INPUT V
60 IF V<0 THEN GOTO 100
70 POKE 53249,OR(PEEK(53249),6)
80 POKE 53252,H*16+V
90 GOTO 10
100 POKE 53249,AND(PEEK(53249),249)
110 POKE 53252,0
RUN
H SCROLL? 2
V SCROLL? 4
H SCROLL? -1

READY.
■
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second screen, then flip to it when you need to scroll, using the
same  techniques  you  learned  earlier  in  this  chapter  for
relocating the screen and color memory.

That's a lot of memory to draw, and moving that much data
around on a per-frame basis is typically reserved for assembly
language applications.  Even then,  it's  typically  an optimized
process where part of the screen and color memory is drawn
behind the scenes during each fine-scrolled frame so that it's
all ready to go. In some respects the Cody Computer makes
this easier because the color memory can also be relocated,
unlike its fixed position on the Commodore 64.

However,  just  because we can't  do it  fast  enough in Cody
BASIC doesn't mean we can't at least give a simple example of
how it works. The following program demonstrates most of the
techniques needed, but it keeps the screen design simple so
that we only have to generate two example screens at the start.
It  also  doesn't  change  the  colors  so  we  don't  need  to  do
anything about the color memory.

10 A(0)=40960
20 A(1)=41984
30 B(0)=(A(0)-40960)/1024
40 B(1)=(A(1)-40960)/1024
50 FOR I=0 TO 999
60 C(0)=20
70 C(1)=20
80 IF MOD(I,2)=1 THEN C(0)=194
90 IF MOD(I,2)=0 THEN C(1)=194
100 POKE A(0)+I,C(0)
110 POKE A(1)+I,C(1)
120 NEXT
130 S=0
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A  simple  combined  scrolling  example  in  Cody  BASIC.  Two
screens are generated with repeating patterns offset by one
column. Horizontal scrolling is enabled and the screen is fine-
scrolled  one  pixel  on  each  frame.  Every  fourth  frame  the
screen memory is toggled between the two screen regions we
set up to handle the coarse scrolling. When the user presses
the Q key,  the program terminates and restores the normal
video configuration.

MOVING GRAPHICS WITH SPRITES

The  Cody  Computer  supports  sprites,  movable  graphical
objects  on  the  screen  often  used  in  games.  Sprites  are
independent of the screen background and hover over it. Each
sprite is 12 pixels wide and 21 pixels tall with a total of three
colors plus a transparent option. Two colors are unique to each
sprite  while  one  is  shared  by  all  the  sprites  on  the  screen.

140 POKE 53252,0
150 POKE 53249,OR(PEEK(53249),4)
160 M=S/4
170 IF M=0 THEN B(2)=B(0)
180 IF M=1 THEN B(2)=B(1)
190 IF PEEK(53248)=0 THEN GOTO 190
200 POKE 53252,MOD(S,4)*16
210 POKE 53251,OR(AND(PEEK(53251),15),B(2)*16)
220 S=MOD(S+1,8)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
250 GOTO 160
260 POKE 53251,OR(AND(PEEK(53251),15),9*16)
270 POKE 53249,AND(PEEK(53249),251)
280 POKE 53252,0
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Sprites can be positoned anywhere on the screen as well as
partially off the screen on both the vertical or horizontal axes.

Sprite data uses a total  of  63 bytes of  memory,  with the
amount being rounded up to 64 as a power-of-two. Each byte
contains four pixels in a multicolor format like those used by
the character memory. Sprite memory is organized from left to
right, with the top-left portion of the sprite beginning at the
first location in memory. Within each byte, the left-most pixel
data is stored in the higher bits and moves to the lower bits.

Each  color  is  represented  by  two  bits,  with  a  value  of  0
indicating a transparent pixel. Values of 1 and 2 represent the
two  unique  sprite  colors,  while  a  value  of  3  represents  the
common  color  shared  by  all  sprites  on  the  screen.  Sprite
memory  is  organized  from  left  to  right,  with  the  top-left
portion of the sprite beginning at the first location in memory.

Programming sprites is somewhat difficult in the beginning.
In addition to the sprite data that defines the image of a sprite,
registers must be programmed to set up the sprite, specify its
location, unique colors, and base address of its image data. In
order to support a large number of sprites on the screen, an
entire page of memory is set aside as sprite register banks,
and this must also be taken into account.

DISPLAYING A SPRITE

To display a single sprite we have to do a few things first. We
need to copy the sprite's image data into a 64-byte-aligned
location in the 16-kilobyte area beginning at  $A000. As with
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similar operations, we also need to ensure that it won't collide
with registers or data already there.

Once we have a location picked out,  we need to use it  to
calculate  the  sprite's  base  pointer,  which  is  calculated  in  a
similar way to the screen, color, and character memory base
pointers. You subtract your sprite's starting address from the
start of the region at  $A000, then divide the result by 64 to
determine  the  base  pointer.  Conveniently  there  are  256
possible locations aligned at 64-byte boundaries, so this value
fits into a single byte.

Once the data is loaded for a sprite, you need to program
the  sprite  registers  to  tell  the  computer  how  to  display  it.
Sprite  registers  begin  at  location  $D080 or  53376 decimal,
and each sprite takes up four consecutive bytes starting at the
beginning. The first byte specifies the sprite's x-position, the
second  byte  specifies  the  sprite's  y-position,  the  third  byte
specifies  the  sprite's  two  unique  colors,  and  the  fourth  and
final byte specifies the base pointer for the sprite's image data.
(Multiple sprites can reuse the same image data, such as in old
games  where  the  bad  guys  reused  the  same  picture  in
different colors.)

The sprite's position on the screen, notably, does not start at
(0,0) at the top-left corner. Sprites can slide in from the sides
of the screen and be only partially displayed. To support this, a
margin  is  added  to  the  normal  screen  dimensions.  Because
sprites are 12 pixels wide, a 12 pixel margin is added to either
side of the screen. Likewise, because sprites are 21 pixels tall, a
21 pixel margin is added to the top and bottom. This margin
isn't  displayed on  the  screen,  but  it  allows  the  sprite  to  be
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partially positioned off  the screen.  This  also means that  the
first  screen location that would fully display the sprite is  at
(12,21).

A sprite's unique color data is stored in a format like the
color memory. Two colors are stored in one byte, with sprite
color 1 stored in the lower half of the byte and sprite color 2
stored in the upper half. The common color, color 3, shared by
all sprites is stored in the sprite register at $D006 or decimal
53254, where it's kept in the low half of the byte. The color
codes are the same as those used in color memory.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 IF PEEK(53248)=0 THEN GOTO 140
150 POKE 53376+0,P(0)
160 POKE 53376+1,P(1)
170 P(0)=P(0)+D(0)
180 P(1)=P(1)+D(1)
190 IF P(0)=12 THEN D(0)=-D(0)
200 IF P(0)=160 THEN D(0)=-D(0)
210 IF P(1)=21 THEN D(1)=-D(1)
220 IF P(1)=200 THEN D(1)=-D(1)
230 IF AND(PEEK(16),1)=0 THEN GOTO 260
240 IF PEEK(53248)=1 THEN GOTO 230
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A sprite  demo that  bounces a  balloon sprite  around on the
screen.  The  sprite's  data  is  kept  in  DATA statements  and
POKEd into memory. The sprite's position and velocity are kept
in arrays and updated on each frame. The code waits for the
blanking  interval  and  updates  the  sprite  position  using  the
numbers  from  the  arrays.  Pressing  the  Q  key  exits  the
program and restores the default settings.

250 GOTO 140
260 POKE 53376+0,0
270 POKE 53376+1,0
280 DATA 0,20,0,1,85,64,5,85
290 DATA 80,5,85,80,21,125,84,21
300 DATA 215,84,21,213,84,21,213,84
310 DATA 21,215,84,5,125,80,5,85
320 DATA 80,5,85,80,13,85,112,12
330 DATA 93,48,12,93,48,3,28,192
340 DATA 3,12,192,3,12,192,0,142
350 DATA 0,0,170,0,0,170,0,131
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A single sprite in the form of a balloon.

DISPLAYING MULTIPLE SPRITES

Up to eight sprites can be displayed on the same part of the
screen  at  any  one  time.  You only  need to  set  up  the  other
sprite registers just  as you did the first  one in the previous
example.  As  mentioned  before,  each  sprite  is  more  or  less
independent of the screen, and in fact sprites are more or less
independent of each other.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
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40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 FOR I=0 TO 7
90 POKE 53376+I*4+2,1*16+(I+7)
100 POKE 53376+I*4+3,B
110 X(I)=13+MOD(RND(),147)
120 Y(I)=22+MOD(RND(),177)
130 U(I)=1
140 V(I)=1
150 IF MOD(RND(),2)=0 THEN U(I)=-U(I)
160 IF MOD(RND(),2)=0 THEN V(I)=-V(I)
170 NEXT
180 IF PEEK(53248)=0 THEN GOTO 180
190 FOR I=0 TO 7
200 POKE 53376+I*4+0,X(I)
210 POKE 53376+I*4+1,Y(I)
220 X(I)=X(I)+U(I)
230 Y(I)=Y(I)+V(I)
240 IF X(I)=12 THEN U(I)=-U(I)
250 IF X(I)=160 THEN U(I)=-U(I)
260 IF Y(I)=21 THEN V(I)=-V(I)
270 IF Y(I)=200 THEN V(I)=-V(I)
280 NEXT
290 IF AND(PEEK(16),1)=0 THEN GOTO 320
300 IF PEEK(53248)=1 THEN GOTO 300
310 GOTO 180
320 FOR I=0 TO 7
330 POKE 53376+I*4+0,0
340 POKE 53376+I*4+1,0
350 NEXT
360 DATA 0,20,0,1,85,64,5,85
370 DATA 80,5,85,80,21,125,84,21
380 DATA 215,84,21,213,84,21,213,84
390 DATA 21,215,84,5,125,80,5,85
400 DATA 80,5,85,80,13,85,112,12
410 DATA 93,48,12,93,48,3,28,192
420 DATA 3,12,192,3,12,192,0,142

340



A program that bounces multiple balloons around the screen.
The program is similar to the previous example except that all
eight sprites in the first sprite bank are in use. Program flow is
largely the same, though loops are added to iterate over each
sprite, its coordinates, and its velocity. Pressing Q will exit the
program.

All  eight  sprites  in  use  with  the  same  balloon  image  but
different color values.

Here we only used 8 sprites that can move around the entire
screen. So far we've only been using the first sprite bank that
begins at $D080 and continues for 32 bytes (4 bytes for each
of 8 sprites).  Up to 32 sprites can be displayed using sprite

430 DATA 0,0,170,0,0,170,0,131
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banks and row effects, something covered when we discuss row
effects in more detail. 

In  those  situations,  multiple  sprite  banks  with  their  own
information  are  swapped in  and  out  by  the  Video  Interface
Device as it draws the frame. The top half of the sprite register
at  $D006 is used to select one of the sprite banks, and this
value  can  be  overridden  at  the  start  of  each  subsequent
character row by a row effects setting. However, there can still
only be a maximum of 8 sprites on any row.

DISABLING VIDEO OUTPUT

The  VID  also  allows  you  to  turn  off  the  video  display
entirely,  for  example  if  you don't  want  the  user  to  see  the
screen slowly being drawn in  Cody BASIC.  One workaround
would be to relocate the screen and color memory to another
location,  but  a  quicker  way  is  to  just  shut  off  the  video
temporarily.

This  can  be  done  using  the  control  register  at  $D001 or
decimal 53249. When bit 0 is set to 1,  the display output is
turned off and replaced with the current screen border color.
When the bit is cleared back to a 0, screen output returns as
expected.
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A  simple  example  that  turns  off  the  video  output  for  5
seconds.

Because the VID is  implemented inside the Propeller  and
uses its internal memory, disabling video output doesn't speed
up  the  65C02.  Many  older  computers  turned  off  video
generation to speed up computations as the video hardware no
longer shared the bus, but in the Cody Computer, our system
just doesn't work like that.

ROW EFFECTS

One last feature of the Video Interface Device is its ability to
switch out graphics while the screen is being drawn. Many 8-
bit computers of the past had raster interrupts that notified the
processor when a particular line was drawn on the screen, and
if the computer could respond fast enough, it  could actually
swap out some of the data. The Cody Computer has a built-in
way of doing this.

The Cody Computer supports a system of row effects, where
the VID can be programmed to replace the contents of certain
registers on specified character rows. The base register, scroll
register, screen colors register, and sprite register can all be
overridden  at  any  character  row  boundary  using  this

10 POKE 53249,1
20 T=TI
30 IF TI-T<300 THEN GOTO 30
40 POKE 53249,0

343



mechanism. Once applied, the change remains for the rest of
the current frame or until  another value is specified. On the
next frame the process begins anew with the original register
values.

Using the row effects unlocks the full capacity of the Cody
Computer's graphics system. You can have multiple banks of
sprites on the screen at the same time,  so long as they are
partitioned into different rows on the screen. You can change
the shared screen and sprite colors to have a more colorful
output  and avoid  color  attribute  clashes.  You can  have  split
scrolling so that a game screen can be scrolled while status
bars  remain  fixed  in  place.  You  can  dynamically  swap  out
character  sets  and  create  a  very  detailed,  dynamic  screen
without resorting to bitmap mode.

ROW EFFECTS REGISTER BANKS

The mechanism works by having two dedicated row effects
register  banks  of  32  bytes  each.  The  first  bank,  starting  at
$D040 or decimal 53312, contains the control values for each
row  effect.  These  values  tell  the  VID  where  to  perform  the
replacement  and what  register  to  replace.  The  second bank,
starting at $D060 or decimal 53344, specify the replacement
values that should be used.

The control  bytes  consist  of  several  pieces of  information
packed into a  single byte.  Bits  0 through 5 contain the row
number to begin the replacement on. Bits 6 and 7 contain a
two-bit  value  specifying the  target  register  to  override.  The
last bit,  bit 8,  is an enable bit that must be set to 1 for that
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specific row effect to be applied. The two-bit destination code
is as follows:

Destination 00 replaces the base register.
Destination 01 replaces the scroll register.
Destination 10 replaces the screen colors register.
Destination 11 replaces the sprite register.

Row effects  must  also  be  enabled  globally  in  the  control
register  at  $D001 or  decimal  53249.  Bit  3  of  the  control
register must be set to 1 to enable the effects regardless of the
enable bit on each control byte in the row effect bank.

SCREEN COLORS AND ROW EFFECTS

One  of  the  typical  uses  for  row  effects  is  increasing  the
number  of  colors  on  the  screen.  As  you  may  recall,  each
location on the screen has two unique colors and two shared
colors. With row effects, the shared colors can be swapped for
other colors starting at any character row boundary.

Programs  can  use  this  ability  to  divide  the  screen  into
different  shared  color  regions  for  different  reasons.  Games
might  use  this  to  have  different  shared  colors  in  different
areas, for example, different shared colors for sky, ground, and
ocean. Paint programs could use this to permit more colors on
the  screen for  artwork.  And for  more  detailed  graphics,  the
same  principle  applies,  allowing  more  colors  to  be  used  in
detailed  images  or  backgrounds  than  would  normally  be
possible.

• 
• 
• 
• 
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To do this, we need to select the screen colors register as our
destination using code  10,  then ensure that the replacement
value is loaded into the corresponding row effect data register.
The format of the data in the row effect data register is the
same  as  it  would  be  if  directly  stored  to  the  screen  colors
register.

A modified version of the sample program for defining custom
characters. As in that example a character pattern using four
different  colors  is  programmed  in  and  filled  to  the  entire
screen. Unlike the earlier example, the two common colors on
the characters will be different for each row. This is because we
told the Cody Computer to change the shared screen colors on
each row using row effects.

10 FOR I=0 TO 7
20 READ M
30 POKE 51200+255*8+I,M
40 NEXT
50 FOR I=0 TO 999
60 POKE 50176+I,255
70 POKE 55296+I,MOD(RND(),16)*16+MOD(RND(),16)
80 NEXT
90 FOR I=0 TO 24
100 POKE 53312+I,OR(192,I)
110 POKE 53344+I,MOD(I,16)*16+MOD(I+8,16)
120 NEXT
130 POKE 53249,OR(PEEK(53249),8)
140 DATA 80,80,80,80,250,250,250,250
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SPRITE COLORS AND ROW EFFECTS

While not as broadly useful, the shared sprite color can also
be changed on a per-row basis using the sprite register row
effect. The sprite register contains both the sprite bank base (in
the high four bits) and the sprite shared color (in the low four
bits).

By  using  11 as  our  destination  code  to  replace  the  sprite
register, we can target the sprite register for a row effect. To
change  only  the  sprite  color,  our  replacement  value  in  the
corresponding  data  register  would  have  the  sprite  bank
register held constant but use a different color code in the low
four bits.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 POKE 53254,0
80 POKE 53376+2,9*16+14
90 POKE 53376+3,B
100 P(0)=12
110 P(1)=21
120 D(0)=1
130 D(1)=1
140 FOR I=0 TO 24
150 POKE 53312+I,OR(224,I)
160 POKE 53344+I,MOD(I,16)
170 NEXT
180 POKE 53249,OR(PEEK(53249),8)
190 IF PEEK(53248)=0 THEN GOTO 190
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A  modified  version  of  the  balloon  sprite  example.  In  this
program  we  have  also  added  row  effects  to  change  the
common sprite color on each row. As the balloon travels the
screen the shared color will pulsate and change depending on
the rows the balloon sprite hovers over. Press Q to quit.

SPRITE BANKS AND ROW EFFECTS

As you may have guessed during the above section on sprite
color row effects, the sprite banks can also be changed when
the sprite register is used in a row effect. Different sprite banks
can contain different sprites and the row effects can change the
bank at  different  rows on the screen.  This  approach is  quite

200 POKE 53376+0,P(0)
210 POKE 53376+1,P(1)
220 P(0)=P(0)+D(0)
230 P(1)=P(1)+D(1)
240 IF P(0)=12 THEN D(0)=-D(0)
250 IF P(0)=160 THEN D(0)=-D(0)
260 IF P(1)=21 THEN D(1)=-D(1)
270 IF P(1)=200 THEN D(1)=-D(1)
280 IF AND(PEEK(16),1)=0 THEN GOTO 310
290 IF PEEK(53248)=1 THEN GOTO 290
300 GOTO 190
310 POKE 53376+0,0
320 POKE 53376+1,0
330 DATA 0,20,0,1,85,64,5,85
340 DATA 80,5,85,80,21,125,84,21
350 DATA 215,84,21,213,84,21,213,84
360 DATA 21,215,84,5,125,80,5,85
370 DATA 80,5,85,80,13,85,112,12
380 DATA 93,48,12,93,48,3,28,192
390 DATA 3,12,192,3,12,192,0,142
400 DATA 0,0,170,0,0,170,0,131
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powerful  as  it  allows  more  than  eight  sprites  to  be  on  the
screen at the same time. The only limitation is that only one
sprite bank can be used on any single row.

This technique is very useful in games so long as your game
logic is designed to support it. An arcade game could have up
to 8 airplanes in a sky region, up to 8 tanks on a ground region,
and up to 8 ships in a water region, all on the same screen. A
similar  approach  could  be  used  for  flying  versus  ground
enemies in a sidescroller. A player sprite that needs to transit
multiple regions can be programmed into multiple banks with
the same information, so that regardless of its current location
it's drawn appropriately on the screen.

10 A=41984
20 B=(A-40960)/64
30 FOR I=0 TO 63
40 READ M
50 POKE A+I,M
60 NEXT
70 FOR I=0 TO 31
80 POKE 53376+I*4+0,13+18*MOD(I,8)
90 POKE 53376+I*4+1,25+(I/8)*48
100 POKE 53376+I*4+2,9*16+MOD(I,16)
110 POKE 53376+I*4+3,B
120 NEXT
130 FOR I=0 TO 31
140 POKE 53312+I,0
150 NEXT
160 FOR I=0 TO 3
170 POKE 53312+I,OR(224,I*6)
180 POKE 53344+I,I*16
190 NEXT
200 POKE 53249,OR(PEEK(53249),8)
210 IF PEEK(53248)=0 THEN GOTO 210
220 FOR I=0 TO 31
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A sprite example with multiple sprite banks in use. Based on
the  multiple  sprite  example  earlier  in  the  chapter,  this
program sets up a total of 32 sprites in four sprite banks. The
sprites are split into four horizontal regions and the first four
row effects registers set up to switch out sprite banks at those
screen-split locations. Pressing Q will quit.

230 T=PEEK(53376+I*4)+1
240 IF T>174 THEN T=0
250 POKE 53376+I*4,T
260 NEXT
270 IF AND(PEEK(16),1)=0 THEN GOTO 300
280 IF PEEK(53248)=1 THEN GOTO 280
290 GOTO 210
300 FOR I=0 TO 31
310 POKE 53376+I*4+0,0
320 POKE 53376+I*4+1,0
330 NEXT
340 DATA 0,20,0,1,85,64,5,85
350 DATA 80,5,85,80,21,125,84,21
360 DATA 215,84,21,213,84,21,213,84
370 DATA 21,215,84,5,125,80,5,85
380 DATA 80,5,85,80,13,85,112,12
390 DATA 93,48,12,93,48,3,28,192
400 DATA 3,12,192,3,12,192,0,142
410 DATA 0,0,170,0,0,170,0,131
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A total of 32 sprites on the screen thanks to row effects. Note
how each group of  eight  sprites  exists  in  its  own horizontal
region on the screen.

SCROLLING WITH ROW EFFECTS

Row  effects  can  also  be  used  to  set  different  fine-scroll
amounts on different parts of the screen. The contents of the
scroll register can be overridden using destination code 01 and
the new value of the scroll register in the corresponding row
effect  data  register.  Horizontal  or  vertical  scrolling  must  be
enabled in the control register separately.

This approach can be useful for games that require a split-
screen  effect.  Many games  include  a  static  status  area  with
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health/life,  timer,  inventory,  or  other  information  while  the
main  game  area  scrolls  along.  Splitting  the  screen  into
multiple scroll areas can help with this, and the split can even
be combined with the double-buffering approach mentioned
in the earlier section on fine and coarse scrolling.

An example of split-screen scrolling. The row effects registers
are cleared and then set up to have two different horizontal
scrolling values, zero for the first three rows and a changing
amount for the remainder of the screen. Horizontal scrolling
and row effect are switched on and the main loop updates the
scroll amount. Pressing the Q key ends the program and shuts
off the extra effects.

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 FOR I=0 TO 31
50 POKE 53312+I,0
60 NEXT
70 POKE 53312+0,OR(160,0)
80 POKE 53344+0,0
90 POKE 53312+1,OR(160,3)
100 POKE 53249,12
110 S=0
120 IF PEEK(53248)=0 THEN GOTO 120
130 POKE 53344+1,S*16
140 S=MOD(S+1,4)
150 IF AND(PEEK(16),1)=0 THEN GOTO 180
160 IF PEEK(53248)=1 THEN GOTO 160
170 GOTO 120
180 POKE 53249,0
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RELOCATIONS USING ROW EFFECTS

The base register can be updated when the destination code
is set  to  00.  This can be used to update the base of screen
memory  on  the  fly,  but  in  general  is  going  to  be  used  to
change the character set base portion of the register instead.
Doing this allows more than 256 characters to be used on the
screen at the same time.

The  format  used  for  the  row  effect's  data  register  is  the
same  as  that  used  for  the  register  itself.  For  example,  to
change the character set, keep the same screen memory base
but use a different character set base.

This  can be useful  in  games.  For  example,  imagine a  full
character set used as tiles for the game world, and a separate
character set used for the text and user interface at the top and
bottom of the screen.
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Using row effects to change the base address of the character
set in the middle of a frame. A test pattern from a previous
example  is  programmed  into  a  second  character  set,  then
switched out in the middle of the frame using a row effect. The
Q key will quit the program.

BITMAPPED GRAPHICS

The Cody Computer also supports a limited form of bitmap
graphics.  In  this  mode,  each  byte  in  screen  memory  is
expanded to eight bytes containing the bit pattern to draw at
the location. The layout of each eight-byte section is exactly
the  same  as  in  character  memory,  and  the  same  color
limitations apply as  in  the normal  character  graphics  mode.
This also expands the size of video memory from 1000 bytes

10 FOR I=0 TO 999
20 POKE 50176+I,65
30 NEXT
40 A=40960
50 B=(A-40960)/2048
60 FOR I=0 TO 2047
70 POKE A+I,MOD(I,2)*85
80 NEXT
90 FOR I=0 TO 31
100 POKE 53312+I,0
110 NEXT
120 POKE 53312,OR(128,12)
130 POKE 53344,9*16+B
140 POKE 53249,8
150 IF AND(PEEK(16),1)=1 THEN GOTO 150
160 POKE 53249,0
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to 8000 bytes. Bitmap mode is enabled by bit 4 of the video
control register at $D001 or decimal 53249.

In many respects the bitmap mode is more of a hybrid mode
between character graphics and a fully-bitmapped screen. The
first  eight  bytes  represent  the  first  4x8  tile,  the  next  eight
bytes  represent  the  second  4x8  tile,  and  so  on  for  the
remainder of the screen. While this makes the implementation
easier within the Cody Computer's  firmware (and also more
faithful  to  how  things  actually  worked  on  the  Commodore
computers), it does make plotting pixels more difficult.

To find where to plot a pixel, it's necessary to begin with the
(x,y) coordinate on the screen's 160x200 grid. First divide the
y-coordinate  by  8  (the  number  of  lines  in  a  character)
rounding down, then multiply by 320 (the number of bytes in
a  row  of  40  tiles).  Then  divide  the  x-coordinate  by  4  (the
number  of  columns  in  a  character)  rounding  down,  then
multiply by 8 (the number of bytes in a character). This gets us
to the beginning of the bytes for that section of the screen. We
add  the  remainder  from  the  earlier  division  of  the  y-
coordinate to get the final byte we need to update.

To select the actual pixel within that byte, however, we still
have a bit of work to do. We need to mask out the portion of
the byte we want to change and replace it with the color we
want  to  draw.  Just  like  in  character  memory,  each  byte  is
represented by two bits, with the highest two bits representing
the leftmost  dot  in  the line  of  pixels.  This  means that  we'll
need  a  two-bit  mask  that  we  shift  right  the  appropriate
number of two-bit increments, and we'll need to do the same
with the color value we'll insert.
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It's  not  an  easy  operation,  though  once  you've  walked
through the steps, it'll become clearer. It also means that it's a
lot more time-consuming than just updating a single byte to
change an entire tile on the screen. Bitmapped graphics have
their place, but for things like video games, many of the most
action-intense ones will need to rely on the character graphics
mode over the bitmapped mode:  A slow retro-style system
like  the  Cody Computer  just  isn't  going to  push that  many
pixels.

Below we have a Cody BASIC program that  demonstrates
the bitmap mode by setting it up and randomly plotting some
pixels. We have to relocate our screen memory so that we have
enough space for the bigger memory, clear out the memory,
set up our colors, and finally enter a loop where we randomly
plot  pixels  into the screen area.  The complicated calculation
discussed  above  is  implemented  as  a  subroutine  in  Cody
BASIC to make it a little easier to follow.

10 FOR I=40960 TO 48960
20 POKE I,255
30 NEXT
40 FOR I=55296 TO 56296
50 POKE I,RND()
60 NEXT
70 POKE 53253,1
80 POKE 53250,224
90 POKE 53251,5
100 POKE 53249,OR(PEEK(53249),16)
110 X=MOD(RND(),160)
120 Y=MOD(RND(),200)
130 C=MOD(RND(),4)
140 GOSUB 300
150 IF AND(PEEK(16),1)=0 THEN GOTO 200
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Plotting  random  pixels  in  bitmap  mode.  It  will  take  a  little
while to run as it clears out screen memory before beginning
to plot pixels.  When ready to exit,  press the Q key and the
screen will be restored to character graphics mode.

160 GOTO 110
200 POKE 53253,22
210 POKE 53250,231
220 POKE 53251,149
230 POKE 53249,AND(PEEK(53249),15)
240 END
300 P=40960
310 P=P+Y/8*(40*8)
320 P=P+X/4*8
330 P=P+MOD(Y,8)
340 M=192
350 C=C*64
360 R=MOD(X,4)
370 IF R=0 THEN GOTO 420
380 M=M/4
390 C=C/4
400 R=R-1
410 GOTO 370
420 POKE P,OR(AND(PEEK(P),XOR(M,255)),C)
430 RETURN
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INTRODUCTION

The Cody Computer supports sound and music through the
Sound Interface Device or "SID," a copy of the famous SID from
the Commodore 64. The Cody Computer's SID supports many,
but  not  all,  of  the  same  features  as  its  predecessor.  It's
intended  as  a  simplified  sound  generator  suitable  for  the
curious hobbyist or casual user, but with a significant degree of
compatibility. Like the Cody Video Interface Device, the Cody
SID is implemented as a software peripheral in the Propeller.

Like the original  SID,  the Cody SID relies on principles of
digital  audio  synthesis  to  generate  sounds.  Unlike  modern
computers which essentially play back raw audio data (often
after processing the signal in some way),  the SID generates
sound mathematically.  Counters  and mathematical  formulas
are  used  to  produce  sound-like  waves  and  combine  them
together,  with the exact characteristics of these waves under
the control of the programmer.

The Cody SID supports up to three voices, or independent
sounds, at the same time. Each voice can generate a sound at a
different  frequency,  and  each  sound  can  consist  of  either  a
triangle wave, a sawtooth wave, a pulse wave, and white noise.
These  are  combined  with  another  wave  called  an  envelope,
which determines how loud the sound gets, how quickly, and
how slowly it fades away when turned off.

The envelope is  defined using attack (how fast  the sound
reaches a peak volume), decay (how long the sound drops to
its normal value after the peak), sustain (how loud the sound
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stays),  and release (how long the sound takes to fade out).
This  ADSR  envelope  shapes  the  underlying  sound  for  each
voice  and  is  capable  of  mimicking  many  instruments  and
sound effects.

The  original  SID  chips  in  the  Commodore  64  family  had
other  features,  including  filters  that  let  the  programmer
emphasize certain high-frequency, low-frequency, or middle
portions of each sound. Filters could vary greatly between SID
chips, and in order to keep the Cody Computer a fun learning
tool,  filters  aren't  supported  by  the  Cody  Computer's  SID.
Some sounds and songs, even if ported to work on the Cody
Computer, won't sound quite right as a result, but most results
are  at  least  passable.  Also  unlike  the  Commodore  SID,  the
Cody SID doesn't permit the user to select multiple waveforms
for the same voice: you have to pick one, and only one, type of
sound for each voice at any one time.

MAKING A SOUND

To program sounds, you poke values into memory registers.
Each voice has seven registers, and there are a total of three
voices, starting at memory location  $D400 (decimal 54272).
Global settings for the SID, including volume, are controlled by
a handful of other registers immediately following the voice
registers.

For each voice, the registers are organized in the same order.
The first two registers contain the low and high bytes for the
voice's sound frequency as a number from 0 to 65535 (these
map, more or less, to a range between 0 and 4 kilohertz as

360



audio frequencies). Following those are two registers only used
for pulse waveforms, containing the low and high bytes of the
pulse wave's duty cycle (how long it is on relative to how long
it is off). The pulse value can range from 0 to 4095, with a zero
being off all the time and 4095 being on all the time. (If you're
curious,  the  more  limited  range  of  the  pulse  width  occurs
because the top half of the pulse wave's high byte is unused,
just as it was on the C64.)

After that, the fifth register, the control register, allows you
to select the type of sound you want to produce. The high four
bits contain the type of sound while the lower four bits contain
other control information, including turning the voice on and
off. Bit 4 selects a triangle wave, bit 5 selects a sawtooth wave,
bit 6 selects a pulse wave, and bit 7 selects a white noise wave.
The lowest bit, bit 0, is the gate bit that turns the voice itself on
and off. (The other bits are used for more advanced features
that we'll cover later.)

The  sixth  and seventh  registers  define the  ADSR (attack-
decay-sustain-release)  envelope  that  was  mentioned  in  the
introduction. The attack and decay are set by the sixth register.
The attack value (how long the sound takes to reach maximum
volume ater  it  starts)  is  stored  in  the  top  half  of  the  sixth
register.  The  decay  value  (how  long  the  sound  takes  to
decrease from its maximum to its sustain level) is stored in the
bottom half. Both range from 0 to 15 but cover different time
ranges. The attack range covers between 0 and 8 seconds while
the  decay  range  covers  between  0  and  24  seconds.  The
relationship  is  not  linear,  so  you  need  to  consult  the  table
below to find the exact value.
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The seventh and final voice register contains the other part
of  the  ADSR  envelope,  the  sustain  and  release  values.  The
sustain value (the volume the voice stays at after the decay
phase)  is  stored in  the top half  of  the register.  The release
value (the time it takes the sound to fade out after it's turned
off) is stored in the bottom half. The sustain value ranges from
0 to 15 and represents a volume level. The release value also
ranges  from  0  to  15  but  represents  a  time  value,  with  its
possibilities being the same as those for the decay value.

Value (dec) Value (hex) Attack (ms) Decay/Release (ms)

0 $0 2 6

1 $1 4 24

2 $2 16 48

3 $3 24 72

4 $4 38 114

5 $5 58 168

6 $6 68 204

7 $7 80 240

8 $8 100 300

9 $9 250 750

10 $A 500 1500

11 $B 800 2400

12 $C 1000 3000

13 $D 3000 9000

14 $E 5000 15000
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Value (dec) Value (hex) Attack (ms) Decay/Release (ms)

15 $F 8000 24000
The attack,  decay,  and release values and their  rates.  Note
that sustain values are not included in the table because the
sustain setting is a volume, not a time constant. 

In many respects, sound programming can be more difficult
than video programming. While video programming has many
complicating factors to get a picture on the screen, the overall
concepts  of  pixels,  characters,  and  sprites  are  usually
somewhat familiar. Sound programming, absent any personal
experience with musical instruments or signal processing, can
take longer to understand.

For  that  reason,  we'll  start  with  a  simple  example.  The
following BASIC program will generate a triangle wave at 440
hertz, which is common in music as the A note above middle C.
This  particular  frequency  is  used  as  a  standard  to  tune
instruments, and we'll use it here to get started.
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A program that plays an A note on voice 1. The SID registers
are reset to 0, then the values for a note on voice 1 are poked
into memory. A brief delay occurs before the sound is turned
off.

The program begins by clearing out  all  the SID registers.
This is very important in any case, as you may have noticed
earlier in the book when running one program messes up the
environment  for  a  later  one.  For  the  SID  it's  particularly
important so that any existing sounds or settings get cleared
out.

After the SID is cleared out, the program sets the volume to
maximum. The volume is poked into the lower half of the main
volume control register at  $D418 or decimal 54296. The 440
Hz frequency is converted to its corresponding SID value, 7382,
and  then  poked  into  the  frequency  registers  at  $D400
(decimal 54272) and $D401 (decimal 54273). (To calculate the
frequency value to poke in, an old formula for the Commodore
SID can be used, dividing the desired frequency by 0.0596. If

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,AND(7382,255)
60 POKE 54273,7382/256
70 POKE 54277,2*16+4
80 POKE 54278,14*16+6
90 POKE 54276,16+1
100 T=TI
110 IF TI-T<120 THEN GOTO 110
120 POKE 54276,16
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you forget that, a reasonable approximation can be made by
recalling that the range of frequencies goes from 0 to about
4000, and the register value goes from 0 to 65535; you won't
get  the  exact  value,  but  you  can  solve  it  like  any  other
proportion.)

The attack and decay values are poked into register $D405
or  decimal  54277.  Relatively  small  values  are  used for  this
example, with an attack value of 2 corresponding to a mere 16
milliseconds.  The  decay  value  of  4  isn't  much  bigger,
corresponding to about 114 milliseconds. Sustain and release
values are then poked into the following register at $D406 or
decimal 54278. A relatively high sustain volume of 14 is poked
along with a relatively short decay value of 6 (corresponding
to around 204 milliseconds).

To start  the sound,  the program pokes the voice 1  control
register  at  $D404.  Bit  4  is  set  to  enable  the  triangle  wave
sound, while bit 0 is also set to begin the sound. A timer loop
waits for about two seconds, and then the control register is
poked with bit 0 turned off to end the sound.

CREATING SOUNDS WITH NUMBERS

This may be the first time you're hearing of triangle waves,
sawtooth waves, pulse waves, so we'll go over a brief example
of each one.  The exact values,  including the frequencies and
ADSR values, aren't the main focus here. The intent is to give
you an idea of how the different sounds actually sound.
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TRIANGLE WAVES

A triangle wave is basically what it  sounds like.  The wave
goes up to a maximum in a straight line, peaks, goes down to a
minimum in a straight line, and then repeats. Triangle waves
are enabled by setting bit 4 in a voice's control register.

The triangle wave is also special in that it's the closest the
SID can produce to an actual sine wave. Because of its audio
characteristics, it can be described as sounding like something
between a square wave (or pulse) and a sine wave.

A  Cody  BASIC  program  that  produces  a  triangle  wave.  The
exact SID register values were taken from an emudev.de article
on the Commodore 64's sounds.

SAWTOOTH WAVES

A sawtooth wave is kind of like a triangle wave with special
characteristics.  Instead  of  going  up  and  down  in  a  linear
fashion, it goes up to a maximum, then immediately drops to
its minimum. This produces a waveform that looks a lot like the

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,22
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,17
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teeth on a saw blade. Sawtooth waves are enabled with bit 5 in
a voice's control register.

Sawtooth waves tend to sound very harsh and sharp. They
can be made to sound similar to a buzzer in many situations.
Yet when set up with the appropriate characteristics, they can
also be very useful for other sound effects and even music.

An example of a sawtooth wave. The exact SID register values
were taken from an emudev.de article on the Commodore 64's
sounds.

PULSE WAVES

A  pulse  wave  may  be  what  most  people  think  of  as  an
electronically-generated  sound.  It  goes  immediately  to  its
maximum, stays there for a particular time, and then drops to
its  minimum,  staying  there  for  a  while  until  the  process
repeats. A pulse wave has a duty cycle that indicates how long
the wave is on compared to how long it is off: For example, a
wave with a duty cycle of 75% is at its maximum three times
longer than its minimum. A square wave is just a special case

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,195
60 POKE 54273,10
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,33
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of the pulse wave with a duty cycle of 50%. Pulse waves are
enabled using bit 6 in a voice's control register.

In addition to being useful to generate very electronic beeps
and blips, different duty cycles for each wave can produce a
variety of unique sounds. On the SID the pulse wave is unique
in that  in  addition to  the frequency value,  the pulse is  also
programmable using some of the voice's registers.

An example  of  a  pulse  wave.  The  exact  SID  register  values
were taken from an emudev.de article on the Commodore 64's
sounds.

NOISE

Noise is similar to the white noise that you may have heard
from a white noise sound machine. Different techniques can be
used to generate noise, but one of the most common is to use
what is called a linear feedback shift register. It's similar to a
normal shift register, but it has taps at different places along
the shift register's path to obtain output or feed back into the

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54274,15
80 POKE 54275,15
90 POKE 54277,105
100 POKE 54278,252
110 POKE 54276,65
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circuit. Noise output is enabled using bit 7 of a voice's control
register.

Noise is useful for a variety of sound effects, but it can also
be  used  in  various  musical  sounds.  Nor  should  noise  be
considered as something to be used for static in sound effects.
Consider  that  a  white  noise  sound  with  the  appropriate
frequency, fade-in, and fade-out, could be used to mimic the
sound of the ocean.

An example of noise output. The exact SID register values were
taken  from  an  emudev.de  article  on  the  Commodore  64's
sounds.

EXPERIMENTING WITH DIFFERENT VALUES

Now  that  you've  heard  how  the  Cody  Computer  can
generate sounds, try the following program to see what other
kinds  of  sounds  can  be  produced.  Instead  of  writing  many
different programs with different settings, you can use the one
below  to  enter  different  values  and  hear  the  results
immediately.  This  won't  work  as  an  exhaustive  example  of

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,15
50 POKE 54272,196
60 POKE 54273,9
70 POKE 54277,105
80 POKE 54278,252
90 POKE 54276,129
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every sound the Cody Computer can make using its SID, but it
gives you a place to begin.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 PRINT "AVAILABLE SOUNDS:"
50 PRINT "1. TRIANGLE"
60 PRINT "2. SAWTOOTH"
70 PRINT "4. PULSE"
80 PRINT "8. NOISE"
90 PRINT "SOUND (1, 2, 4, OR 8)";
100 INPUT C
110 PRINT "FREQUENCY (0-65535)";
120 INPUT F
130 W=0
140 IF C<>4 THEN GOTO 170
150 PRINT "PULSE WIDTH (0-4095)";
160 INPUT W
170 PRINT "ATTACK RATE (0-15)";
180 INPUT A
190 PRINT "DECAY RATE (0-15)";
200 INPUT D
210 PRINT "SUSTAIN LEVEL (0-15)";
220 INPUT S
230 PRINT "RELEASE RATE (0-15)";
240 INPUT R
250 PRINT "OVERALL VOLUME (0-15)";
260 INPUT V
270 POKE 54296,V
280 POKE 54272,AND(F,255)
290 POKE 54273,F/256
300 POKE 54274,AND(W,255)
310 POKE 54275,W/256
320 POKE 54277,A*16+D
330 POKE 54278,S*16+R
340 PRINT "PRESS ENTER TO PLAY";
350 INPUT X$
360 POKE 54276,C*16+1
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A tool for experimenting with simple SID sounds. On each loop
the user is prompted for some SID values,  and the program
plugs them into the SID registers for voice 1.

To use the program you just need to load and run it.  You
specify the type of sound you want to generate by entering a
number corresponding to the voice settings in the top half of
the control register. After that you enter the raw values for the
frequency, attack, decay, sustain, and release, along with the
overall volume. If you're trying out a pulse wave you'll also be
prompted for the pulse's duty cycle. The program doesn't do
any error checking, so if you enter an invalid value, you'll get
some strange results.

You should experiment with different values to see how they
sound, but below are some examples from a 1984 edition of
the  Commodore  64  User's  Manual.  One  table  contains  the
suggested values to resemble the sounds of different musical
instruments.  Another  table  shows  a  subset  of  the  musical
scale,  giving you one octave's  worth  of  constants  to  try  out
different notes.

Instrument Sound Pulse Attack Decay Sustain Release

Piano 4 225 0 9 0 0

370 PRINT "PRESS ENTER TO STOP";
380 INPUT X$
390 POKE 54276,C*16
400 PRINT "AGAIN (Y/N)";
410 INPUT X$
420 IF X$="N" THEN END
430 PRINT ""
440 GOTO 10
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Instrument Sound Pulse Attack Decay Sustain Release

Flute 1 0 0 6 0 0

Harpsichord 2 0 0 9 0 0

Xylophone 1 0 0 0 15 0

Accordion 1 0 6 6 0 0

Trumpet 2 0 6 0 0 0

Noise 4 0 0 0 0 0
A  table  of  settings  copied  from  a  1984  edition  of  the
Commodore 64 User's Manual. Each is intended to be a rough
first approximation of a musical instrument.

The exact  sound values you use are  largely the result  of
experimentation, and the above table is only a beginning. As
Commodore's own data sheet for the SID noted long ago, the
exact  characteristics  of  an  instrument  are  vital  when
determining what values to plug in.  A violin often builds up
somewhat  slowly  when  bowed  and  reaches  an  intermediate
volume before fading out.  As a first  guess,  one might  try a
somewhat slow attack, a middle-range sustain volume, and a
shorter  decay  and  longer  release  time.  A  percussion
instrument,  on  the  other  hand,  generally  reaches  a  peak
volume  suddenly,  then  goes  away  entirely.  In  the  end,  the
correct values to plug in are those that sound best for the song
or effect that one is trying to achieve.

Along with the ADSR settings, however, is the frequency. We
discussed before that you can calculate the frequency value by
dividing the frequency in hertz by 0.0596, and it helps to use
this formula when you need to. Below is a brief table of notes
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and  their  corresponding  frequency  register  values  for  the
fourth  octave,  including  the  440  hertz  A  note  you  played
earlier.

Note Frequency (Hz) Value (dec) Value (hex)

C4 261.63 4389 $1125

D4 293.66 4927 $133F

E4 329.63 5530 $159A

F4 349.23 5859 $16E7

G4 392.00 6577 $1981

A4 440.00 7382 $1CD6

B4 493.88 8286 $205E
A  subset  of  the  musical  note  frequency  values  from  the
Commodore SID 6581 data sheet. Values for the fourth octave
(excluding sharps) are included as an example.

Don't limit yourself to trying to play musical sounds.  The
SID can be used for a variety of sound effects as well. Also try
to familiarize yourself with how the different settings work in
practice. Listen for a faster or slower buildup as you adjust the
attack rate, and note how the decay and sustain portions of the
sound change as you alter their values. Try different release
values to learn how a sound can quickly or slowly fade off.

PLAYING A SIMPLE SONG

The same approach can  be  used to  play  simple  songs  in
Cody BASIC. To play an entire song, however, the musical notes
and their lengths need to be taken into account. A musical note
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is  just  a  frequency,  so the corresponding frequency register
value can be used to represent each note at a low level. The
time for each note can be represented as a time constant of
some sort.

To play a note, a program would load the instrument data
from the above table, load the frequency value for the note to
play, and then start playing by setting the gate bit to 1.  The
program then waits for a time associated with the length of a
note before turning the note off and moving on to the next one.

In music, a common standard for timing is 4/4 time, in which
a  whole  note  lasts  for  an  entire  portion  of  a  song called  a
measure. The rest of the system is fractional, with a half-note
lasting for half of a measure, a quarter note lasting for one-
fourth of a measure, and so on. A corresponding symbol, the
whole  rest,  indicates  that  no note  should be played for  the
entire measure. These also have fractional divisions such as the
half-rest  and  quarter-rest.  These  concepts  can  easily  be
represented on a computer.

To  see  how this  could  work,  we'll  look  at  an  introductory
example  from  one  edition  of  the  Commodore  64  User's
Manual  as  translated to  the  Cody Computer.  In  it,  a  simple
program  of  POKEs,  FOR/NEXT  statements,  and  DATA
statements is used to play a portion of the chorus from the
American folk song "Tom Dooley."

10 S=54272
20 FOR Z=S TO S+24
30 POKE Z,0
40 NEXT
50 POKE S+24,15
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A modified program from the 1984 edition of the Commodore
64 User's Manual. It clears the SID registers and then plays a
portion of the American folk song "Tom Dooley."

As in the earlier example, the SID registers are all reset to
zero. The configuration data is then POKEd into voice 1 on the
SID before the song is played. The song data is kept in DATA
statements at the end of the program, with each set of three
numbers representing a note: The first number is the high byte
of the frequency value, the second number is the low byte of
the frequency value, and the third number is the note's length.

60 POKE S+2,255
70 POKE S+3,0
80 POKE S+5,9
90 POKE S+6,0
100 READ H,L,D
110 PRINT H," ",L," ",D
120 IF H=0 THEN END
130 POKE S,L
140 POKE S+1,H
150 POKE S+4,65
160 FOR Z=1 TO D*4
170 NEXT
180 POKE S+4,64
190 FOR Z=1 TO 400
200 NEXT
210 GOTO 50
220 DATA 18,104,250,18,104,500,18,104,250
230 DATA 20,169,500,24,146,500,30,245,1000
240 DATA 30,245,1000,18,104,250,18,104,500
250 DATA 18,104,250,20,169,500,24,146,500
260 DATA 27,148,2000,18,104,250,18,104,500
270 DATA 18,104,250,20,169,500,24,146,500
280 DATA 27,148,1000,27,148,1000,27,148,250
290 DATA 27,148,500,30,245,250,24,146,500
300 DATA 20,169,500,24,146,1500,0,0,0
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A value of 1000 represents a whole note, 500 represents half-
note and 250 a quarter-note.

To play the song, the three pieces of data are read in a loop.
Just as in the C64 example, an inner loop counts down for the
length of the note. The note is then turned off and a brief delay
occurs between notes for a folk-song feel. When a sequence of
zero values is read at the end of the music data, the program
stops.

There  are,  of  course,  many  improvements  that  could  be
made to even a simple program such as this. Storing the notes
and their delays as values for a loop worked well on the C64,
but  on  the  Cody  Computer  we  have  to  make  adjustments
because the simpler Cody BASIC interpreter loops faster. The
notes could instead be encoded using some other scheme, and
the delays could be implemented by looking at the TI variable
to  determine  elapsed  time  as  in  our  graphics  examples.
However,  the  example  serves  its  purpose,  and  it  also
demonstrates the level of compatibility between the Cody SID
and the real SID of the Commodore 64.

Keep in mind that this is a simple example that only uses
one  voice  and  doesn't  show  the  best  approach  to  playing
music. On the Commodore 64, music was often written as self-
contained programs called SID files,  which were loaded into
memory and called on a periodic basis to play a song.

Many  of  the  simpler  or  earlier  SIDs  are  playable  on  the
Cody  Computer,  though  there  are  also  many  incompatible
ones because of  differences in  memory layouts  and system
features.  Compute!  magazine's  SIDPLAYER,  similar  to  a  real
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MIDI-like computer music system, would likely be a better fit
for the Cody Computer.

A simple SID player for PSID files, CodySID, is included
as an assembly language example program later in the
book. While not perfect, it does show how to load a SID file
and play it in memory, and some recommended SID files
that are known to work with it  are mentioned. Writing a
player for the MIDI-like SIDPLAYER system is left for the
future or as an exercise for the reader.

SOUND EFFECTS

The SID can also be used for a variety of sound effects. In
addition to the more obvious ones, it's also possible to update
the values in the SID registers themselves to make even more
interesting sounds. Many music players did exactly this, and
games  also  took  advantage  of  the  ability  to  control  sound
parameters on top of what the SID was already doing. (On the
Cody SID, however, you'll want to be a bit more careful. If you
change values in the Cody SID registers too quickly, the sound
system may not pick up there was a change.)

The  best  way  to  come  up  with  sound  effects  for  your
programs is to play around and come up with some yourself.
There's no exact science to the process. Additionally, given that
the C64 was at one point one of the most popular computers in
the world, you'll find many resources on SID sounds that can
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be easily ported to the Cody Computer. A few examples are
provided below to get you started.

AN EXPLOSION

The following program makes a quick explosion-like sound
using the noise output from the Cody SID. The sound's attack
and  decay  values  are  set  to  zero  to  produce  an  immediate
effect, and the sustain level is set to a reasonably high value of
11.  A  release  value  of  10  ensures  that  the  explosion  sound
takes a little while to fade away.

A short  Cody BASIC  program that  makes  an  explosion-like
sound. Something like this could be used for a depth charge
dropped on  a  submarine  or  a  photon  torpedo hit  against  a
starship.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,0
80 POKE 54278,186
90 POKE 54276,129
100 T=TI
110 POKE 54276,128
120 IF ABS(TI-T)<90 THEN GOTO 120
130 POKE 54276,0
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AN ALERT SIREN

This example produces a sound like an alert or siren. To get
a  sharp,  Klaxon-like  sound,  a  sawtooth wave is  used as  the
basis  for  the  sound  generation.  ADSR values  suitable  for  a
siren were also plugged in. Also, because sirens or alerts go
from high to low and back again, the program contains a FOR
loop that turns the sound on and off three times as it plays.
Brief delays during each part of the sound guarantee that the
user will hear both the attack and release stages.

This program produces an alert or siren-like sound. Something
like this could call a ship's crew to general quarters, or perhaps
set the mood aboard a distressed space station.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,20
70 POKE 54277,176
80 POKE 54278,249
90 FOR I=1 TO 3
100 POKE 54276,33
110 T=TI
120 IF ABS(TI-T)<60 THEN GOTO 120
130 POKE 54276,32
140 T=TI
150 IF ABS(TI-T)<60 THEN GOTO 150
160 NEXT
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AN ENERGY BEAM

This program makes a sound suitable for use in games as an
energy beam on a far-off spaceship defending the frontier, or
perhaps  a  deranged  robot  trying  to  zap  the  player  in  a
sidescrolling platformer. It uses a pulse wave for the sound but
randomly changes the low byte of the frequency value while
the sound is playing.

A  short  Cody  BASIC  program  that  makes  a  laser-beam  or
energy-beam sound effect.

A COMMODORE 64 EXAMPLE

Also remember that the Cody SID is essentially a simplified
version  of  the  SID  chip  used  in  the  Commodore  64.  Not
everything will be completely compatible, but a lot of it will be,

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54273,40
60 POKE 54275,8
70 POKE 54276,0
80 POKE 54277,0
90 POKE 54278,192
100 POKE 54276,65
110 T=TI
120 POKE 54272,RND()
130 IF ABS(TI-T)<60 THEN GOTO 120
140 POKE 54276,0
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even if you have to make some minor changes to a program. To
demonstrate that, let's take a look at the program below.

This program is a translation of another program from the
Commodore  64,  this  one  a  sound  effects  program  used  to
show off  the C64 and SID's capabilities to new users.  It  will
play  one  of  six  possible  sounds  in  a  loop,  allowing  you  to
select a new one when it's done. When done, break out of the
program using the Cody and Arrow key combination.

10 PRINT "WHICH SOUND EFFECT:"
20 PRINT "1. WAILING"
30 PRINT "2. SHOOTING"
40 PRINT "3. SIREN"
50 PRINT "4. ROCKET"
60 PRINT "5. CRASH"
70 PRINT "6. MACHINE GUN"
80 INPUT X
90 S=54272
100 FOR I=S TO S+24
110 POKE I,0
120 NEXT
130 K=-1
140 T=TI
150 GOSUB 1000+X*100
160 POKE S+2,P(2)
170 POKE S+3,P(1)
180 POKE S+5,A(1)
190 POKE S+6,A(2)
200 POKE S+1,N(1)
210 POKE S,N(2)
220 IF Q=2 THEN Q=3
230 IF Q<>2 THEN GOTO 260
240 POKE S+1,64
250 POKE S,188
260 POKE S+4,W(1)
270 IF Q<>1 THEN GOTO 360
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280 FOR I=1 TO 40
290 N(2)=200-I*5
300 POKE S,N(2)
310 NEXT
320 FOR I=1 TO 30
330 N(2)=150-I*5
340 POKE S,N(2)
350 NEXT
360 L=15
370 POKE S+24,L
380 IF L=V THEN GOTO 440
390 IF X=4 THEN GOTO 440
400 L=L+K
410 FOR I=1 TO D
420 NEXT
430 GOTO 370
440 POKE S+4,W(2)
450 IF ABS(TI-T)>300 THEN GOTO 10
460 IF Q<>3 THEN GOTO 200
470 Q=2
480 GOTO 230
1100 V=15
1105 N(1)=65
1110 N(2)=0
1115 W(1)=65
1120 W(2)=64
1125 P(1)=9
1130 P(2)=255
1135 A(1)=15
1140 A(2)=0
1145 D=1
1150 Q=1
1155 RETURN
1200 V=0
1205 N(1)=40
1210 N(2)=200
1215 W(1)=129
1220 W(2)=128
1225 P(1)=0
1230 P(2)=0
1235 A(1)=15
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1240 A(2)=15
1245 D=1
1250 Q=0
1255 RETURN
1300 V=0
1305 N(1)=36
1310 N(2)=85
1315 W(1)=33
1320 W(2)=32
1325 P(1)=0
1330 P(2)=0
1335 A(1)=136
1340 A(2)=129
1345 D=350
1350 Q=2
1355 RETURN
1400 V=0
1405 N(1)=25
1410 N(2)=100
1415 W(1)=129
1420 W(2)=128
1425 P(1)=0
1430 P(2)=0
1435 A(1)=9
1440 A(2)=129
1445 D=50
1450 Q=0
1455 RETURN
1500 V=0
1505 N(1)=5
1510 N(2)=251
1515 W(1)=129
1520 W(2)=128
1525 P(1)=0
1530 P(2)=0
1535 A(1)=129
1540 A(2)=65
1545 D=50
1550 Q=0
1555 RETURN
1600 V=15
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The sound effects example from the Commodore 64 manual,
updated to run on Cody Basic. While not the easiest program
to follow, even in its original C64 version, it demonstrates the
variety  of  sound  effects  possible  even  in  simple  BASIC
programs.

The vast majority of the program consists of the values to
plug in for different sounds. You can look at the initial register
values  by  reading  the  appropriate  lines  in  the  program  (a
GOSUB branches to the setup code for a particular sound). A
collection of POKE, FOR, and IF statements take the values and
use them to generate the selected sound.

The code for playing a sound is actually quite complicated,
mostly  because  like  the  original  program  it  uses  the  same
code for playing all six sounds. Some values are changed on
different loops, which adds to the complexity. For a particular
sound in the example, it's best to just follow the code path to
understand what it does. You can then use a similar approach
in your own programs.

1605 N(1)=34
1610 N(2)=75
1615 W(1)=129
1620 W(2)=128
1625 P(1)=0
1630 P(2)=0
1635 A(1)=8
1640 A(2)=1
1645 D=50
1650 Q=0
1655 RETURN
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A PRACTICAL SOUND PROGRAM

Sound effects aren't just for games. In addition to creating
music, sound effects can be used in a variety of more serious
applications.  Sounds can provide cues in a program, tell  the
user when something happened, or even be the main output of
a program. Below is a simple Morse code generator that takes
an  input  string  and  generates  the  corresponding  dots  and
dashes.

The  program  uses  many  of  the  things  you've  learned  in
previous  chapters  on  Cody BASIC.  It  accepts  input  from the
user, processes each character in the input string, and uses IF
statements to look up the corresponding sequence of dots and
dashes for each character. In addition to printing out the dots
and dashes, it uses sound effects to play short and long tones
corresponding  to  each  part  of  the  translated  Morse  code
output.

100 REM MORSE CODE GENERATOR
110 U=10
120 GOSUB 700
130 PRINT "MESSAGE";
140 INPUT M$
150 PRINT
160 GOSUB 200
170 PRINT
180 GOTO 110
200 REM SEND MESSAGE
210 IF M$="" THEN RETURN
220 A=ASC(M$)
230 M$=SUB$(M$,1,LEN(M$))
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240 REM CHECK DELAY BETWEEN WORDS
250 IF A<>32 THEN GOTO 300
260 PRINT "<SPACE>"
270 D=7
280 GOSUB 800
290 GOTO 200
300 REM PROCESS NEXT LETTER
310 PRINT CHR$(A),TAB(20);
320 GOSUB 600
330 IF C$<>"" THEN GOTO 360
340 PRINT "NO CODE"
350 GOTO 520
360 REM SEND DOTS AND DASHES
370 B=ASC(C$)
380 C$=SUB$(C$,1,LEN(C$))
390 PRINT CHR$(B);
400 POKE 54276,65
410 IF B=45 THEN D=3
420 IF B=46 THEN D=1
430 GOSUB 800
440 POKE 54276,0
450 REM DELAY BETWEEN BEEPS
460 D=1
470 GOSUB 800
480 IF C$<>"" THEN GOTO 360
490 REM DELAY BETWEEN LETTERS
500 D=3
510 GOSUB 800
520 PRINT
530 GOTO 200
600 REM GET MORSE
601 IF A>=97 THEN A=A-32
602 C$=""
603 IF A=65 THEN C$=".-"
604 IF A=66 THEN C$="-..."
605 IF A=67 THEN C$="-.-."
606 IF A=68 THEN C$="-.."
607 IF A=69 THEN C$="."
608 IF A=70 THEN C$="..-."
609 IF A=71 THEN C$="--."
610 IF A=72 THEN C$="...."
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611 IF A=73 THEN C$=".."
612 IF A=74 THEN C$=".---"
613 IF A=75 THEN C$="-.-"
614 IF A=76 THEN C$=".-.."
615 IF A=77 THEN C$="--"
616 IF A=78 THEN C$="-."
617 IF A=79 THEN C$="---"
618 IF A=80 THEN C$=".--."
619 IF A=81 THEN C$="--.-"
620 IF A=82 THEN C$=".-."
621 IF A=83 THEN C$="..."
622 IF A=84 THEN C$="-"
623 IF A=85 THEN C$="..-"
624 IF A=86 THEN C$="...-"
625 IF A=87 THEN C$=".--"
626 IF A=88 THEN C$="-..-"
627 IF A=89 THEN C$="-.--"
628 IF A=90 THEN C$="--.."
629 IF A=48 THEN C$="-----"
630 IF A=49 THEN C$=".----"
631 IF A=50 THEN C$="..---"
632 IF A=51 THEN C$="...--"
633 IF A=52 THEN C$="....-"
634 IF A=53 THEN C$="-...."
635 IF A=54 THEN C$="--..."
636 IF A=55 THEN C$="---.."
637 IF A=56 THEN C$="----."
638 IF A=57 THEN C$="....."
639 RETURN
700 REM SET UP SOUND
705 FOR I=0 TO 6
710 POKE 54272+I,0
715 NEXT
720 POKE 54296,14
725 POKE 54272,0
730 POKE 54273,30
735 POKE 54275,8
740 POKE 54276,0
745 POKE 54277,0
750 POKE 54278,192
755 RETURN
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This  program  generates  Morse  code  for  an  input  string,
displaying  the  dots  and  dashes  on  the  screen  as  the
corresponding sounds are played.

The provided Morse code example printing the codes for the
word 'RADIOACTIVITY'. Note that when run you'll also hear the
dots and dashes.

800 REM DELAY
810 T=TI
820 L=D*U
830 IF ABS(TI-T)<L THEN GOTO 830
840 RETURN
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RING MODULATION

Ring  modulation  modifies  one  voice  using  the  output  of
another voice, allowing the programmer to construct a variety
of interesting sounds. In addition to producing sound effects,
bell-like or gong-like sounds can also be generated using this
approach.

Ring  modulation  on  the  Cody  SID,  like  the  original  SID,
requires two voices and has some important limitations. Only
triangle waves are supported, so the primary voice must be set
to output a triangle wave along with the ring modulation bit
(bit 2) in the control register. Also unlike real ring modulation,
ring  modulation  for  the  SID  only  relies  on  multiplying  the
signs of the signals, rather than a full multiplication as in true
ring modulation.

The secondary voice that supplies the other input for ring
modulation must also be set up with a frequency for any of
this to work. Other settings on the secondary voice are ignored
and  otherwise  has  no  effect  on  the  ring  modulation.  The
corresponding  voice  used  for  the  secondary  voice  in  ring
modulation  is  hardwired:  Voice  1  uses  voice  3,  voice  2  uses
voice 1, and voice 3 uses voice 2.

For an example of ring modulation, see the following Cody
BASIC  example  that  generates  a  somewhat-technological
humming sound. In addition to the typical ADSR envelope, it
uses voice 1 and voice 3 together. Voice 1 is set up as a triangle
wave with ring modulation turned on, and voice 3 is set up with
a separate frequency to modulate voice 1's output.
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A program that produces a low, fading hum. A sound like this
could be used for some kind of futuristic machinery or perhaps
a teleport between game levels.

10 FOR I=0 TO 29
20 POKE 54272+I,0
30 NEXT
40 POKE 54296,14
50 POKE 54272,0
60 POKE 54273,40
70 POKE 54277,160
80 POKE 54278,251
90 POKE 54286,0
100 POKE 54287,10
110 POKE 54276,21
120 T=TI
130 IF ABS(TI-T)<120 THEN GOTO 130
140 POKE 54276,20
150 T=TI
160 IF ABS(TI-T)<120 THEN GOTO 160
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INTRODUCTION

The Cody Computer has multiple input and output devices
built  into it.  Using the Propeller it  has two UARTs for serial
communication, one connected to the Prop Plug port and the
other  to  the  expansion  port  on  the  back.  Another  chip,  the
65C22 Versatile Interface Adapter, implements two 8-bit I/O
ports  along  with  some  miscellaneous  signals  and  a
programmable shift register.

Some of these capabilities are already in use by the Cody
Computer. For example, Port A on the 65C22 I/O chip is used
to read the keyboard matrix and joystick ports, while port A's
control signals are used to check if a cartridge is plugged into
the  expansion  port.  Port  B,  on  the  other  hand,  is  connected
directly to the expansion port for use in your own programs
and projects.

Being able to connect your own circuits and peripherals to
the Cody Computer opens up many new options and projects.
You could write your own machine-language games and store
them on a  cartridge,  effectively  turning the Cody Computer
into  an  8-bit  game  machine.  You  could  implement  modern
protocols for communicating with other chips, such as I2C or
SPI, and use them to interface with the outside world. Projects
requiring  simple  serial  communications  (such  as  reading
NMEA sentences from a GPS) could be built with either of the
Cody  Computer's  UARTs,  provided  the  external  devices  can
support the Cody Computer's slower (by modern standards)
speeds.  And for  projects  that  require  extra  capabilities,  you
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could even wire another microcontroller to the expansion port
to extend the base system.

Wiring stuff into the expansion slot or ports is one of
the  few  ways  that  you  could  easily  destroy  your  Cody
Computer.  While  modern electronics  aren't  as  brittle  or
likely to fry as they once were,  incorrect  connections or
voltages  could  still  result  in  doom.  Also  be  aware  that
while the Cody Computer's chips can drive 3.3-volt digital
signals, you'll want to follow good design practices when
connecting  up  motors,  relays,  and  higher  voltages  or
currents. Think through what you're doing and refer to the
65C22  and  Propeller  data  sheets  as  well  as  the  Cody
Computer's schematics. 

KEYBOARD AND JOYSTICK INPUT

We covered  the  Cody Computer's  keyboard  in  chapter  2,
including  a  discussion  of  the  keyboard  matrix  and  how the
joystick ports are actually treated as the last two rows of the
keyboard. The keyboard is wired to the 65C22 I/O chip's Port
A,  which  scans  the  keyboard and joystick  using three  of  its
pins. The three pins are decoded into one of eight rows by a 1-
of-8 decoder chip,  with the five pins for that row or joystick
port read back into the 65C22.

In assembly language programs you will have to scan the
keyboard  and  joystick  by  communicating  with  the  65C22's
Port A directly. However, in your Cody BASIC programs this is
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handled  automatically  by  the  BASIC  interpreter.  It  has  an
interrupt  in  the  background  that  scans  the  keyboard  and
joystick matrix many times per second, updating a portion of
memory with the data. You can access the values with a  PEEK
statement.

Memory locations  $10 (decimal 16) through  $15 (decimal
21)  are  populated  with  the  scanned  key  rows.  Memory
locations  $16 (decimal  22)  and  $17 (decimal  23)  store  the
scans  for  joystick  ports  1  and  2.  Because  of  the  Cody
Computer's  keyboard  wiring,  the  bits  are  actually  inverted,
meaning that  a  0 indicates  a  key or  button that  is  pressed,
while a 1 indicates that it's not pressed.

To see this in action, try the below Cody BASIC program. It
loops over the values in the memory region we just mentioned,
then prints out each bit as well as the entire number. You can
press keys on your keyboard or use your joystick, then watch
as  the  bits  change.  The  program  isn't  particularly  fast,
particular as it has a nested loop that calculates each bit and
prints it to the screen.
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A Cody BASIC program that prints out the current state of the
keyboard and joystick matrix.

Once you've played around with the program, try comparing
the  results  you  get  to  the  Cody  Computer's  keyboard
schematic (available online or in Chapter 2 of this book). You
should be able  to  match up the key you're  pressing with  a
position in the keyboard matrix,  then see the corresponding
bits for that row on the screen.

Your  own  programs  don't  need  to  perform  the  per-bit
calculations or display anything at all. The most common use
case for reading the keyboard or joystick like this is in a game
where you want to determine particular keypresses or joystick
actions.  For  that,  you  will  want  to  just  check  the  relevant
memory locations and bits.

This is particularly relevant for reading the joystick. Even in
a BASIC game you may want to read the joystick to move a

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR A=0 TO 7
40 D=PEEK(16+A)
50 M=128
60 FOR B=0 TO 7
70 N=0
80 IF AND(D,M)>0 THEN N=1
90 PRINT N;
100 M=M/2
110 NEXT
120 PRINT " (",D,")"
130 NEXT
140 GOTO 20
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player around on the screen, and the following example will
help  get  you started.  It  reads  from the last  of  the  memory
locations,  $16 and  $17,  then examines each bit to determine
what position the joystick has and whether the fire button is
being pushed.

A Cody BASIC program that reads the joysticks and prints out
the current joystick position and fire button status.

In an assembly language program, however, you'll have to
scan the keyboard and joystick yourself. Cody BASIC won't be
able to help you. However, the techniques you learn in Cody
BASIC can make it easier. For example, learning how to map
the keyboard and joystick values to the keyboard matrix and
computer  schematic  will  give  you  a  head  start  on

10 PRINT CHR$(222)
20 PRINT AT(0,0);
30 FOR I=1 TO 2
40 PRINT "JOY ",I,": ";
50 D=PEEK(16+5+I)
60 PRINT TAB(10);
70 IF AND(D,16)=0 THEN PRINT "FIRE";
80 PRINT TAB(16);
90 IF AND(D,8)=0 THEN PRINT "RIGHT";
100 PRINT TAB(22);
110 IF AND(D,4)=0 THEN PRINT "LEFT";
120 PRINT TAB(28);
130 IF AND(D,2)=0 THEN PRINT "DOWN";
140 PRINT TAB(34);
150 IF AND(D,1)=0 THEN PRINT "UP";
160 PRINT
170 NEXT
180 GOTO 20
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understanding how to program them. You can also rely on the
existing code within the Cody BASIC interpreter as a place to
start writing your own.

SERIAL INPUT AND OUTPUT

The  Cody  Computer  also  has  two  UART  (Universal
Asychronous  Receiver  Transmitter)  peripherals  implemented
using  the  Propeller.  These  allow  the  Cody  Computer  to
communicate with other systems over a serial port, with some
restrictions. In most respects the Cody Computer UARTs serve
a similar function to the 6551 Asynchronous Communications
Interface  Adapter  (ACIA)  used  in  many  6502-based
computers, but in reality they're quite different to program.

The Cody Computer UARTs are specific to the needs of the
Cody Computer, so they only support a standard 8-N-1 serial
configuration with 8 data bits, no parity bit, and one stop bit.
It's also entirely polling-based, which means you have to check
them on a  regular  basis  from within  your  program.  On the
other  hand,  they  have  ring  buffers  for  transmitting  and
receiving bytes, which means you don't have to check them as
often. Each UART has a total of 23 registers, almost all of them
related to the ring buffer.

A  ring  buffer  is  a  data  structure  commonly  used  for
communications, and it consists of a range of memory devoted
to storing data. Along with the data are two values indicating
the start and the end of the data in the buffer, the head and the
tail.  When  data  enters  the  buffer  it's  stored  at  the  head
position, which is then moved forward. When data is removed
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from the buffer it's taken from the tail position, which is then
moved  forward  as  well.  However,  the  positions  actually  roll
around from the end of the buffer back to the start, hence the
term "ring buffer." (This also means that to determine when
the buffer is full, we have to either store a count or look at the
distance between the head and tail.)

To actually program a UART, you'll need to POKE and PEEK
its registers just like you have for the other peripherals. UART
1,  connected  to  the  Propeller  Plug  port,  resides  at  $D480
(decimal 54400). UART 2 is part of the expansion port on the
back and resides at  $D4A0 (decimal 54432).  From either of
those  positions,  the  offsets  to  a  particular  register  are  the
same,  just  shifted by the base address for the UART you're
talking to.

The first UART register, register $0, is the control register. It
sets the baud rate to use when sending or receiving data. The
baud rate  goes  into  the  lower  half  of  the  register,  with  the
current half of the register currently being unused. Similar to
the Cody SID, you'll need to look up the matching baud rate
for each number in the following table. The values are actually
taken from the 6551's baud rate options and do not follow any
standard progression.

Value (dec) Value (hex) Bit Rate

0 $0 Invalid

1 $1 50

2 $2 75

3 $3 110

4 $4 135
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Value (dec) Value (hex) Bit Rate

6 $6 300

7 $7 600

8 $8 1200

9 $9 1800

10 $A 2400

11 $B 3600

12 $C 4800

13 $D 7200

14 $E 9600

15 $F 19200
The Cody Computer's UART baud rate table. Inspired by the
6551's  baud  rate  options,  these  values  cover  the  common
baud rates for systems of a particular vintage.

The  second  UART  register,  register  $1,  is  the  command
register. It consists of a single bit at bit 0 that turns the UART
on and off. Setting it to 1 turns the UART on, while setting it to
0 resets the UART. After you turn the UART on or off, you need
to check the UART's status register to ensure it has processed
the command. (We'll cover that in a minute.)

The  third  UART  register,  at  $2,  is  the  status  register.  It
provides a window into what the UART is currently doing. Bit 0
is  unused.  Bit  1  is  set  to  1  if  a  framing  error  has  occurred,
indicating that a stop bit wasn't received as expected. Bit 2 is
set to 1 if an overrun has occurred, meaning that more data was
coming into a receive buffer than there was room to store it.
Bits  3  and  4  indicate  if  data  is  currently  received  or
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transmitted,  respectively.  Bit  6  indicates  whether  or  not  the
UART  is  running  and  should  be  polled  when  the  UART  is
turned on or off to wait until the UART is in the proper mode.

The fourth register at $3 is reserved. The next two registers,
$4 and $5, contain the head and tail positions for the UART's
receive buffer. The UART will update the head position as data
is received, while you must update the tail position as you read
from it.

A  similar  situation  exists  for  registers  $6 and  $7,  the
transmit ring buffer head and tail positions. Because you are
putting data to be sent into the buffer, you will be the one to
update  the  head  position.  The  UART  will  update  the  tail
position as it sends the data.

The remaining registers consist of the receive and transmit
ring buffers. The receive buffer starts at $8 and goes on for 8
bytes. The transmit buffer starts immediately after at $10 and
goes on for an additional 8 bytes. Because of the nature of the
ring buffer implementation used by the Cody Computer, only
seven bytes can be in use at any one time. This is because to
store a full eight bytes, the head and tail positions would be
equal, a case indistinguishable from an empty buffer without
additional information (such as a count). Rather than make the
implementation more complicated, to keep things simple the
maximum capacity is limited by one byte.

TRANSMITTING DATA

Now that we've had a bit of theory on the UART, consider the
following example Cody BASIC program. It  will  collect some
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information from you, including a string to send over the serial
port.  It  then  turns  the  UART  on,  waits  for  it  to  start  up,
configures it and sends the string as ASCII values. It also has to
poll the ring buffer as it empties to fill it up with the rest of the
data you're trying to send.

To run the program you should be able  to  use the same
serial  program you've  been  using  to  communicate  with  the
Cody  Computer  until  now.  You'll  just  need  to  set  it  up  to
receive with the baud rate you select, and then begin sending
data to it using this program.

10 REM UART TRANSMIT EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 PRINT "TEXT";
90 INPUT S$
100 REM STRING TO BYTES
110 L=LEN(S$)
120 I=0
130 IF I=L THEN GOTO 180
140 S(I)=ASC(S$)
150 S$=SUB$(S$,1,LEN(S$)-1)
160 I=I+1
170 GOTO 130
180 REM CONFIGURE UART
190 POKE A+1,0
200 IF AND(PEEK(A+2),64)>0 THEN GOTO 200
210 POKE A+0,B
220 POKE A+6,0
230 POKE A+1,1
240 IF AND(PEEK(A+2),64)=0 THEN GOTO 240
250 REM TRANSMIT LOOP
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A short example in Cody BASIC that shows how to send data
by  low-level  programming  of  a  UART.  In  practice  these
operations  would  be  done  either  by  the  BASIC  interpreter
itself or from within an assembly language program.

There are a  few key parts  of  this  program.  Note how the
UART base address is selectable. Also note how the program
breaks the string you enter into a series of numbers to send via
the  UART.  Regarding  the  actual  UART  programming,  the
program turns the UART off and waits for the status register to
update. It then sets up the baud rate and configures the UART
before turning it back on, again waiting for the status register.

For the main loop, it uses an approach common to working
with a ring buffer. It checks the head and tail positions, then
performs a quick subtraction to see if the buffer is full. If not, it
adds  another  character  to  send,  then  increments  the  head
position  so  that  the  UART knows  to  pick  it  up.  Because  the
values  wrap  around,  there  are  some  additional  things  the
program  does,  such  as  using  modular  arithmetic  when
incrementing a value or an absolute value when performing a
subtraction.

In a real program, it would be a good idea to shut the UART
off  when  it's  done.  To  keep  this  example  as  minimal  as

260 FOR I=0 TO L-1
270 H=PEEK(A+6)
280 T=PEEK(A+7)
290 IF ABS(H-T)>6 THEN GOTO 270
300 POKE A+16+H,S(I)
310 POKE A+6,MOD(H+1,8)
320 PRINT "SENDING CHR '",CHR$(S(I)),"' (",S(I),")"
330 NEXT

402



possible, that's not done here. In a lower level program written
in  assembly  language,  constantly  polling  and  busy-waiting
would  also  leave  much  to  be  desired.  In  that  situation,  it's
better  to  perform  the  polling  on  a  periodic  basis,  or  to
interleave a quick check of the UART into the main loop of your
program.

RECEIVING DATA

The UART also receives data when turned on. The baud rate
option  set  into  the  control  register  is  used  for  receive  and
transmit and both operations occur simultaneously (the UART
is  "full  duplex"  rather  than  "half  duplex").  The  receive  ring
buffer  is  populated  with  the  incoming  data  and  the  UART
automatically updates the receive buffer head register as new
data arrives. The programmer is responsible for reading data
from  the  buffer  and  updating  the  tail  register,  exactly  the
opposite as what happens when transmitting via the UART.

The  following  Cody  BASIC  program sets  up  the  UART  to
receive data. You can run it in the same manner as the transmit
example  above  but  using  your  serial  program  to  send
characters to the Cody Computer instead. Note that because
the  entire  program  is  written  in  Cody  BASIC,  it  runs  very
slowly compared to assembly language, and there's significant
overhead. While it can support even the highest available baud
rates  for  the  UART,  you  will  likely  need  to  insert  a  per-
character  delay  inside  your  serial  program  to  communicate
without overrunning the buffer. Otherwise this little program
just won't be able to keep up.
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A Cody BASIC example of receiving data from a UART at a low
level.  This is  only an example that  unfortunately runs quite
slowly. In actual usage the program would likely be written in
assembly language if the existing Cody BASIC input routine
was insufficient.

10 REM UART RECEIVE EXAMPLE
20 PRINT "UART (1-2)";
30 INPUT U
40 IF U=1 THEN A=54400
50 IF U=2 THEN A=54432
60 PRINT "BAUD RATE (1-15)";
70 INPUT B
80 REM CONFIGURE UART
90 POKE A+1,0
100 IF AND(PEEK(A+2),64)>0 THEN GOTO 100
110 POKE A+0,B
120 POKE A+5,0
130 POKE A+1,1
140 IF AND(PEEK(A+2),64)=0 THEN GOTO 140
150 REM RECEIVE LOOP
160 E=PEEK(A+2)
170 IF AND(E,2)>0 THEN GOTO 260
180 IF AND(E,4)>0 THEN GOTO 280
190 H=PEEK(A+4)
200 T=PEEK(A+5)
210 IF H=T THEN GOTO 160
220 C=PEEK(A+8+T)
230 POKE A+5,MOD(T+1,8)
240 PRINT "RECEIVED CHR '",CHR$(C),"' (",C,")"
250 GOTO 160
260 PRINT "FRAMING ERROR"
270 END
280 PRINT "OVERRUN ERROR"
290 END
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The  overall  program  flow  is  very  similar  to  the  transmit
example. It obtains the configuration data from the user, turns
the UART off to reset it, turns it back on and waits for it to come
up, sets the UART up, and begins listening. Each time a new
character is found in the buffer, it's removed from the buffer
and an update message is printed to the screen.

Unlike the transmit example, this example checks the status
register for the UART's two error modes, both of which only
show up when receiving. A framing error (bit 1 in the status
register) indicates that the UART didn't read a stop bit when
expected, meaning that something was out of whack (perhaps
different baud rates between sender and receiver, or perhaps
the sender wasn't sending 8-N-1). An overrun error (bit 2 in
the status register) means that the program couldn't read data
out of the buffer as fast as it was coming in, and the UART ran
out of room to store more data.

The  examples  show  transmit  and  receive  separately,  but
keep in mind that the Cody UARTs can do both at the same
time. Setting up the UARTs is exactly the same, but both the
receive and transmit  buffers  would need to  be checked and
updated to support simultaneous transmit and receive.

It's not a particularly difficult task, but it's one best left to
low-level  programs  in  assembly  language.  For  high-speed
communication using the UARTs in Cody BASIC, you're best
off  using the  OPEN statement to  redirect  INPUT and  PRINT
statements to the serial port. This topic is covered in Chapter 6
while discussing how to read and write text files over a serial
link,  but  the  same technique  can  be  used for  general  text-
based serial input and output. (Even binary data could be sent
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across  if  a  hex  or  other  encoding  is  used,  albeit  with  some
additional overhead.)

GENERAL-PURPOSE INPUT AND
OUTPUT

Aside from the UART and some of the special 65C22 pins
(such as  its  built-in  shift  register),  most  of  the  pins  on the
Cody  Computer's  expansion  port  are  not  dedicated  to  any
particular  use.  These  can  be  configured  either  as  inputs  or
outputs by setting the 65C22's Data Direction Register  B at
address  $9F02 (decimal 40706). By default, each bit is zero
and configured as an input, but setting the bit to 1 makes it an
output instead. Output values for each pin can be specified by
writing  to  IO  Data  Register  B  at  address  $9F00 (decimal
40704), while reading the same register will return the input
values for the input pins.

As a simple example we'll use one of the pins to blink an
LED.  To  build  this  circuit  you will  need a  small  breadboard.
Expansion port pin 1 (counting from the rightmost side when
looking down on the Cody Computer) should be connected to
the  ground  row,  pin  2  should  be  connected  to  the  positive
voltage row, and pin 12 should be connected to an LED through
a current-limiting resistor. The LED's anode (long lead) should
be connected to the resistor's other terminal, with its cathode
(the short  lead) connected to ground.  The Cody Computer's
expansion port is not designed to be hot-plugged, so turn the
computer  off  when  wiring  to  it,  then  turn  it  back  on  when
you're finished.
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The simple breadboard circuit at left blinks an LED under the
Cody Computer's control.

Once wired up, the following Cody BASIC program can be
used to blink the LED on and off for a few cycles. It clears the
data register then sets up output pin 1 as an output by writing
to  the  data  direction  register.  After  that,  bit  1  of  the  data
register  is  toggled  off  and  on  in  a  loop  with  a  brief  delay,
blinking the LED.
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A program to blink an LED.

Each  pin  can  also  be  used  as  an  input  when  the
corresponding bit in the data direction register is turned off. In
this case, the input bits can be read by reading from the port B
data register as mentioned above.

A simple circuit based on the LED circuit can be used to show
this. The LED and resistor are no longer needed, and the wire
connected  to  pin  12  of  the  expansion  port  can  instead  be
plugged into the 3.3 volt or ground buses for an input value of
1  or  0  respectively.  However,  you  should  be  careful  when
rewiring the  circuit  and running the  program below,  as  you
don't want to plug the pin into one of the buses when set up in
output mode. Instead, as before, wire up the circuit when the
computer is off, then turn the computer on.

10 POKE 40704,0
20 POKE 40706,1
30 FOR I=0 TO 9
40 POKE 40704,1
50 T=TI
60 IF TI-T<60 THEN GOTO 60
70 POKE 40704,0
80 T=TI
90 IF TI-T<60 THEN GOTO 90
100 NEXT
110 POKE 40706,0
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An even more simple circuit can be used to drive an input pin
using either the 3.3V and ground lines.

The following Cody BASIC program will read the input pin
and display its current value. The data direction register is set
to zero, then the data register itself is read in a loop. The value
for pin 1 is selected using an AND function (unconnected input
pins can flap between 0 and 1  so bit-masking the value we
want makes the output clearer to read). When the program is
running, you can move the input wire back and forth between
the 3.3 volt and ground lines to produce a 1 or 0 input.
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A program to read and display a single input bit.

SPECIAL PINS AND SHIFT REGISTERS

The 65C22 also has two handshaking ports consisting of two
pins each. The pins for port A CA1 and CA2, are already in use
as a cartridge-detect mechanism for the Cody Computer. The
others,  CB1  and CB2,  are  free  for  use in  your  own projects.
While  these  pins  can  be  used to  implement  a  handshaking
mechanism for 8-bit data transfer across port B as discussed in
the 65C22's data sheet, there are also other possibilities.

One possibility is to use the pins as an interrupt input. This
would  allow  external  devices  to  signal  that  something  has
occurred and have an interrupt  handler  run in  an assembly
language program. Another interesting option is to configure
the pins as a shift register, letting you clock data in or out on a
periodic basis.

None of these scenarios are trivial,  so if  you intend to do
something like this in your own projects, you'll want to refer to
the 65C22 data sheet. It's also difficult to come up with good
examples  of  more  advanced  features  without  having  some
other  parts  around  that  can  use  them,  so  by  necessity  this
section  is  somewhat  limited.  We  can  demonstrate  the  shift

10 POKE 40706,0
20 I=PEEK(40704)
30 PRINT AND(I,1)
40 GOTO 20
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register function using an LED, but to follow along, it would be
helpful  to have access to an oscilloscope or  other means of
seeing the actual signal.

First  you'll  need  a  circuit.  For  those  without  any  kind  of
oscilloscope or logic analyzer tool,  you'll  want a circuit  very
similar to the LED circuit earlier in this chapter. However, in this
case, instead of connecting the LED's resistor to expansion port
pin 12, you'll connect it to expansion port pin 3. Expansion port
pin 3 is wired to the 65C22's CB2 pin,  which has the actual
data coming out of the shift register.

An LED circuit connected to the expansion port's CB2 pin. The
LED brightness changes depending on the data sent out of the
shift register. Here it glows a dull red because few of the bits in
the data sequence are ones.
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The 65C22 supports various shift register modes for both
input and output using different clock signal sources. Most of
the  configuration  happens  through  the  65C22's  Auxiliary
Control Register at address  $9F08 (decimal 40715).  For this
example,  we're going to be setting it  up as a simple output
controlled by the 65C22's Timer 2 internal clock. This means
that bits through 2 through 4 of that register need to be set to
binary 100 according to the data sheet.

We also need to set up 65C22 timer 2 to generate the clock
signal.  Each  time  the  Cody  Computer's  system  clock  ticks,
Timer 2 will decrement by one. We give the timer a value to
count down from, and the time it takes to count to zero ends up
being the time for one phase of the clock. The timer 2 counter
is a 16-bit value with the low byte at address $9F08 (decimal
40712) and the high byte at address  $9F09 (decimal 40713).
We write  the  low byte  followed by  the  high  byte,  with  the
writing of the high byte triggering the timer's clock to restart
with the new timer value.

The shift  register's  output is  kept in a register at  address
$9F0A (decimal 40714). The value written there continues to
be reused until a new value is programmed in. Other registers
or interrupts can be used to determine when the shift register
needs to be fed new data, but for our simple example, we're
fine with the value wrapping around.

You can  see  all  this  put  together  in  a  small  Cody BASIC
program.  It  prompts  you  for  a  value  to  write  to  the  shift
register,  then sets up the shift register and timer 2 with the
longest  possible  delay  in  this  mode.  Counting  down  from
65535 with a 1-megahertz system clock means that the shift
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register sends out a new bit about every .07 seconds, which is
too fast to see without some way to capture the actual signal.

A program to send a pattern out of the shift register.

However, different patterns will change the brightness of the
connected LED because it will be on or off for different periods
of time. For example, a value of 255 is all ones, which means
the LED will be at maximum brightness, while a value of 0 is all
zeroes,  so  the  LED  will  be  off.  A  decimal  value  of  170
corresponds to a binary 10101010, while a decimal value of 136
corresponds to 10001000. Try different values and see their
results.

If you do have an oscilloscope around, you can actually see
the  individual  zeroes  and  ones.  The  65C22's  CB1  pin  is
connected  to  expansion  port  pin  4  and  acts  as  the  shift
register's  clock.  The  65C22's  CB2  pin  is  connected  to
expansion port pin 3 and actually sends (or receives) the data.
Connect your first oscilloscope probe to expansion port pin 4,
your second oscilloscope probe to expansion port pin 3, and
set up your oscilloscope to trigger on the first probe.

You should see a  square  wave for  the  clock  signal  and a
sequence of highs and lows for the data signal corresponding
to  whatever  number  you  typed  in.  This  isn't  purely  an

10 INPUT I
20 POKE 40714,I
30 C=OR(AND(PEEK(40715),227),16)
40 POKE 40715,C
50 POKE 40712,255
60 POKE 40713,255
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academic exercise,  as you might end up having to do pretty
much the same thing to  track down bugs when bit-banging
various protocols out of the expansion port. A logic analyzer
would also suffice.

Watching  the  shift  register's  clock  and  data  pins  using  an
oscilloscope. The yellow trace shows the shift register's clock
and the purple trace shows the shift register's data output. The
clock will always be the same but the data will change based
on what's being shifted out.

Remember that the shift register isn't just used for output. It
can also be used for input from an external device. It's just a
matter  of  wiring  it  up  and  then  writing  the  appropriate
software in Cody BASIC or assembly language to talk to it.
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Note  that  the  65C22  shift  register  is  not  compatible
with SPI communications, though there are some hacks to
work  around  it  for  one  particular  SPI  mode  (the
Steckschwein  retrocomputer  actually  does  this  to
implement  an  SPI  master).  For  this  reason  the  Cody
Computer implements SPI in software, as you'll  learn in
the next section. However, the 65C22's CB pins can do a
lot, and you should refer to the 65C22 data sheet to learn
more  about  them.  And  for  your  own  Cody  Computer
peripherals, you can do it your way. 

SPI COMMUNICATION AND
CARTRIDGES

The Cody Computer's expansion port is a relatively general-
purpose device.  With the few exceptions noted above,  every
pin  is  programmable  as  an  input  or  an  output  and  can  be
directly controlled from either BASIC or assembly language.
By themselves or with minimal additional hardware they can
even implement more modern data protocols such as Inter-
Integrated Circuit (I2C) or the Serial Peripheral Interface (SPI).

In  fact,  some  of  the  general-purpose  pins  also  have  a
designated special use to load programs from cartridges. Like
many computers of the 8-bit era, the Cody Computer supports
program  cartridges  that  can  be  plugged  directly  into  the
expansion port. If one is detected using the CA lines, the Cody
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Computer's  ROM  will  load  the  program  from  the  cartridge
over SPI and run that program instead of Cody BASIC. 

This  topic  is  complex  enough  to  warrant  a  separate
discussion. More details are provided in Chapter 11, Cartridges
and SPI.
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INTRODUCTION

In this chapter we'll provide some examples of programming
the Cody Computer in 65C02 assembly language. The chapter
isn't  an  introduction  to  the  65C02's  assembly  language  in
itself.  If  you haven't  worked with it  before,  you're better  off
learning the basics using an online emulator before digging
into these examples. The 6502 family, while decades old, was
one of the most popular microprocessor families in existence.
Documentation, both historical and modern, is plentiful online.

Regarding  the  chip  itself,  the  65C02  is  essentially  an
updated  6502  with  some  additional  instructions  added  and
invalid ones removed. It has a very small number of registers
—an accumulator (A), two index registers (X and Y), and some
additional  registers  for  stack  and  CPU  flag  management.  It
supports most of the addressing modes typical for a chip of its
era, including direct addressing, indexed addressing, and some
forms of indirect addressing. It also uses a range of 256 "zero-
page" addresses that,  while stored in main RAM rather than
the processor, can be viewed as being a huge bank of low-cost
registers.

In its day it was the affordable alternative to more expensive
microprocessor or microcontroller families. Many of the most
popular  8-bit  computers  utilized  the  6502  family  for  their
main processor, and 16-bit variants of the family went on to be
used  in  later  computers,  add-ons,  and  game  consoles.  The
same efficiency and elegance that made the chip so popular in
prior decades is also put to good use by the Cody Computer.
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This  chapter  introduces  two  small  assembly  language
programs. The first is a SID player that can play many, but not
all,  Commodore  64 SID  music  files.  The  second is  a  simple
game demo inspired by 1980s platformers to show some of
the  Cody  Computer's  sound  and  graphics  capabilities.  The
programs are not too complicated, but without a basic grasp of
65C02  assembly  programming,  they  can  be  a  bit  much  to
digest.  If  you've programmed in another assembly language
but haven't worked with the 65C02, you'll probably be able to
at least follow along. Having a 65C02 reference will be handy.

Just as with Cody BASIC, the assembly language programs
are  written  using  64tass,  a  6502-family  assembler  for  the
Commodore computers that can also generate generic 65C02
code.  This  assembler  is  both  open-source  and  freely
downloadable, so installing or building a copy should not be
difficult on any of today's major computing platforms.

THE CODYSID MUSIC PLAYER

A  simple  SID  player  is  a  good  project  for  assembly
language.  It  requires  low-level  programming,  including
reading a SID file over the UART, loading it into memory, and
calling its functions on a regular basis to play the song. SID
files have some unique characteristics that make it  easier to
write a player, yet these same characteristics also make it less
likely  that  any  particular  SID  file  will  play  on  the  Cody
Computer.

At its core a SID file is just a program with a load address
and some functions to call.  One of the functions is  the  INIT
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routine that sets up the SID file. Another is a PLAY routine that
plays the current portion of the song when called on a regular
basis  by  the  player.  Everything  else,  including  the  way  the
music data is stored, is under the control of the person who
wrote the SID.

This is very different from more traditional music formats
such  as  MIDI  that  contain  structured  data  about  the  song.
Because a SID file is a program, each SID has its own unique
expectations  about  where  it  will  be  loaded,  how  it  will  be
called, the memory layout of the system, and what peripherals
(including interrupts and timers) are present.

While the Cody Computer has a rudimentary SID built in,
it's not a Commodore 64. As a result many perfectly valid SID
files  will  fail  to  play  on  it.  However,  many  of  them  will,
particularly if we constrain ourselves to a certain subset of SID
file types and carefully look at their sizes and load addresses.
For now, we'll limit ourselves to PSID files of version 2, then
prepare ourselves for a certain amount of disappointment.

Even some incompatible SIDs might work after running
them  through  a  relocator  tool  such  as  Linus  Akesson's
sidreloc.  Another  option would be to  write  a  player  for
Compute!  Magazine's  MUS  file  format,  which  is  more
MIDI-like and has fewer hardware dependencies. We won't
be covering any of that in this book. 
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THE PSID FILE FORMAT

There are several versions of the SID file format. PSID files
are less platform-specific and more amenable to playing them
without full C64 compatibility. RSID files, on the other hand,
generally  require  a  full  emulator  or  real  C64.  We'll  limit
ourselves  to  PSID  files,  and  within  that  category,  we'll  only
support version 2 of the format. This still leaves us with many
songs to try out.

The file begins with a header containing some information
about the song. Much of this we don't care about at all. A few
parts of it, such as the song name, author, and other related
information, are nice to know but not necessary for playing it.
A  few  pieces  of  information  related  to  function  addresses
within the SID file are required, so we'll have to get those from
the  header.  We'll  also  need  to  take  into  account  that  the
header is in a big-endian format but the 65C02 works as a
little-endian system.

After the header comes the actual SID data. Because of the
assumptions we've made, we can expect the SID data will begin
with the load address for the SID itself. This tells us where to
copy it into memory, and we hope that it won't conflict with our
own unique memory layout. (There's actually a field for this in
the header, but it's usually not populated and we ignore it for
our purposes.)

Once the SID is loaded starting at its load address, we have
to set up a periodic timer interrupt to call the song's code and
play it. The SID itself needs us to call its  INIT function before
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each time we play,  then call  its  PLAY routine on each timer
interrupt to keep the song playing. (It's actually possible for a
SID  to  contain  multiple  songs,  something  we  handle  when
calling the INIT function.)

As  far  as  the  actual  music  data,  it's  just  contained
somewhere within the SID code and data we loaded. We don't
know how it's stored, what it does, or much of anything about it
without  reverse-engineering the file  itself.  In  many respects
writing a SID player is more like writing a program loader, and
it's one of the reasons this project is relatively straightforward.

You can find many references online to the SID file format if
you're interested in the details. For what we're going to write,
this  is  sufficient to begin going through the code.  Any little
details we haven't covered here will  be mentioned as we go
through the CodySID program.

THE CODYSID PROGRAM

The  CodySID  source  code  starts  with  constant  definitions
referring to various memory addresses that will be used by the
program.  Many  of  these  you've  already  heard  of  in  earlier
chapters,  such  as  the  UART  1  and  65C22  VIA  register
addresses. We'll need the UART to load the SID files, while we
need the  VIA to  scan  the  keyboard  and  run  a  timer.  Other
addresses  include  the  base  addresses  of  the  current  screen
memory and the SID.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM    = $C400               ; Screen memory base address
SIDBASE   = $D400               ; SID register base address
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Constants for many of the peripherals' register locations.

The  program  will  also  need  some  places  to  put  its  data.
These include STRPTR to loop through text strings, SCRPTR for
the current location in screen memory, and SIDPTR to point to
the  beginning  of  the  loaded  SID  data.  Other  data  includes
SONGNUM for the current SID song, a PLAYBIT flag indicating
if a song is playing, and several KEYROW variables containing
the current keyboard matrix as of the last scan. (Because we
need to register our own interrupt service routine on top of the
one  built  into  Cody  BASIC,  we  also  define  ISRPTR to  know
where the ISR address needs to go.)

UART1_BASE  = $D480             ; Register addresses for UART 1
UART1_CNTL  = UART1_BASE+0
UART1_CMND  = UART1_BASE+1
UART1_STAT  = UART1_BASE+2
UART1_RXHD  = UART1_BASE+4
UART1_RXTL  = UART1_BASE+5
UART1_TXHD  = UART1_BASE+6
UART1_TXTL  = UART1_BASE+7
UART1_RXBF  = UART1_BASE+8
UART1_TXBF  = UART1_BASE+16

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E
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Assorted  zero-page  variables  for  memory  locations,  song
status, and keyboard matrix status.

Many of the constants are dedicated to the SID header. Our
program will load the header into a fixed address at $0200 as
denoted by the SIDHEAD constant. From there we have offsets
into  the  header  portions  our  program  might  actually  need,
such as the init routine address (SIDINIT), play routine address
(SIDPLAY),  and  song  information  (SIDNAME for  the  name,
SIDAUTH for  the  author,  SIDRELE for  the  release/copyright
info, and SIDSNUM for the number of songs).

Offsets within the SID header.

Two 16-bit values define the program header for the Cody
Computer. When Cody BASIC tries to load a machine language
program, it needs to know where to put it and how long it is.
This means that each program begins with a load address and

ISRPTR    = $08                 ; Pointer to the ISR address zero page variable

STRPTR    = $D0                 ; Pointer to string (2 bytes)
SCRPTR    = $D2                 ; Pointer to screen (2 bytes)
SIDPTR    = $D4                 ; Pointer to SID load address (2 bytes)
SONGNUM   = $D8                 ; Song number
PLAYBIT   = $D9                 ; Play bit (are we playing a song?)
KEYROW0   = $DA                 ; Keyboard row 0
KEYROW1   = $DB                 ; Keyboard row 1
KEYROW2   = $DC                 ; Keyboard row 2
KEYROW3   = $DD                 ; Keyboard row 3
KEYROW4   = $DE                 ; Keyboard row 4
KEYROW5   = $DF                 ; Keyboard row 5

SIDHEAD   = $0200               ; Page to store the SID file header
SIDLOAD   = SIDHEAD+$08
SIDINIT   = SIDHEAD+$0A
SIDPLAY   = SIDHEAD+$0C
SIDNAME   = SIDHEAD+$16
SIDAUTH   = SIDHEAD+$36
SIDRELE   = SIDHEAD+$56
SIDSNUM   = SIDHEAD+$0E
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an ending address.  We can calculate  these using the  ADDR
constant  and  LAST label  we define.  We also tell  the  64tass
assembler  to  start  generating  code  starting  at  our  load
address using the .LOGICAL directive.

Creating the program header and telling the assembler where
our program will start.

On startup, control begins in the MAIN routine right at the
load address. In our case it performs all the initial setup, such
as enabling our interrupt service routine, turning on the timer,
and preparing to scan the keyboard. After that it tries to load a
SID file, then enters the program's main loop. User input from
the keyboard is mapped to the menu options, and as the user
makes selections, the program branches to the corresponding
code.

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the SID player. Responsible for initialization, information display,
; and menu selection.
;
MAIN        SEI
            STZ PLAYBIT         ; Not playing by default

            LDA #$07            ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
            STA VIA_DDRA

            LDA #<TIMERISR      ; Set up timer ISR location
            STA ISRPTR+0
            LDA #>TIMERISR
            STA ISRPTR+1

            LDA #<20000         ; Set up VIA timer 1 to emit ticks for timing purposes
            STA VIA_T1CL
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            LDA #>20000
            STA VIA_T1CH

            LDA #$40            ; Set up VIA timer 1 continuous interrupts, no outputs
            STA VIA_ACR

            LDA #$C0            ; Enable VIA timer 1 interrupt
            STA VIA_IER

            CLI                 ; Turn on interrupts

            JSR CMDLOAD         ; Always start by loading and playing a song

_MENU       JSR SHOWMENU        ; Always print the menu just in case

_SCAN       JSR SHOWREGS

            LDA KEYROW0         ; Pressed Q for quit?
            AND #%00001
            BNE _QUIT

            LDA KEYROW1         ; Pressed L for load?
            AND #%10000
            BNE _LOAD

            LDA KEYROW2         ; Pressed N for next?
            AND #%01000
            BNE _NEXT

            LDA KEYROW5         ; Pressed P for previous?
            AND #%10000
            BNE _PREV

            BRA _SCAN           ; Repeat main loop

_QUIT       JSR STOPSID         ; Shut off SID

            SEI                 ; Disable interrupts

            RTS                 ; Return to BASIC and hope it works

_LOAD       JSR CMDLOAD         ; Run the load command
            BRA _MENU

_NEXT       LDA KEYROW2         ; Wait for N key to be released
            BNE _NEXT

            JSR STOPSID         ; Stop playing music

            LDA SONGNUM         ; Increment song number if within range, else play
            INC A
            CMP SIDSNUM
            BEQ _PLAY

            STA SONGNUM         ; Update song number and play
            BRA _PLAY

_PREV       LDA KEYROW5         ; Wait for P key to be released
            BNE _PREV

            JSR STOPSID         ; Stop playing music

            LDA SONGNUM         ; If song number at zero, just play the song
            BEQ _PLAY

            DEC SONGNUM         ; Otherwise decrement song number and then play
            BRA _PLAY
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CodySID's  main  routine.  It  begins  by  setting  up  the  Cody
Computer,  loading the first  SID,  and then entering the main
loop to handle menu selections.

Two routines act as a bridge between the CodySID program
and the SID's own routines. STARTSID starts the SID using the
current  song  number  and  calling  its  init  address.  STOPSID
stops playing of the SID by clearing the play flag and resets
the SID's  registers.  Note how interrupts  are disabled during
certain parts as we don't want the SID to play in the middle of
making these kinds of changes.

Routines  for  starting  and  stopping  SID  file  playback.  The
PLAYBIT variable is a flag indicating the current play status.

_PLAY       JSR SHOWINFO
            JSR STARTSID
            BRA _MENU

;
; STARTSID
;
; Begins playing the SID by calling its INIT function.
;
STARTSID    SEI                 ; Initialize and start playing the SID file
            LDA SONGNUM
            JSR _CALLINIT
            LDA #1
            STA PLAYBIT
            CLI
            RTS
_CALLINIT   JMP (SIDINIT)

;
; STOPSID
;
; Stops the currently playing SID.
;
STOPSID     SEI
            STZ PLAYBIT
            CLI

            LDA #0
            LDX #0
_LOOP       STA SIDBASE,X
            INX
            CPX #25
            BNE _LOOP
            RTS
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We need a routine to load a SID when the user requests it.
The  CMDLOAD routine  handles  this  by  displaying  an
appropriate message on the screen, then loading a SID using
the  LOADHEAD and  LOADDATA routines.  After  the  file  is
loaded  some  quick  byte-swaps  are  done  to  convert  certain
addresses from big-endian to little-endian. Before returning,
the load routine starts playing the SID.

;
; CMDLOAD
;
; Implements the menu option to load a SID file over the UART connection.
;
CMDLOAD     JSR STOPSID         ; Stop the current song and clear the SID registers

            JSR SHOWSCRN        ; Clear screen

            LDX #0              ; Display message about waiting to receive SID file
            LDY #3
            JSR MOVESCRN

            LDX #MSG_RECEIVE
            JSR PUTMSG

            JSR UARTON          ; Receive the SID file
            JSR LOADHEAD
            JSR LOADDATA
            JSR UARTOFF

            LDA SIDINIT+0       ; Swap INIT address bytes (big-endian in PSID header)
            PHA
            LDA SIDINIT+1
            STA SIDINIT+0
            PLA
            STA SIDINIT+1

            LDA SIDPLAY+0       ; Swap PLAY address bytes (big endian in PSID header)
            PHA
            LDA SIDPLAY+1
            STA SIDPLAY+0
            PLA
            STA SIDPLAY+1

            LDA SIDSNUM+0       ; Swap song count address bytes (big endian in PSID header)
            PHA
            LDA SIDSNUM+1
            STA SIDSNUM+0
            PLA
            STA SIDSNUM+1

            STZ SONGNUM         ; Always start at first song

            JSR SHOWSCRN        ; Clear screen

            JSR SHOWINFO        ; Display the info of the SID file we read

            JSR STARTSID        ; Start playing the current SID and song
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The CMDLOAD routine handles SID file loading at a high level.

Support routines include the KEYSCAN routine for scanning
the keyboard matrix  and the  TIMERISR routine for  handling
timer interrupts. Both of these are very similar to routines in
the  Cody  BASIC  interpreter  except  for  the  SID  specific
behavior.  TIMERISR calls  KEYSCAN to  update  the  keyboard
variables scanned by the main routine,  and it  also calls  the
SID's play routine when a song is playing.

A simple routine for scanning the keyboard matrix and storing
the results into the KEYROW zero-page variables.

            RTS                 ; All done

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN     PHA                   ; Preserve registers
            PHX

            STZ VIA_IORA          ; Start at the first row and first key of the keyboard
            LDX #0

_LOOP       LDA VIA_IORA          ; Read the keys for the current row from the VIA port
            EOR #$FF
            LSR A
            LSR A
            LSR A
            STA KEYROW0,X

            INC VIA_IORA          ; Move on to the next keyboard row
            INX

            CPX #6                ; Do we have any rows remaining to scan?
            BNE _LOOP

            PLX                   ; Restore registers
            PLA

            RTS

;
; TIMERISR
;
; A timer interrupt handler that scans the keyboard and calls the SID's play routine.
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The SID player's TIMERISR updates the keyboard variables and
plays the next part of the song if playing.

Loading of the SID data is handled by the  LOADHEAD and
LOADDATA routines. These are called once the UART is turned
on and rely on various UART helper routines to read incoming
bytes.  Because  we  have  no  specific  end-of-file  for  the
incoming SID data, we rely on a timeout instead. This could be
a  problem  over  an  unreliable  serial  link,  but  relatively  low
baud  rates  over  modern  communications  are  generally
reliable.  If  you  find  yourself  having  intermittent  problems,
check your connections and cables.

;
TIMERISR    BIT VIA_T1CL          ; Clear 65C22 interrupt by reading

            PHA                   ; Preserve registers
            PHX
            PHY

            JSR KEYSCAN           ; Scan the keyboard

            LDA PLAYBIT           ; Are we playing?
            BEQ _DONE

            JSR _CALLPLAY         ; Call the play routine

_DONE       PLY                   ; Restore registers
            PLX
            PLA

            RTI                   ; All done

_CALLPLAY   JMP (SIDPLAY)

;
; LOADHEAD
;
; Loads a SID file header into the SIDHEAD page. Assumes PSID version 2.
;
LOADHEAD  LDX #0

_READ     JSR UARTGET
          BCC _READ

          STA SIDHEAD,X
          INX

          CPX #$7C
          BNE _READ
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LOADHEAD and LOADDATA copy the SID's contents from the
UART into the Cody Computer's memory.

Important information in the SID header is shown to the user
when  the  file  is  playing.  In  CodySID  this  is  handled  in  the
SHOWINFO routine, which moves to certain positions on the
screen  and  prints  the  SID's  name,  author,  copyright
information, song numbers, and code addresses.

          RTS

;
; LOADDATA
;
; Loads the SID file data into memory. The routine assumes the load address
; must be read from the file (not included in the SID header).
;
LOADDATA

_READ1    JSR UARTGET
          BCC _READ1
          STA SIDPTR+0

_READ2    JSR UARTGET
          BCC _READ2
          STA SIDPTR+1

          LDX #$FF

_READ3    DEX
          BEQ _DONE

          JSR UARTGET
          BCC _READ3

          LDX #$FF              ; Reset counter

          STA (SIDPTR)          ; Store data

          INC SIDPTR+0          ; Increment load address
          BNE _READ3
          INC SIDPTR+1
          BRA _READ3

_DONE     RTS

;
; SHOWINFO
;
; Displays SID information on the screen. This includes the song name,
; author, release/copyright, load/init/play addresses, and song number.
;
SHOWINFO  LDX #0                ; Move to song name position
          LDY #3
          JSR MOVESCRN
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          LDX #0                ; Print song name from header
_NAME     LDA SIDNAME,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _NAME

          LDX #0                ; Move to song author position
          LDY #4
          JSR MOVESCRN

          LDX #0                ; Print song author from header
_AUTH     LDA SIDAUTH,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _AUTH

          LDX #0                ; Move to song release/copyright position
          LDY #5
          JSR MOVESCRN

          LDX #0                ; Print song release/copyright information
_RELE     LDA SIDRELE,X
          JSR PUTCHR
          INX
          CPX #32
          BNE _RELE

          LDX #0                ; Print song load address from header
          LDY #7
          JSR MOVESCRN

          LDX #MSG_LOAD
          JSR PUTMSG

          LDA SIDLOAD+1
          JSR PUTHEX
          LDA SIDLOAD+0
          JSR PUTHEX

          LDX #0                ; Print song init address from header
          LDY #8
          JSR MOVESCRN

          LDX #MSG_INIT
          JSR PUTMSG

          LDA SIDINIT+1
          JSR PUTHEX
          LDA SIDINIT+0
          JSR PUTHEX

          LDX #0                ; Print song play address from header
          LDY #9
          JSR MOVESCRN

          LDX #MSG_PLAY
          JSR PUTMSG

          LDA SIDPLAY+1
          JSR PUTHEX
          LDA SIDPLAY+0
          JSR PUTHEX

          LDX #0                ; Print song number in SID
          LDY #10
          JSR MOVESCRN
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The  SHOWINFO routine  displays  the  song's  header
information.

While  the  song  is  playing,  the  SID's  registers  are  being
updated constantly by the code in the SID file itself. To show
the user what's going on, we periodically display the current
contents  of  the  SID  registers.  This  is  handled  by  the
SHOWREGS routine, which displays the registers broken down
by voice register bank and filter/volume register. This routine
is itself called from within the main loop to keep the screen up
to date.

          LDX #MSG_SONGNUM
          JSR PUTMSG

          LDA SONGNUM
          INC A
          JSR PUTHEX

          LDX #MSG_SONGOF
          JSR PUTMSG

          LDA SIDSNUM+0
          JSR PUTHEX

          RTS                   ; All done

;
; SHOWREGS
;
; Displays the SID register values as hex numbers on the screen.
;
SHOWREGS  LDX #3                ; Print register column headings
          LDY #12
          JSR MOVESCRN

          LDX #MSG_REGS
          JSR PUTMSG

          LDX #0                ; Print voice 1 registers
          LDY #13
          JSR MOVESCRN

          LDX #MSG_V1
          JSR PUTMSG

          LDX #0
_V1       LDA SIDBASE+0,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
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SHOWREGS is  responsible  for  displaying  the  current  SID
register  values  on  the  screen.  This  is  a  common  feature  in
many SID players.

Small helper routines are used to display other parts of the
user interface. SHOWMENU displays the menu at the bottom
of the main screen while  SHOWSCRN clears the screen and
prints the CodySID banner at the top.

          INX
          CPX #7
          BNE _V1

          LDX #0                ; Print voice 2 registers
          LDY #14
          JSR MOVESCRN

          LDX #MSG_V2
          JSR PUTMSG

          LDX #0
_V2       LDA SIDBASE+7,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #7
          BNE _V2

          LDX #0                ; Print voice 3 registers
          LDY #15
          JSR MOVESCRN

          LDX #MSG_V3
          JSR PUTMSG

          LDX #0
_V3       LDA SIDBASE+14,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #7
          BNE _V3

          LDX #27               ; Print filter and volume registers
          LDY #13
          JSR MOVESCRN

          LDX #0
_FV       LDA SIDBASE+21,X
          JSR PUTHEX
          LDA #20
          JSR PUTCHR
          INX
          CPX #4
          BNE _FV

          RTS
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Helper routines for displaying a new CodySID player screen
and the menu.

A  total  of  three  routines  exist  to  handle  communications
over the UART.  UARTON turns UART 1 on with a baud rate of
19200.  UARTGET checks to see if  any data is  in the receive
buffer,  and  if  so,  removes  it.  If  not,  the  routine  returns
immediately so that the program doesn't block.  (Code using
the routine can check if anything was read by looking at the
65C02's carry flag.) When the program is done reading a SID
file,  it  calls  UARTOFF to  turn  off  UART  1.  This  code  is
conceptually  similar  to  the  UART  code  in  the  Cody  BASIC

;
; SHOWMENU
;
; Shows the menu text at the bottom of the screen.
;
SHOWMENU  LDX #0
          LDY #20
          JSR MOVESCRN

          LDX #MSG_MENU
          JSR PUTMSG
          RTS

;
; SHOWSCRN
;
; Shows the CodySID banner at the top of the screen.
;
SHOWSCRN  JSR CLRSCRN

          LDX #16
          LDY #0
          JSR MOVESCRN

          LDX #MSG_CODYSID
          JSR PUTMSG

          LDX #6
          LDY #1
          JSR MOVESCRN

          LDX #MSG_SUBTITLE
          JSR PUTMSG

          RTS
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interpreter as well as the UART examples written in BASIC in
the previous chapter.

;
; UARTON
;
; Turns on UART 1.
;
UARTON    PHA
          PHY

_INIT     STZ UART1_RXTL          ; Clear out buffer registers
          STZ UART1_TXHD

          LDA #$0F                ; Set baud rate to 19200
          STA UART1_CNTL

          LDA #01                 ; Enable UART
          STA UART1_CMND

_WAIT     LDA UART1_STAT          ; Wait for UART to start up
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF   PHA

          STZ UART1_CMND          ; Clear bit to stop UART

_WAIT     LDA UART1_STAT          ; Wait for UART to stop
          AND #$40
          BNE _WAIT

          PLA

          RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET   PHY

          LDA UART1_STAT          ; Test no error bits set in the status register
          BIT #$06
          BNE _ERR

          LDA UART1_RXTL          ; Compare current tail to current head position
          CMP UART1_RXHD
          BEQ _EMPTY

          TAY                     ; Read the next character from the buffer
          LDA UART1_RXBF,Y
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UART routines used when a SID file is being loaded over the
serial port.

Some  additional  utility  routines  are  present  to  help  with
displaying  content  on  the  screen.  MOVESCRN moves  the
current output location to a particular x and y coordinate on
the screen, while CLRSCRN clears the screen entirely by filling
the memory with whitespace characters.

          PHA                     ; Increment the receiver tail position
          INY
          TYA
          AND #$07
          STA UART1_RXTL
          PLA

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_ERR      LDX #MSG_ERROR
          JSR PUTMSG

_DONE     JMP _DONE

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN  LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          INY                     ; Increment pointer for each row
_LOOPY    CLC
          LDA SCRPTR+0
          ADC #40
          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1
          DEY
          BNE _LOOPY

          CLC                     ; Add position on column
          TXA
          ADC SCRPTR+0
          STA SCRPTR+0
          LDA SCRPTR+1
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The MOVESCRN and CLRSCRN routines set the current screen
location or clear the screen entirely.

Other utility routines include those for displaying content
on the screen.  PUTMSG prints a message string (defined by
one of the  MSG_ constants) at the current location.  PUTCHR
puts  a  single  character  at  the  current  location.  PUTHEX is
similar to  PUTCHR but displays the current value as a two-
digit  hex  number.  All  advance  the  screen  location  while
printing.

          ADC #0
          STA SCRPTR+1

          RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN   LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          LDA #20                 ; Clear screen by filling with whitespaces

          LDY #25                 ; Loop 25 times on Y

_LOOPY    LDX #40                 ; Loop 40 times on X for each Y

_LOOPX    STA (SCRPTR)            ; Store zero

          INC SCRPTR+0            ; Increment screen position
          BNE _NEXT
          INC SCRPTR+1

_NEXT     DEX                     ; Next X
          BNE _LOOPX

          DEY                     ; Next Y
          BNE _LOOPY

          RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG      PHA
            PHY
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            LDA MSGS_L,X        ; Load the pointer for the string to print
            STA STRPTR+0
            LDA MSGS_H,X
            STA STRPTR+1

            LDY #0

_LOOP       LDA (STRPTR),Y      ; Read the next character (check for null)
            BEQ _DONE

            JSR PUTCHR          ; Copy the character and move to next
            INY

            BRA _LOOP           ; Next loop

_DONE       PLY
            PLA

            RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR      STA (SCRPTR)        ; Copy the character

            INC SCRPTR+0        ; Increment screen position
            BNE _DONE
            INC SCRPTR+1

_DONE       RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
PUTHEX      PHA
            PHX
            TAX
            JSR HEXTOASCII
            PHA
            TXA
            LSR A
            LSR A
            LSR A
            LSR A
            JSR HEXTOASCII
            PHA
            PLA
            JSR PUTCHR
            PLA
            JSR PUTCHR
            PLX
            PLA
            RTS
HEXTOASCII  AND #$F
            CLC
            ADC #48
            CMP #58
            BCC _DONE
            ADC #6
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Utility  routines  for  putting strings  and hex numbers  on the
screen.

The  messages  that  can  be  displayed  on  the  screen  are
defined by set of constants. Each is prefixed with  MSG_ and
relates to a particular location in the program's message table.

The messages that may be displayed by the CodySID program.

The  string  themselves  are  defined  just  below  as  null-
terminated C strings.

_DONE       RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYSID   = 0
MSG_SUBTITLE  = 1
MSG_LOAD      = 2
MSG_INIT      = 3
MSG_PLAY      = 4
MSG_REGS      = 5
MSG_V1        = 6
MSG_V2        = 7
MSG_V3        = 8
MSG_MENU      = 9
MSG_RECEIVE   = 10
MSG_SONGNUM   = 11
MSG_SONGOF    = 12
MSG_ERROR     = 13
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The actual strings corresponding to each message ID.

To map the constants to the strings, the strings' addresses
are kept in a table of low bytes and high bytes. Each constant
represents an index into the table. When a particular string is
needed it's  easy for  the  PUTMSG routine to  find the string
pointer based on the index within the table.

Splitting the table into low and high bytes is a common trick
in 8-bit  code.  The program can use the same index register
value to look up both bytes without any other incrementing.

;
; The strings displayed by the program.
;
STR_CODYSID   .NULL "CodySID!"
STR_SUBTITLE  .NULL "The Cody Computer SID Player"
STR_LOAD      .NULL "Load $"
STR_INIT      .NULL "Init $"
STR_PLAY      .NULL "Play $"
STR_REGS      .NULL "FL FH PL PH CL AD SR    CL CH FR MV"
STR_V1        .NULL "V1 "
STR_V2        .NULL "V2 "
STR_V3        .NULL "V3 "
STR_MENU      .NULL "(L)oad (Q)uit (P)rev (N)ext"
STR_RECEIVE   .NULL "Send PSID V2 file and wait for end..."
STR_SONGNUM   .NULL "Song $"
STR_SONGOF    .NULL " of $"
STR_ERROR     .NULL "ERROR!"

;
; Low bytes of the string table addresses.
;
MSGS_L
  .BYTE <STR_CODYSID
  .BYTE <STR_SUBTITLE
  .BYTE <STR_LOAD
  .BYTE <STR_INIT
  .BYTE <STR_PLAY
  .BYTE <STR_REGS
  .BYTE <STR_V1
  .BYTE <STR_V2
  .BYTE <STR_V3
  .BYTE <STR_MENU
  .BYTE <STR_RECEIVE
  .BYTE <STR_SONGNUM
  .BYTE <STR_SONGOF
  .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
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The low-byte and high-byte portions of the message table.

The program's source code is ended with some boilerplate.
The LAST label is used to indicate the end of the program. This
is used when calculating the program length and end address
for  the  program  header,  as  you  may  remember  from  the
beginning  of  the  walkthrough.  The  .ENDLOGICAL assembly
directive ends the .LOGICAL directive used at the beginning of
the program to emit code for a particular load address.

Boilerplate at the end of the program.

BUILDING AND RUNNING CODYSID

Building CodySID with  tass64 is  straightforward.  You only
need  the  codysid.asm file  and  your  installed  tass64
assembler.  Just  run  the  same  command  as  in  the  previous
example,  but  for  CodySID:  64tass --mw65c02 --nostart  -o
codysid.bin codysid.asm.

;
MSGS_H
  .BYTE >STR_CODYSID
  .BYTE >STR_SUBTITLE
  .BYTE >STR_LOAD
  .BYTE >STR_INIT
  .BYTE >STR_PLAY
  .BYTE >STR_REGS
  .BYTE >STR_V1
  .BYTE >STR_V2
  .BYTE >STR_V3
  .BYTE >STR_MENU
  .BYTE >STR_RECEIVE
  .BYTE >STR_SONGNUM
  .BYTE >STR_SONGOF
  .BYTE >STR_ERROR

LAST                              ; End of the entire program

.ENDLOGICAL
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Assembling CodySID into a binary file.

Once you have the binary, you can load it from the Cody
Computer  like  any  other.  Run  LOAD  1,1 to  begin  a  load
operation from the Prop Plug, then send the newly-generated
binary over as you did in the previous example.

Once the program has started, it will prompt you to send a
SID file over.  You can send this from your terminal program
just like you did the program itself. When the SID file has been
received, the player will automatically begin playing the first
song  in  the  SID.  The  screen  contents  will  update  with  the
current  song  and  SID  register  information  as  the  song  is
played.  (If  the  SID is  incompatible,  however,  anything could
happen and you may have to restart the Cody Computer.)

You can use the on-screen options to load a different file,
quit the program, or go back and forth to the previous or next
song in the file (if any). Just press the key on your keyboard
corresponding to the menu option.

% 64tass --mw65c02 --nostart -o codysid.bin codysid.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file:   codysid.asm
Output file:       codysid.bin
Data:       1126   $0000-$0465   $0466
Passes:            2
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The CodySID program playing a SID file of AC/DC's Highway
to Hell. Note how the current SID register values are updated
as the song plays.

SUGGESTED SID FILES

The High-Voltage Sid Collection contains the largest single
repository of SID files. Many, but not all, of these can be used
on the Cody Computer. During development a subset of these
were found to work reasonably well and were used for testing.
A list  of  many of  these high-quality known working files is
given below.

Agent USA by Tom Snyder (1984).• 
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Axel F by Barry Leitch (1986).
The Blackadder Theme by Joachim Wijnhoven (2002).
The Blues Brothers soundtrack by Paul Tankard (1991)
contains multiple songs. It clobbers the screen memory
but is otherwise playable.
Ducktales by Vincent Voois (1990).
Electricity by Pawel Wieczorek (1994).
Ghostbusters by Etienne Muson (1985).
Highway to Hell by Benjamin Dibbert (2022).
Jingle Bells by Richard Bayliss (2002).
The Mayhem in Monsterland soundtrack by Steve
Rowlands (1993) contains multiple songs and sound
effects.
The Mohican in the Gael by Zack Maxis (2024).
The Murder on the Mississippi soundtrack by Ed Bogas
(1986) contains over a dozen brief songs.
Popcorn by Sami Sepp (1980).
Radioactivity by Sami Louko (2022).
The Railroad Works by John Wentworth (1984) plays
correctly but clobbers the default character set. Restart
the computer after playing.
Seahorses by Ed Bogas (1984) contains multiple songs
and sound effects from Sea Horse Hide'n Seek.
Starman by Sami Sepp (2015).
Star Trek - The Rebel Universe by David Dunn (1989) is a
rendition of the TV theme for the game of the same name.
Summer Games (1984) from Epyx contains the national
anthems and event songs from the game.
Take My Breath Away by Steven Diemer (1991).

• 
• 
• 

• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
• 

• 

• 
• 

• 

• 
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THE "CODY BROS." DEMO

Games are often written in assembly language because of
its  better  performance.  This  is  particularly  the  case  for  any
kind of game with fast action such as arcade games. We won't
be writing an entire game in this section, but we are going to
write  a  simple  demo  reminiscent  of  Super  Mario  Brothers, 
Great  Giana  Sisters,  and  other  platform  games.  It's  a  good
oppportunity  to  show  how  some  of  the  Cody  Computer's
features can be used together to make a game in assembly
language.

We'll  keep the game and its  graphics simple so we don't
need other tools to make it,  instead just writing the relevant
data as constants and tables in a simple assembly language
program.  To  keep things  very  simple,  our  game will  have  a
game world that is 64 tiles wide by 25 tiles high. We'll also
only have a handful of tile types and only a single sprite.

All  control  will  occur  by reading the  joystick  periodically.
When  moving  around  in  the  game,  the  world  willscroll
horizontally from side to side.  The player will  have a single
sprite under their control, and we'll be able to move the sprite
left and right. Moving up on the joystick will produce a simple
animation and sound effect, while pulling down on the joystick
will change the sprite's color. The fire button will exit the game
and return to Cody BASIC.

Because it's a computer named after a dog, our sprite will be
a stylized Pomeranian. And because the demo is inspired by a
particular  Nintendo  classic,  we'll  have  his  outfits  be  red  or
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green.  Lastly,  for  an animation and sound effect,  we'll  make
him  bark  rather  than  jump  or  shoot  fireballs.  Once  you've
mastered the basics, there's no reason you can't use what you
learn here to make a real game.

THE CODYBROS PROGRAM

As  with  the  CodySID  player,  the  program  starts  with  a
variety of constant definitions and memory locations that we'll
be using throughout the program. Some of these relate to the
memory  locations  used  for  double-buffering  of  graphics.
Because it's not possible to redraw an entire screen during the
interval between frames, we have to render the next screen to
another buffer. When the drawing is done, we switch them out
between frames.  This means that unlike many programs, we
have  two  different  screen  memory  and  color  memory
locations.

Some of the most important memory locations we'll be using.
This  includes  the  double-buffers  for  the  screen  and  color
memory.

We'll be reading from the joystick, so the constants for the
65C22 VIA addresses are also included.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM1   = $A000               ; Screen memory locations for double-buffering
SCRRAM2   = $A400

COLRAM1   = $A800               ; Color memory locations for double-buffering
COLRAM2   = $AC00

SPRITES   = $B000               ; Sprite memory locations
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The memory locations for the 65C22 VIA's registers.

The  program will  need  to  read  and  update  several  video
register  locations,  so  those  also  need  to  be  included
somewhere in the program. Just like for the others, we'll define
constants instead of using magic numbers.

Memory locations  for  the  registers  in  the  Cody Computer's
video interface device.

We'll  only have a  single sprite  in  our  program,  and we'll
place it at the beginning of the first sprite bank. This keeps the
number of constants we need to define to a minimum.

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E

VID_BLNK  = $D000               ; Video blanking status register
VID_CNTL  = $D001               ; Video control register
VID_COLR  = $D002               ; Video color register
VID_BPTR  = $D003               ; Video base pointer register
VID_SCRL  = $D004               ; Video scroll register
VID_SCRC  = $D005               ; Video screen common colors register
VID_SPRC  = $D006               ; Video sprite control register
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The sprite registers used in the demo. There are many more
for other sprites, but we're only using the first sprite in the first
sprite bank.

The game won't have music, but it will have a sound effect.
That means we'll need to know where the SID registers are in
memory.  In  particular,  we'll  be  using  voice  1  for  our  sound
effect,  so  we'll  need  those  registers,  along  with  a  control
register for setting the global volume. The SID, of course, has
two other voices that we won't be using.

The SID registers we'll be using in the program. The focus is on
voice 1, which we'll use for a bark-like sound effect.

We'll  also need to track the player's  x  and y coordinates
along with the corner x and y position on the map. The player's
y  coordinate  won't  be  used  much  for  our  demo,  but  the  x
coordinate is needed to determine where the player is on the
screen. Because the player can move in per-pixel increments
but the tile map is along character boundaries, we'll have to
convert back and forth at times in the program.

SPR0_X    = $D080               ; Sprite X coordinate
SPR0_Y    = $D081               ; Sprite Y coordinate
SPR0_COL  = $D082               ; Sprite color
SPR0_PTR  = $D083               ; Sprite base pointer

SID_BASE  = $D400               ; SID registers (mostly for voice 1)
SID_V1FL  = SID_BASE+0
SID_V1FH  = SID_BASE+1
SID_V1PL  = SID_BASE+2
SID_V1PH  = SID_BASE+3
SID_V1CT  = SID_BASE+4
SID_V1AD  = SID_BASE+5
SID_V1SR  = SID_BASE+6
SID_FVOL  = SID_BASE+24
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In our simple demo, the player can move up to 256 pixels
because the x-coordinate is stored in a single byte. This is also
the reason our  game world is  limited to  64 horizontal  tiles
(recall that each character on the screen is four pixels wide). In
a real game you would probably want to have a larger game
world,  so you would either need to use a 16-bit  number or
keep track of per-character offsets in a separate variable.

Variables  in  zero-page  used  for  the  player's  location  and
corners.

When we draw the game screen we'll need pointers to the
game map and to the video device's screen and color memory.
These will be typical 16-bit variables like you've already seen
in other assembly programs.

Pointer variables used when drawing the game screen.

We also have a few remaining flag variables. One tells us
which of the two screen and color memory buffers to use, as
we'll  need to  toggle  between them on each frame.  Another
tells  us  whether  the  game  sprite  is  moving  forward  or
backward  in  the  game  world.  We'll  also  need  a  temporary
variable for some of our calculations, so it's declared here as
well.

PLAYERX   = $D0                 ; Player coordinates
PLAYERY   = $D1

CORNERX   = $D2                 ; Screen top-left corner coordinates
CORNERY   = $D3

MAPPTR    = $D4                 ; Memory pointers for drawing the screen
SCRPTR    = $D6
COLPTR    = $D8
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Miscellaneous zero-page variables used by the program.

After our definitions are in place, we start with the beginning
of  the program.  This  program header  is  the same as  in  the
other  assembly  language  example.  We  also  use  the  same
assembly directive as before to generate our code relative to
the program's load address.

The program header containing the start and end addresses of
the  program.  Cody  BASIC's  program  loader  needs  this
information to be able to load and run the program.

Immediately  after  the  program header  is  the  start  of  the
program, in our case a  MAIN routine. It begins by setting up
some  of  the  variables  in  the  game  world,  along  with
configuring the SID, VID, and VIA peripherals.

BUFFLAG   = $DA                 ; Flag indicating what buffer is being used
FWDREV    = $DB                 ; Flag indicating player direction (forward or reverse)

TEMP      = $DC                 ; Temporary variable

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR
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Initial setup in the MAIN routine.

After  the  initial  setup  is  done  the  program  needs  to
populate  the  game world.  Part  of  that  involves  copying  the
sprite  data for  our  sprite  into locations in  sprite  memory.  It
also has to copy a set of characters into character memory, as
these characters are the custom tiles that make up the game
world itself.  (For  our  example we'll  just  copy them into  the
beginning  of  the  normal  character  memory  location,  but  in
your own games, you could even move the character memory
itself to a different location.)

;
; MAIN
;
; The starting point of the demo. Performs the necessary setup before the demo runs.
;
MAIN        STZ PLAYERX         ; Reset player position
            LDA #183
            STA PLAYERY

            STZ FWDREV          ; Player moving forward by default

            STZ BUFFLAG         ; Clear double buffer flag

            LDA #$07            ; Set VIA data direction register A to 00000111 (pins 0-2 outputs, pins 3-7 inputs)
            STA VIA_DDRA

            LDA #$06            ; Set VIA to read joystick 1
            STA VIA_IORA

            LDA #$01            ; Sprite bank 0, white as common color
            STA VID_SPRC

            LDA VID_COLR        ; Set border color to black
            AND #$F0
            STA VID_COLR

            LDA #$E0            ; Store shared colors (light blue and black)
            STA VID_SCRC

            LDA #$04            ; Enable horizontal scrolling
            STA VID_CNTL
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Setting  up  the  characters  (game  tiles)  and  sprites  for  the
demo.

At this point the program enters the game loop.  On each
loop we have  to  convert  the  player's  location  to  the  screen
coordinates, draw the screen, and then handle any user input
via  the  joystick.  Some  of  the  details  are  handled  by
subroutines, but the main loop organizes most of it.

The first part of the main loop calculates the screen location,
taking into account the bounds of the game world. Ordinarly
we  want  the  game  world  centered  on  the  player's  current
location, but at the beginning and end, we need to do a special
check instead. We don't want the player to be able to move
outside of the game world.

Once that's taken care of, the program calls DRAWSCRN to
draw the screen for this frame. As part of drawing the screen,
the  program  waits  for  a  vertical  blank  to  update  the  video
registers before returning. As soon as it returns, the program
calls  DRAWSPRT to  update  the  sprite  in  its  correct  location
while the vertical blank is still occurring.

            LDX #0              ; Copy game map tiles into character memory
_COPYCHAR   LDA CHARDATA,X
            STA $C800,X
            INX
            CPX #80
            BNE _COPYCHAR

            LDX #0              ; Copy sprite data into video memory
_COPYSPRT   LDA SPRITEDATA,X
            STA SPRITES,X
            INX
            CPX #255
            BNE _COPYSPRT

            LDA #$D8            ; Initial sprite color
            STA SPR0_COL
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Code  for  calculating  the  current  frame's  coordinates  before
drawing it.

The  rest  of  the  main  loop  processes  the  joystick  input.  It
reads VIA port A and then checks the bits to see if any buttons
or switches are pressed. The fire button will exit the program,
while right and left joystick movements move the player one
pixel for that frame. Pushing the joystick up calls BARK, which
displays  a  simple  animation  and  sound  effect.  Pushing  the
joystick  down calls  SWAPCOLOR,  which  toggles  the  sprite's
clothing color between green and red.

LOOP        LDA PLAYERX         ; Calculate coarse scroll position
            LSR A
            LSR A

            CMP #21
            BCC _TOOLO

            CMP #46
            BCS _TOOHI

            SEC
            SBC #21
            STA CORNERX

            BRA _DRAW

_TOOLO      STZ CORNERX
            BRA _DRAW

_TOOHI      LDA #25
            STA CORNERX
            BRA _DRAW

_DRAW       JSR DRAWSCRN        ; Draw the screen and sprite
            JSR DRAWSPRT

            LDA VIA_IORA        ; Read joystick
            LSR A
            LSR A
            LSR A

            BIT #16             ; Fire button?
            BEQ _FIRE

            BIT #8              ; Joystick right?
            BEQ _RIGHT
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The final portion of the  MAIN routine. This code handles the
user input from the joystick and fire button.

The  BARK routine handles the sound and animation when
the player moves the joystick up. It starts by configuring the
SID  to  play  a  sawtooth  wave,  then  enters  an  inner  loop,
_WOOF.  In  the  _WOOF loop,  the  program  increases  the
frequency  of  the  sound  slightly  while  moving  the  sprite
upward on the screen. At the end the sound is shut off and the
sprite moved back to its normal y-coordinate.

            BIT #4              ; Joystick left?
            BEQ _LEFT

            BIT #2              ; Joystick down to swap colors?
            BEQ SWAPCOLOR

            BIT #1              ; Joystick up to bark?
            BEQ BARK

            BRA LOOP

_FIRE       RTS                 ; Exit on fire button

_LEFT       LDA #1              ; Move left
            STA FWDREV

            LDA PLAYERX
            BEQ _NEXT

            DEC PLAYERX
            BRA _NEXT

_RIGHT      STZ FWDREV          ; Move right

            LDA PLAYERX
            CMP #232
            BEQ _NEXT

            INC PLAYERX

_NEXT       JMP LOOP

;
; BARK
;
; Handles a barking sound/animation for the sprite, then jumps back to the
; main loop.
;
BARK        LDA #$0F            ; Set main volume
            STA SID_FVOL

            LDA #<2400          ; Set starting frequency
            STA SID_V1FL
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The BARK routine makes a bark-like sound while moving the
game sprite up and down quickly. As a first approximation, it
simulates a barky agitated or excited Pomeranian.

The other player action (other than movement) is handled
by  SWAPCOLOR.  Those of you who have played the original
Super Mario  Brothers may have noted that  Mario  and Luigi
were basically the same sprite, just with red or green colors.
Our demo does a similar thing, with the player sprite starting
out  green.  When  toggled,  we  switch  out  the  sprite's  color
register so that the green color is red. And when toggled again,
it switches back to green, and so on.

            LDA #>2400
            STA SID_V1FH

            LDA #$50            ; Attack/decay
            STA SID_V1AD

            LDA #$F0            ; Sustain/release
            STA SID_V1SR

            LDA #$21            ; Begin playing
            STA SID_V1CT

            LDX #0              ; Loop counter

_WOOF       JSR WAITBLANK       ; Wait for the next frame

            DEC SPR0_Y          ; Decrement sprite Y for dog hop

            CLC                 ; Increment frequency for next loop
            LDA SID_V1FL
            ADC #100
            STA SID_V1FL

            LDA SID_V1FH
            ADC #0
            STA SID_V1FH

            INX                 ; Increment for next loop
            CPX #10
            BNE _WOOF

            LDA #0              ; Stop playing
            STA SID_V1CT

            LDA PLAYERY         ; Move sprite back to original y
            STA SPR0_Y

            JMP LOOP
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SWAPCOLOR toggles  the  player  sprite  between  green  and
red.

Drawing the screen is handled by the DRAWSCRN routine. It
sets up a pointer into the map data, then iterates over the data
to populate the screen and color memory for the next frame.
Because it takes so long to draw a screen, all the drawing is
done offscreen in a technique known as double-buffering. At
the end, the routine waits for a vertical blank, then switches the
video registers to point to the new screen and color memory
areas.  We flip back and forth between them on each call  to
DRAWSCRN so one is being shown while the other is being
drawn.

This  isn't  quite  how the drawing would be done in  a  real
game. In a real game, the screen would only be fully updated
every  fourth  frame.  The  scroll  registers  would  be  used  to

;
; SWAPCOLOR
;
; Swaps the sprite color (red/green or green/red) and jumps back to the main
; loop.
;
SWAPCOLOR   LDA SPR0_COL        ; Check current sprite colors
            CMP #$D8
            BEQ _RED

_GRN        LDA #$D8            ; Make sprite wear green
            STA SPR0_COL
            BRA _WAITJOY

_RED        LDA #$28            ; Make sprite wear red
            STA SPR0_COL
            BRA _WAITJOY

_WAITJOY    LDA VIA_IORA        ; Read joystick
            LSR A
            LSR A
            LSR A

            BIT #2              ; Wait for joystick release
            BEQ _WAITJOY

            JMP LOOP            ; All done
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slowly slide the current screen across while the new screen is
being drawn (roughly one-quarter of it on each frame). When
the scroll wraps around, the new screen would be ready and
swapped in.

That approach is more complex but it allows a better frame
rate than our demo. What we have here is intended to be an
example of double-buffering without additional complications.
It does mean that we're doing extra work redrawing the entire
screen  on  each  call,  but  the  result  is  suitable  to  show  the
basics. Just be aware that there are better ways of doing this in
real life.

Much of the drawing (or more accurately, copying) is done
in the COPYROWS routine. It takes a single parameter in the X
register, the number of rows to copy. This is because, again, in
a real application only a subset of screen rows may be copied
between  frames  (rather  than  slowing  down  the  whole
application to draw the whole thing each time). We just use a
value of 25 to draw all the rows.

;
; DRAWSCRN
;
; Draws the current visible of the screen. This routine uses double-buffering
; so that the new screen and colors are drawn to a different location, and the
; screens/colors are switched out during the vertical blanking interval.
;
; In a real application the screen may need to be drawn (offscreen) in sections
; to keep up with a high game frame rate. For an example this works well enough
; to avoid glitches or tearing during scrolling.
;
DRAWSCRN    LDA #<MAPDATA       ; Start map pointer at beginning of map
            STA MAPPTR+0
            LDA #>MAPDATA
            STA MAPPTR+1

            CLC                 ; Adjust map position based on player position
            LDA MAPPTR+0
            ADC CORNERX
            STA MAPPTR+0
            LDA MAPPTR+1
            ADC #0
            STA MAPPTR+1
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DRAWSCRN handles  most  of  the  high-level  operations
involved in  rendering a  new screen and color  memory area
based on the current map location.

The  screen  and  color  memory  is  updated  by  the
COPYROWS routine.  As mentioned, it  will  update a variable
number of rows on each call, specified by the value in the X
register.  It  also assumes that  the  MAPPTR is  pointed to the

            LDA BUFFLAG         ; Determine what buffer to draw to
            TAX

            LDA SCRRAMS_L,X     ; Start screen pointer at beginning of buffer
            STA SCRPTR+0
            LDA SCRRAMS_H,X
            STA SCRPTR+1

            LDA COLRAMS_L,X     ; Start color pointer at beginning of buffer
            STA COLPTR+0
            LDA COLRAMS_H,X
            STA COLPTR+1

            LDX #25             ; For now, try drawing everything
            JSR COPYROWS

            JSR WAITBLANK       ; Wait for the blanking interval to make changes

            LDA BUFFLAG         ; Determine what buffer to flip to
            TAX

            LDA BASEREGS,X      ; Update base register for screen memory
            STA VID_BPTR

            LDA COLREGS,X       ; Update color register for color memory
            STA VID_COLR

            LDA BUFFLAG         ; Toggle buffer flag
            EOR #$01
            STA BUFFLAG

            LDA PLAYERX         ; Update fine scroll position if needed

            CMP #(4*21)
            BCC _DONE

            CMP #(4*46)
            BCS _DONE

            AND #$03
            ASL A
            ASL A
            ASL A
            ASL A
            STA VID_SCRL

_DONE       RTS                 ; All done
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current source row in the map data, while SCRPTR and COLPTR
point  to  the  current  destination  rows  in  scren  and  color
memory.

Screen data is copied directly from the map data. Color data
is obtained by using the tile value as an index into a lookup
table,  COLORDATA,  that has the character-specific colors for
each tile. (For many games this technique is actually not that
optimal, as tiles may be drawn in a variety of colors, but for
this example it works nicely.)

Each row consists of 40 characters written to the screen and
color memory locations. Index registers are used to reference
particular memory locations relative to the pointers, but after
each row, they need to be updated to move to the next row. For
COLPTR and  SCRPTR they  need  to  be  incremented  by  40
because screen and color memory are 40 characters wide. For
MAPDATA the pointer needs to be incremented by 64 because
the game world is 64 tiles wide.

;
; COPYROWS
;
; Copies a number of rows from the game map into the screen and color memory. The
; number of rows to copy is stored in the X register.
;
COPYROWS

_XLOOP      PHX
            LDY #0

_YLOOP      LDA (MAPPTR),Y      ; Copy the character (game tile) into screen memory
            STA (SCRPTR),Y

            TAX                 ; Copy the color into color memory
            LDA COLORDATA,X
            STA (COLPTR),Y

            INY                 ; Next loop for Y
            CPY #40
            BNE _YLOOP

            CLC                 ; Increment map pointer to next row
            LDA MAPPTR+0
            ADC #64
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The COPYROWS routine updates a certain number of rows in a
screen and color memory location with the data from the game
map.

The sprite also needs to be updated on each frame. This is
handled  by  the  DRAWSPRT routine.  It  looks  at  the  current
player position in the game world and determines where the
sprite should be drawn on the screen. In most situations the
sprite should be drawn in the middle of the screen, but at the
beginning and end of the game world the behavior is different.
In  those  cases,  scrolling  stops,  so  the  sprite  has  to  move
instead.

Our  sprite  also  has  a  total  of  four  frames,  two  walking
forward and two walking backward. To specify the correct sprite
image, the program examines the value in FWDREV set by the
main loop to determine whether the player's moving forward
(right)  or  backward  (left).  Once  that's  decided,  the  current
player X coordinate is used to pick one of the two walk frames

            STA MAPPTR+0
            LDA MAPPTR+1
            ADC #0
            STA MAPPTR+1

            CLC                 ; Increment screen pointer to next row
            LDA SCRPTR+0
            ADC #40
            STA SCRPTR+0
            LDA SCRPTR+1
            ADC #0
            STA SCRPTR+1

            CLC                 ; Increment color pointer to next row
            LDA COLPTR+0
            ADC #40
            STA COLPTR+0
            LDA COLPTR+1
            ADC #0
            STA COLPTR+1

            PLX                 ; Next loop for X
            DEX
            BNE _XLOOP

            RTS                 ; All done
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for each direction. Even values use one sprite and odd ones the
other.

This  routine  gets  called  immediately  after  DRAWSCRN
because we want to make the sprite register updates during
the  vertical  blank  as  well.  When  drawing  the  screen  the
program  waits  until  a  vertical  blank  to  update  the  video
registers, and so calling this immediately after means the code
can run in the same vertical blank.

;
; DRAWSPRT
;
; Draws the sprite in the correct location for this frame. Note that the sprite
; isn't "drawn" so much as its registers updated so that it appears correctly.
; This should be called after drawing the screen because we want to sneak in
; during the vertical blank.
;
DRAWSPRT    LDA PLAYERX         ; Calculate new sprite location
            CMP #(21*4)
            BCC _LO

            CMP #(46*4)
            BCS _HI

            LDA #(21*4)
            BRA _SPRX

_LO         BRA _SPRX

_HI         SEC
            SBC #((46*4)-84)
            BRA _SPRX

_SPRX       ADC #12             ; Update sprite X
            STA SPR0_X

            LDA PLAYERY         ; Update sprite Y
            STA SPR0_Y

            LDA FWDREV          ; Update sprite base pointer (different frames)
            ASL A
            STA TEMP
            CLC
            LDA PLAYERX
            AND #$02
            LSR A
            ADC TEMP
            ADC #(4096/64)
            STA SPR0_PTR
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DRAWSPRT updates  the  sprite  on  the  screen  based  on  the
current game state.

WAITBLANK handles the actual waiting for a vertical blank.
First  it  waits  for  the blanking register  to  have a  zero value,
indicating that the screen is actively being displayed by the
video hardware. After detecting a zero, it waits for a transition
to a  1,  meaning that  we went  from drawing to  the blanking
interval. Just checking for a 1 won't do as we might be in the
middle or  at  the end of  the interval,  which isn't  necessarily
what we want.

The  Commodore  64,  like  many computers  of  its  day,
had an interrupt that would fire on particular screen lines.
That could be used to handle this in an interrupt rather
than  having  to  poll  for  a  changed  value.  Many  other
computers, including the Commodore VIC-20, didn't have
such an interrupt, so polling was the only option. The Cody
Computer falls into this latter category.

            RTS

463



The  WAITBLANK routine  waits  for  a  transition  between
drawing  the  visible  screen  (0)  and  blanking  (1).  Code  that
updates video registers should run in the blanking interval if
possible.

The game map is defined in  MAPDATA,  a sequence of 25
rows of 64 bytes. This is the source for drawing the screen, and
each byte represents a particular tile type. In real games, some
kind of map editor is usually used to make the game map. The
data  is  exported  to  an  assembly  file  to  include  in  your
program.  In  earlier  times,  the game map may have actually
been  designed  on  graph  paper  before  such  tools  were
common.  For  a  simple  example  like  this,  we  can  just  pop
numbers into the program as follows.

;
; WAITBLANK
;
; Waits for the vertical blank signal to transition from drawing to not drawing, then
; returns. Used to sync up screen/register updates so they don't occur in the middle
; of the screen.
;
WAITBLANK

_WAITVIS    LDA VID_BLNK        ; Wait until the blanking is zero (drawing the screen)
            BNE _WAITVIS

_WAITBLANK  LDA VID_BLNK        ; Wait until the blanking is one (not drawing the screen)
            BEQ _WAITBLANK

            RTS

;
; The game map.
;
; 0 = Sky
; 1 = Brick
; 2 = Cloud left
; 3 = Cloud middle
; 4 = Cloud right
; 5 = Hills left
; 6 = Hills middle
; 7 = Hills right
; 8 = ?
; 9 = ?
;
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MAPDATA is  a  sequence  of  bytes  that  represent  the  game
world.

The tiles themselves are represented as characters.  When
the video hardware draws the screen, the "characters" it draws
will  actually  be  the  game  world's  tiles.  The  MAIN routine
copies  these  characters  over  the  first  10  characters  in  the
default character memory at startup. We can use them in the
game  just  by  putting  the  matching  number  into  screen
memory.

MAPDATA

  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0
  .BYTE 0,0,2,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,2,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,3,3,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,2,3,3,4,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,2,3,3,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,3,4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0
  .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,5
  .BYTE 0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,1,1,0,0,0,0,0,5,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,5,6,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,0,5,6,6,7,5,6,6,6
  .BYTE 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,5,6,7,0,0,5,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6
  .BYTE 0,0,0,0,0,5,7,0,0,0,0,0,0,0,0,0,0,5,6,6,6,7,5,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6
  .BYTE 0,0,0,0,5,6,6,7,0,0,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,7,0,0,0,0,0,5,6,6,6,6,6,6,6,6,1,1
  .BYTE 0,0,0,5,6,6,6,6,7,0,0,0,0,0,0,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,0,0,0,0,5,6,6,6,6,6,6,6,6,7,0,0,0,5,6,6,6,6,6,6,6,6,6,1,1
  .BYTE 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
  .BYTE 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1

;
; The game's character tiles (used to draw the map).
;
CHARDATA

  .BYTE %11111111   ; Sky
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111
  .BYTE %11111111

  .BYTE %01010101   ; Brick
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  .BYTE %01000000
  .BYTE %01000000
  .BYTE %01000000
  .BYTE %01010101
  .BYTE %00000001
  .BYTE %00000001
  .BYTE %00000001

  .BYTE %11111100   ; Cloud left
  .BYTE %11000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %11000000
  .BYTE %11111100

  .BYTE %00000000   ; Cloud middle
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000

  .BYTE %00111111   ; Cloud right
  .BYTE %00000011
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000011
  .BYTE %00111111

  .BYTE %11111100   ; Hills left
  .BYTE %11111100
  .BYTE %11110001
  .BYTE %11110000
  .BYTE %11000100
  .BYTE %11000000
  .BYTE %00010000
  .BYTE %00000001

  .BYTE %00000000   ; Hills middle
  .BYTE %00010000
  .BYTE %00000000
  .BYTE %01000000
  .BYTE %00000100
  .BYTE %00000000
  .BYTE %01000000
  .BYTE %00000001

  .BYTE %00111111   ; Hills right
  .BYTE %00111111
  .BYTE %00001111
  .BYTE %01001111
  .BYTE %00000011
  .BYTE %00010011
  .BYTE %00000000
  .BYTE %01000100

  .BYTE %00000000   ; Unused
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
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The CHARDATA for the game tiles. This is copied into the first
10 entries in character memory on startup.

There is no connection between tiles and their colors. Color
memory is separate from screen memory, and each tile could
in  theory  be  drawn  in  a  variety  of  colors.  For  our  demo,
however,  each  tile  only  needs  one  particular  set  of  colors.
Rather than have an entire map just for colors, we can make a
small  lookup table to find the color memory value for each
game tile. COLORDATA is exactly such a lookup table.

COLORDATA contains the color memory value for each game
tile.

The last portion of data needed for the program is the data
for the Pomeranian sprite the player can control on the screen.
As mentioned earlier in the book, sprites are 12 pixels by 21

  .BYTE %00000000
  .BYTE %00000000

  .BYTE %00000000   ; Unused
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000
  .BYTE %00000000

;
; The color date to copy for each tile type.
;
COLORDATA

  .BYTE   $00       ; Sky (no colors)
  .BYTE   $09       ; Brick (black and brown)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $F1       ; Clouds (gray and white)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $D5       ; Hills (light green and green)
  .BYTE   $00       ; Unused
  .BYTE   $00       ; Unused
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pixels in size and have a layout very similar to C64 multicolor
sprites.  Each  sprite  fits  in  63  bytes  with  one  blank  byte
rounding up to an even 64 bytes.

For  the  demo we  have  a  total  of  four  sprites,  two  of  the
Pomeranian  walking  forward  to  the  right  and  two  of  the
Pomeranian walking backward to the left. This is a total of 256
bytes, all of which are copied to video memory and used as
sprite graphics during the game. The actual copying is done by
the  MAIN routine with the sprite registers being updated on
each call to DRAWSPRT.

;
; The sprite data for the Pomeranian sprite on the screen.
;
SPRITEDATA

  .BYTE %00000000,%00000001,%01000000   ; Pomeranian forward 0
  .BYTE %00010000,%00001101,%11110000
  .BYTE %00010000,%00001101,%01111111
  .BYTE %01010100,%00000101,%01010000
  .BYTE %01010100,%00110101,%01110000
  .BYTE %01010100,%10110101,%01010101
  .BYTE %01010100,%10111001,%01010111
  .BYTE %01010111,%10101110,%01010100
  .BYTE %01010111,%10101110,%01010000
  .BYTE %01010111,%10101110,%10100000
  .BYTE %00010110,%11101110,%10100000
  .BYTE %00011010,%11101110,%10100000
  .BYTE %00001010,%11101110,%10000000
  .BYTE %00001010,%10111010,%10000000
  .BYTE %00010110,%10111001,%01010000
  .BYTE %00010101,%01000001,%01010000
  .BYTE %01010101,%00000000,%01010000
  .BYTE %01010000,%00000000,%01010000
  .BYTE %01010000,%00000000,%01010000
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00000000

  .BYTE %00000000,%00000001,%01000000 ; Pomeranian forward 1
  .BYTE %00010000,%00001101,%11110000
  .BYTE %00010000,%00001101,%01111111
  .BYTE %01010100,%00000101,%01010000
  .BYTE %01010100,%00110101,%01110000
  .BYTE %01010100,%10110101,%01010101
  .BYTE %01010100,%10111001,%01010111
  .BYTE %01010111,%10101110,%01010100
  .BYTE %01010111,%10101110,%01010000
  .BYTE %01010111,%10101110,%10100000
  .BYTE %00010110,%11101110,%10100000
  .BYTE %00011010,%11101110,%10100000
  .BYTE %00001010,%11101110,%10000000
  .BYTE %00001010,%10111010,%10000000

468



SPRITEDATA consists  of  four  sprite  graphics,  two  of  a
Pomeranian  walking  to  the  right  and  two  of  a  Pomeranian
walking to the left.

The program ends with some lookup table used as part of
double-buffering. We have two different screen/color memory

  .BYTE %00000110,%10111001,%01000000
  .BYTE %00010101,%01000001,%01000000
  .BYTE %00010101,%00000101,%00000000
  .BYTE %00000101,%00000101,%00000000
  .BYTE %00010101,%00000101,%00000000
  .BYTE %01010100,%00000001,%01000000
  .BYTE %01010000,%00000001,%01000000
  .BYTE %00000000

  .BYTE %00000001,%01000000,%00000000   ; Pomeranian reverse 0
  .BYTE %00001111,%01110000,%00000100
  .BYTE %11111101,%01110000,%00000100
  .BYTE %00000101,%01010000,%00010101
  .BYTE %00001101,%01011100,%00010101
  .BYTE %01010101,%01011110,%00010101
  .BYTE %11010101,%01101110,%00010101
  .BYTE %00010101,%10111010,%11010101
  .BYTE %00000101,%10111010,%11010101
  .BYTE %00001010,%10111010,%11010101
  .BYTE %00001010,%10111011,%10010100
  .BYTE %00001010,%10111011,%10100100
  .BYTE %00000010,%10111011,%10100000
  .BYTE %00000010,%10101110,%10100000
  .BYTE %00000101,%01101110,%10010100
  .BYTE %00000101,%01000001,%01010100
  .BYTE %00000101,%00000000,%01010101
  .BYTE %00000101,%00000000,%00000101
  .BYTE %00000101,%00000000,%00000101
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00010100,%00000000,%00010100
  .BYTE %00000000

  .BYTE %00000001,%01000000,%00000000   ; Pomeranian reverse 1
  .BYTE %00001111,%01110000,%00000100
  .BYTE %11111101,%01110000,%00000100
  .BYTE %00000101,%01010000,%00010101
  .BYTE %00001101,%01011100,%00010101
  .BYTE %01010101,%01011110,%00010101
  .BYTE %11010101,%01101110,%00010101
  .BYTE %00010101,%10111010,%11010101
  .BYTE %00000101,%10111010,%11010101
  .BYTE %00001010,%10111010,%11010101
  .BYTE %00001010,%10111011,%10010100
  .BYTE %00001010,%10111011,%10100100
  .BYTE %00000010,%10111011,%10100000
  .BYTE %00000010,%10101110,%10100000
  .BYTE %00000001,%01101110,%10010000
  .BYTE %00000001,%01000001,%01010100
  .BYTE %00000000,%01010000,%01010100
  .BYTE %00000000,%01010000,%01010000
  .BYTE %00000000,%01010000,%01010100
  .BYTE %00000001,%01000000,%00010101
  .BYTE %00000001,%01000000,%00000101
  .BYTE %00000000
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buffers that need to be swapped in and out. To make it easy to
do  that,  lookup  tables  contain  the  base  addresses  of  each
along with the corresponding register values needed to update
them. When swapping, we can just read a value in the table
corresponding to the BUFFLAG variable.

Lookup tables used to simplify double-buffering operations.

The  program  itself  ends  as  our  CodySID  music  player
example.  We  have  a  LAST label  used  to  calculate  the  end
address  of  the  program.  This  is  followed  by  an  assembler
directive closing the one our program started with.

;
; Lookup tables for screen and color memory locations. Used to quickly
; switch between the double buffer during an update.
;
SCRRAMS_L

  .BYTE <SCRRAM1
  .BYTE <SCRRAM2

SCRRAMS_H

  .BYTE >SCRRAM1
  .BYTE >SCRRAM2

COLRAMS_L

  .BYTE <COLRAM1
  .BYTE <COLRAM2

COLRAMS_H

  .BYTE >COLRAM1
  .BYTE >COLRAM2

BASEREGS

  .BYTE $05
  .BYTE $15

COLREGS

  .BYTE $20
  .BYTE $30
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The same boilerplate at the end of the program.

BUILDING AND RUNNING CODY BROS.

You build and run the demo the same way as you did the
CodySID  music  player.  First  you'll  need  to  run  the  code
through the 64tass assembler on your PC. Just run 64tass --
mw65c02 --nostart -o codybros.bin codybros.asm and check
the output:

Building the codybros demo using the 64tass assembler.

Once you have the binary, you run  LOAD 1,1 on the Cody
Computer and send the file over a serial link. The program will
start up automatically. To use the program you'll need to have
an  Atari-compatible  joystick  to  plug  into  joystick  port  1.
Moving the joystick left and right will move the player on the

LAST                              ; End of the entire program

.ENDLOGICAL

% 64tass --mw65c02 --nostart -o codybros.bin codybros.asm

64tass Turbo Assembler Macro V1.59.3120
64TASS comes with ABSOLUTELY NO WARRANTY; This is free software, and you
are welcome to redistribute it under certain conditions; See LICENSE!

Assembling file:   codybros.asm
Output file:       codybros.bin
Data:       2448   $0000-$098f   $0990
Passes:            2
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screen, moving the joystick up runs the "bark" animation, and
moving the joystick down changes the sprite color. To return to
Cody BASIC just press the fire button.

If  you  don't  have  an  Atari-compatible  joystick  available,
cheap ones are available online or at many retro electronics or
video game stores in larger cities. The design is quite simple,
so you can even find plans online to make your own: Unlike
Nintendo controllers that required at least some logic chips, an
Atari joystick is literally just switches wired to a connector.

If all else fails, you can also change the program to accept
keyboard  input  rather  than  joystick  input.  In  the  main  loop
where the joystick row is read, change the row to one of the
rows  on  the  keyboard  matrix,  then  check  for  pressed  keys
instead of pressed switches on the joystick. Look up the keys
you would need to press for that row and use those for the
controls  instead.  (You'll  need  the  keyboard  schematic  and
perhaps the CodySID or input-output examples to help you in
doing that.)
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A Pomeranian sprite moving around in a very Mario-like or
Giana-like game world. You can use something like this as a
starting point for a full game.
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INTRODUCTION

The  Cody  Computer  also  supports  cartridges  that  can  be
plugged into the expansion port.  If  a cartridge is detected, a
binary program from the cartridge is loaded into memory and
executed instead of  booting to Cody BASIC.  The program is
contained  inside  the  cartridge  with  a  memory  chip  that
supports  the  Serial  Peripheral  Interface  (SPI)  protocol,  and
certain  pins  on  the  expansion  port  are  repurposed  to
implement SPI.

Cartridges  are  not  necessary  to  use  the  Cody  Computer.
Assembly language programs can be loaded over a serial port
just  like Cody BASIC programs.  Even if  you plan not to use
cartridges, examples in this chapter may be helpful if you plan
to implement the SPI protocol with the Cody Computer.

SPI  is  probably  the  simplest  data  transfer  protocol  in
common  use.  It's  a  three-wire  protocol  often  used  to
communicate between microcontrollers and their peripherals.
One line transmits data, one line receives data, and one line
acts  as  a  clock.  A  fourth  line  not  involved  in  the  actual
communication acts as a chip select, telling a chip when an SPI
data transaction is about to begin.

An SPI  transaction begins by bringing the SPI  chip select
low. From there,  data is clocked out on the output pin while
data is read from the input pin, using the SPI clock pin for the
clock signal.  One or more bytes are transferred in this way.
Often  a  command  of  some  kind  is  clocked  out  first,  with
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subsequent clocks used to read in the result of the command.
The exact behavior depends on the device itself.

There are actually four different SPI modes. Each mode can
differ  based  on  the  SPI  clock  signal's  polarity,  either  being
idle-high or idle-low. Each mode can also differ based on the
clock phase when data is transmitted or received. This is one of
the reasons it's preferable to bit-bang the SPI protocol using
the 65C22's general-purpose I/O pins rather than relying on
a limited subset of modes that can be supported by the built-
in shift register.

The  Cody Computer's  cartridges  are  built  around the  SPI
protocol  with  some  extra  modifications  to  support  cartridge
detection and size determination. The 65C22's CA1 and CA2
handshaking pins on expansion port pins 13 and 14 are used as
a cartridge detect. If a cartridge is detected, expansion port pin
8 is used to read if the cartridge is 64K or smaller (0) or larger
(1) based on the cartridge's configuration.

Once set up to read from a cartridge, expansion port pin 12
is  connected to  the SPI  clock,  pin 11  is  connected to  the SPI
master output/slave input, pin 10 is connected to the master
input/slave  output,  and  pin  9  is  connected  to  the  SPI  chip
select.  This  pin  configuration  is  used  to  implement  the  SPI
protocol and load the program.

CARTRIDGE DESIGN

The Cody Computer cartridge is a relatively simple design,
consisting at heart of an SPI EEPROM, a decoupling capacitor,
and a connector to plug into the Cody Computer. It's really no
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more than a standardized pinout to interface an SPI EEPROM
into the system's expansion port.

Schematic  of  the  Cody  Cartridge.  Note  that  depending  on
assembly choices,  the board can be either a programmer or
just a cartridge.

The  cartridge's  interface  is  a  20-pin  male  header  that
connects  to  the  female  socket  on  the  Cody  Computer's
expansion port. Most of the pins are unused, but several are in
use and directly wired to pins on the SPI EEPROM. These are
the SPI clock, MISO (master-in-slave-out), MOSI (master-out-
slave-in), and inverted chip select.

Some other pins are used to support the Cody Computer's
loading of cartridge data. Two pins are connected to each other
on  the  cartridge  itself,  making  it  possible  for  the  Cody
Computer  to  detect  a  cartridge  because  the  connection  is
closed when a cartridge is seated. Another pin is used to tell

477



the  Cody  Computer  whether  the  SPI  EEPROM  is  a  small
EEPROM (a low value indicates a size of 64 kilobytes or less)
or a large EEPROM (a high value indicates a size of over 64
kilobytes).  This  is  necessary  because  the  smaller  EEPROMs
only accept a two-byte address while the larger ones require a
three-byte address in their SPI transmissions.

The standard Cody Computer cartridge design is interesting
in  that  it  can  be  used  to  build  either  a  cartridge  or  a
programmer for the SPI EEPROMs used in cartridges. Instead
of  two  versions  of  the  board,  there's  just  one  version,  but
different jumper connections can be used to configure it. For a
programmer, jumper wires can be replaced with pin headers
and  jumpers/shunts,  thereby  letting  the  user  change  the
behavior just by moving the jumper blocks around.

For development purposes we'll  start by building a board
for programming purposes. We'll cover building a board for a
normal cartridge later in the chapter, along with a walkthrough
of the mechanical assembly for the case.

CARTRIDGE PROGRAMMER ASSEMBLY

To build a cartridge's PCB as a programmer, header pins are
soldered into the board instead of using wires. Jumpers can be
used to toggle the different possibilities for the programmer's
setup.  They  can  also  be  used  for  testing  cartridges  after
they're programmed. A socket is used to (more or less) easily
insert and remove the SPI EEPROMs being programmed.

This circuit is actually simple enough that you could build it
using point-to-point  wiring on a protoboard,  as  long as the
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protoboard will  fit  into the Cody Computer's expansion port
hole  in  the  back.  Prototypes  of  the  cartridge  were  built  in
exactly such a way during the Cody Computer's development.

A  cartridge  programmer  PCB  alongside  its  hand-wired
prototype on protoboard.

However,  the  rest  of  the  chapter  assumes  that  you  have
printed circuit boards available.

INSTALLING THE EXPANSION CONNECTOR

The programmer, like the cartridges themselves, has a 20-
pin right angle .100" male connector. This matches up with the
female connector on the Cody Computer's expanson port when
the cartridge is connected.
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For this step you'll need the following:

1 20-pin male .100" right-angle header pin

For this step you need to place the header pins into J1, then
solder the connector. It's very important that the headers go on
at  a  right  angle  so  they  will  correctly  line  up  with  the
expansion port's socket.

Insert the header into J1. Ensure the pins are at a right-
angle to the board.
Solder the header to J1.

The board with the connector pins soldered at a right angle.

• 

1. 

2. 
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INSTALLING THE SOCKET AND CAPACITOR

Once the connector is soldered on, it's time to add an 8-pin
socket  and  decoupling  capacitor  for  the  SPI  EEPROM.  The
socket  makes  it  easier  to  insert  and  remove  the  IC  to  be
programmed, while the decoupling capacitor serves the same
purpose as it does for ICs on the Cody Computer's main PCB.
You'll need the following:

1 8-pin DIP socket
1 0.1µF ceramic capacitor (KEMET C315C104K1R5TA or
equivalent)

For  this  step  you  need  to  solder  the  IC  socket  and  the
capacitor.  The IC  socket  should have a  small  notch  or  other
mark at the top, and it should align with the notch on the PCB's
silkscreen  for  the  part.  The  decoupling  capacitor  is  not
polarized and can be soldered in either direction.

Solder the capacitor to C1.
Solder the IC socket to U1.

• 
• 

1. 
2. 

481



The board with the socket and capacitor added. Note the mark
on the IC socket.

INSTALLING THE HEADERS

In  this  step  we'll  add  some  pin  headers  to  the  various
jumper  positions  on  the  board.  This  makes  it  possible  to
reconfigure the cartridge programmer, whereas for an actual
cartridge you could just  solder  them with  jumper  wire.  This
requires the following:

2 3-pin male .100" headers, vertical
1 2-pin male .100" header, vertical

• 
• 
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Soldering the header pins is relatively straightforward:

Solder a 3-pin male header to JP1.
Solder a 3-pin male header to JP2.
Solder the 2-pin male header to JP3.

The board with the jumper headers added.

1. 
2. 
3. 
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INSERTING THE IC AND JUMPERS

Now we can add the EEPROM IC and jumpers. These steps
assume that  a  128-kilobyte 25LC1024 SPI  EEPROM is  being
used, so the jumpers will be configured appropriately.

1 25LC1024 128-kilobyte SPI EEPROM or equivalent
(DIP-8)
3 2-pin jumpers/shunts (Harwin M7583-46 or
equivalent)

The IC must be carefully inserted without bending the pins.
Sliding the jumpers into position is often easier with a pair of
tweezers or forceps.

Place a jumper on JP1 connecting WR PROT and WP OFF.
Place a jumper on JP2 connecting CART SIZE and LARGE.
Place a jumper on JP3 connecting only one of the two
pins.
Insert the 25LC1024 into the socket so that the pin marks
align.

• 

• 

1. 
2. 
3. 

4. 
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The  programmer  as  configured  to  program a  25LC1024 SPI
EEPROM.

SPI PROGRAMMING IN BASIC

Now that you have a board set up to program a cartridge, it's
time to learn how to program it. In order to program the SPI
EEPROM you'll need to understand some of the key concepts
about SPI  programming,  but  you'll  also need to understand
how the 25LC21024 works when communicating over SPI.  To
help with that, we'll write some simple Cody BASIC programs
before  moving  on  to  a  more  fully-featured  programmer  in
assembly language.
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SIMPLE SPI COMMUNICATION

Whenever  you're  attempting  to  use  SPI  to  communicate
with a device, it's a good idea to start with a simple example
and work from there. SPI has four different modes related to
clock edges, and on top of that, not every device is without its
own quirks. For our first example, we'll try to read an ID value
from the 25LC1024 built into the cartridge as it's a relatively
simple operation.

The following Cody BASIC program sends the 25LC1024 an
RDID command (decimal  171),  which  wakes  up  the  chip  and
reads its built-in ID. This is probably the easiest place to begin
with  the chip,  as  the expected ID value is  a  known quantity
from the datasheet. Obtaining it from the chip will tell us that
our  external  hardware  is  correctly  connected  and  that  our
program is working as expected.
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A program that reads the RDID from a 25LC1024 SPI EEPROM.

For this to work you'll need to have the cartridge connected
to  the  expansion  port.  It's  a  good  idea  to  turn  the  Cody
Computer off, plug in the cartridge, and then power it on again.

10 REM READ EEPROM RDID
20 GOSUB 1000
30 O=171
40 FOR N=1 TO 5
50 GOSUB 2000
60 NEXT
70 GOSUB 3000
80 PRINT "RDID ID: ",I
90 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
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The expansion port is not intended to be hot-pluggable, and
connecting  some pins  before  others  could  potentially  cause
unexpected behavior or even damage.

When  run,  the  program  reads  the  RDID  value  from  the
25LC1024 EEPROM and prints the received value:

Output  from  the  program  reporting  the  RDID  value  as  41
decimal.

A TEST PROGRAM

Now that  we can talk  to  the  EEPROM,  we'll  want  to  have
some data to send into it. Because we're also trying to use this
as an example of how cartridges work on the Cody Computer's
expansion port, we'll put together a small program to store in
the EEPROM's memory.

Below  is  a  very  short  assembly  language  program  that
prints a short message on the screen. For this example, all we
care about is that we can assemble this code into some data
we'll program into the EEPROM.

RUN
RDID ID: 41

READY.

;
; codycart.asm
;
; An example assembly language program for the Cody Computer. The program
; pokes the message "Cody!" into the default screen memory location after
; starting up, then loops forever.
;
; You can assemble the program with 64tass using the following command:
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A simple assembly language program to store in an EEPROM.

You  can  assemble  this  program  just  like  the  ones  the
previous chapter. Assembled into a binary file, the program is
only 26 bytes long. It can be represented as a sequence of 26
numbers (0, 48, 21, 48, 162, 0, 189, 16, 48, 240, 6, 157, 0, 196,
232, 128, 245, 76, 13, 48, 67, 111, 100, 121, 33, and 0). We'll rely
on this knowledge to program it into the EEPROM chip for our
example cartridge.

WRITING TO THE EEPROM

Now that you have a program to put into the EEPROM, you'll
need a way to actually write it. Another Cody BASIC program

;
; 64tass --mw65c02 --nostart -o codycart.bin codycart.asm
;

ADDR    = $3000                 ; The actual loading address of the program
SCRRAM  = $C400                 ; The default location of screen memory

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

;
; The actual program.
;

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

MAIN        LDX #0              ; The program starts running from here

_LOOP       LDA TEXT,X          ; Copies TEXT into screen memory
            BEQ _DONE

            STA SCRRAM,X

            INX
            BRA _LOOP

_DONE       JMP _DONE           ; Loops forever

TEXT        .NULL "Cody!"       ; TEXT as a null-terminated string

LAST                            ; End of the entire program

.ENDLOGICAL
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very similar to the previous one can do this. Again, it's only an
example, but it can write the values from DATA statements into
the EEPROM's memory over SPI.

There are some details that need to be covered for this to
work. In particular, the 25LC1024 is broken up into a sequence
of  256-byte  pages.  While  this  is  good  for  the  EEPROM
(because  write  cycles  are  limited  to  certain  subsets  of  the
whole memory), it's less good for us. It  means that we can't
just start at memory address 0 and count our way through as
we write to the chip. Instead, we have to stop our current write
transaction and begin a new one at the end of each page.

Another complication is that the chip itself can take some
time to write a byte. We don't need to worry about this in Cody
BASIC  because  our  program  runs  so  slow,  but  in  a  better
EEPROM writer,  you would want to check the chip's  internal
registers to ensure the write cycle had completed.

On the 25LC1024, writes require two steps. We first send the
WREN (write enable) command (decimal 6), followed by the
actual WRITE (decimal 2) with the starting address to write to.
We then just loop over our data until we reach the end, making
sure that we stop the current transaction and start over at the
end of each page.

10 REM WRITE EEPROM DATA
20 A=0
30 REM BEGIN NEW PAGE
40 GOSUB 1000
50 O=6
60 GOSUB 2000
70 GOSUB 3000
80 REM WRITE OPERATION
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90 GOSUB 1000
100 O=2
110 GOSUB 2000
120 O=0
130 GOSUB 2000
140 O=A/256
150 GOSUB 2000
160 O=AND(A,255)
170 GOSUB 2000
180 READ N
190 IF N<0 THEN GOTO 260
200 O=N
210 GOSUB 2000
220 A=A+1
230 IF AND(A,255)>0 THEN GOTO 180
240 GOSUB 3000
250 GOTO 30
260 REM END OF DATA
270 GOSUB 3000
280 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
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A program that writes data into a 25LC1024 SPI EEPROM.

READING THE EEPROM

Now that we've programmed the cartridge we should verify
its contents. Fortunately we have another Cody BASIC program
that reads from the cartridge instead of writing to it. it's very
similar  to  the  previous  two  SPI  programs,  particularly  with
respect  to  the  various  subroutines  used  for  the  actual  SPI
operations. Where it differs it that it's set up to run the READ
command  (decimal  3),  which  reads  the  data  stored  in  the
EEPROM. The READ operation is simpler as we only need to
provide  the  starting  address  (0  in  our  case)  and then keep
reading data one byte at a time.

3020 RETURN
4000 REM DATA TO PROGRAM
4010 DATA 0,48,21,48,162,0,189,16
4020 DATA 48,240,6,157,0,196,232,128
4030 DATA 245,76,13,48,67,111,100,121
4040 DATA 33,0,-1

10 REM READ EEPROM DATA
20 A=0
30 GOSUB 1000
40 O=3
50 GOSUB 2000
60 FOR N=1 TO 3
70 O=0
80 GOSUB 2000
90 NEXT
100 FOR N=1 TO 16
110 GOSUB 2000
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A program that  reads the stored data from a 25LC1024 SPI
EEPROM.

If you run the program you should see the same numbers
that were in the DATA statements in the previous program:

120 PRINT A,TAB(10),I
130 A=A+1
140 NEXT
150 PRINT
160 PRINT "MORE (Y/N)";
170 INPUT S$
180 IF S$="Y" THEN GOTO 100
190 GOSUB 3000
200 END
1000 REM SPI BEGIN TRANSACTION
1010 POKE 40706,11
1020 POKE 40704,8
1030 POKE 40704,0
1040 RETURN
2000 REM SPI TRANSMIT AND RECEIVE
2010 FOR Z=1 TO 8
2020 POKE 40704,0
2030 B=0
2040 IF O>127 THEN B=2
2050 POKE 40704,B
2060 POKE 40704,B+1
2070 O=AND(O*2,255)
2080 I=AND(I*2,255)
2090 B=AND(PEEK(40704),4)
2100 IF B>0 THEN I=I+1
2110 NEXT
2120 POKE 40704,0
2130 RETURN
3000 REM SPI END TRANSACTION
3010 POKE 40704,8
3020 RETURN
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Reading the first bytes from the EEPROM.

BOOTING THE CARTRIDGE

Because the cartridge has been programmed, you can also
boot from it and run the program it contains. Turn off the Cody
Computer  and  reaffix  jumper  JP2  so  that  the  cartridge
detection  is  enabled  on  the  cartridge  side.  Then  power  the
Cody Computer back on.

If  everything  works  as  expected,  the  words  "Cody"  will
appear at the top of the screen. It's as simple as that.

When  you're  done,  shut  off  the  Cody  Computer  and
disconnect JP2, placing the header back on a single pin so that

RUN
0         0
1         48
2         21
3         48
4         162
5         0
6         189
7         16
8         48
9         240
10        6
11        157
12        0
13        196
14        232
15        128

MORE (Y/N)?
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it  doesn't  get  lost.  This  way  the  cartridge  is  ready  to  be
programmed next time.

A PROGRAM FOR PROGRAMMING

It  would  be  possible  to  write  a  cartridge  programmer  in
Cody  BASIC,  but  it  would  also  run  slower  than  you  would
probably prefer. Like we talked about in earlier chapters, you
could write parts of your program in assembly language and
call  them  from  BASIC  to  speed  them  up.  But  it's  probably
better to just write a dedicated assembly language program in
this case, so in this section that's what we're going to do.

What will our program need to do? Once loaded, the user
must  be  able  to  send  a  binary  file  to  the  Cody  Computer.
Because our serial communications don't have any checks on
them, we'll actually require the file to be sent twice. We can
verify the contents are the same on both transmissions before
proceeding. After that we'll want to program the SPI EEPROM
with the data, then read back from the SPI EEPROM to make
sure everything was copied over correctly.

We already know how to  program SPI  from the  previous
section and the provided Cody BASIC examples. We also have
code in the Cody BASIC interpreter itself that can handle SPI
communications  so  that  cartridges  can  be  loaded.  In  the
chapter  on  assembly  language,  we  wrote  an  assembly
language program that received a binary file over the UART, in
that case to play a SID file. So you've probably seen all the
parts, just not assembled in quite this way.
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THE CODYPROG PROGRAM

Like our other assembly language programs, this one starts
out with a bunch of definitions that we get out of the way in a
hurry.  Many  of  them,  such  as  those  for  screen  memory
addresses,  65C22 VIA addresses,  and UART addresses,  have
been used in other programs earlier in the book.

Some common definitions at the start of the program.

The zero page variables we use are very similar to those in
other programs. We also have some variables for a pointer, a
top pointer, and a length of the program we're going to burn
into  the  cartridge.  Our  SPI  routines  also  need  a  couple  of
temporary variables we'll define here.

ADDR      = $0300               ; The actual loading address of the program

SCRRAM    = $C400               ; Screen memory base address

UART1_BASE  = $D480             ; Register addresses for UART 1
UART1_CNTL  = UART1_BASE+0
UART1_CMND  = UART1_BASE+1
UART1_STAT  = UART1_BASE+2
UART1_RXHD  = UART1_BASE+4
UART1_RXTL  = UART1_BASE+5
UART1_TXHD  = UART1_BASE+6
UART1_TXTL  = UART1_BASE+7
UART1_RXBF  = UART1_BASE+8
UART1_TXBF  = UART1_BASE+16

VIA_BASE  = $9F00               ; VIA base address and register locations
VIA_IORB  = VIA_BASE+$0
VIA_IORA  = VIA_BASE+$1
VIA_DDRB  = VIA_BASE+$2
VIA_DDRA  = VIA_BASE+$3
VIA_T1CL  = VIA_BASE+$4
VIA_T1CH  = VIA_BASE+$5
VIA_SR    = VIA_BASE+$A
VIA_ACR   = VIA_BASE+$B
VIA_PCR   = VIA_BASE+$C
VIA_IFR   = VIA_BASE+$D
VIA_IER   = VIA_BASE+$E

STRPTR    = $D0                 ; Pointer to string (2 bytes)

496



Zero-page variables used by the program.

We also define the start of our buffer for the binary data at
$1000. Other new definitions include the pins we'll use to talk
to the SPI  EEPROM inside the cartridge.  The expansion port
pins we're interested in are wired to 65C22 VIA port B. These
constants  define  the  bits  that  correspond  to  each  pin  in  its
register.

Other constants required by the program.

Our code contains the same preamble as the other assembly
language programs:

SCRPTR    = $D2                 ; Pointer to screen (2 bytes)
PRGPTR    = $D4                 ; Pointer to the start of the program data
PRGTOP    = $D6                 ; Pointer to the end of the program data
PRGLEN    = $D8                 ; Length of the program in memory

KEYROW0   = $DA                 ; Keyboard row 0
KEYROW1   = $DB                 ; Keyboard row 1
KEYROW2   = $DC                 ; Keyboard row 2
KEYROW3   = $DD                 ; Keyboard row 3
KEYROW4   = $DE                 ; Keyboard row 4
KEYROW5   = $DF                 ; Keyboard row 5

SPIINP    = $E0                 ; SPI input byte
SPIOUT    = $E1                 ; SPI output byte

PRGMEM    = $1000               ; Start of the program to burn into the EEPROM

CART_CLK  = $01                 ; Bit masks for 65C22 port B cartridge pins
CART_MOSI = $02
CART_MISO = $04
CART_CS   = $08
CART_SIZE = $10

; Program header for Cody Basic's loader (needs to be first)

.WORD ADDR                      ; Starting address (just like KIM-1, Commodore, etc.)

.WORD (ADDR + LAST - MAIN - 1)  ; Ending address (so we know when we're done loading)

; The actual program goes below here
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The program's header containing the start and end addresses.

The MAIN routine is very similar to the CodySID program's
main routine. It has fewer things to do and less to initialize, but
the  overall  pattern  is  similar.  We  initialize  some  variables,
draw the screen, and then scan the keyboard for menu item
selections.  If  a  menu  item  is  selected,  we  branch  to  that
command and call the appropriate routine.

The actual start of the program.

The  KEYSCAN routine is also very similar. Again, we don't
do any keyboard debouncing because for our particular use

.LOGICAL    ADDR                ; The actual program gets loaded at ADDR

;
; MAIN
;
; Main loop of the programmer. Responsible for initialization, information display,
; and menu selection.
;
MAIN        STZ PRGLEN          ; Clear program length
            STZ PRGLEN+1

            JSR SHOWSCRN

_LOOP       JSR KEYSCAN         ; Scan the keyboard

            LDA KEYROW0         ; Pressed Q for quit?
            AND #%00001
            BNE _QUIT

            LDA KEYROW1         ; Pressed L for load?
            AND #%10000
            BNE _LOAD

            LDA KEYROW5         ; Pressed P for program?
            AND #%10000
            BNE _PROG

            BRA _LOOP           ; Repeat main loop

_QUIT       RTS                 ; Return to BASIC

_LOAD       JSR CMDLOAD         ; Run the load command
            BRA _LOOP

_PROG       JSR CMDPROG         ; Run the program command
            BRA _LOOP

498



case, we don't need it. For general-purpose input, however, it
would be a necessity.

The keyboard-scanning routine.

The menu commands are significantly simpler than in the
SID player,  and nearly all  of  the operations are moved into
subroutines closer to the action.  CMDLOAD loads and verifies
the  binary  file  coming  in  over  the  serial  link.  CMDPROG
programs  the  SPI  EEPROM  and  reads  its  data  back  for
verification.

;
; KEYSCAN
;
; Scans the keyboard matrix (so that key selections for menu options can be detected).
;
KEYSCAN     PHA                   ; Preserve registers
            PHX

            STZ VIA_IORA          ; Start at the first row and first key of the keyboard
            LDX #0

_LOOP       LDA VIA_IORA          ; Read the keys for the current row from the VIA port
            EOR #$FF
            LSR A
            LSR A
            LSR A
            STA KEYROW0,X

            INC VIA_IORA          ; Move on to the next keyboard row
            INX

            CPX #6                ; Do we have any rows remaining to scan?
            BNE _LOOP

            PLX                   ; Restore registers
            PLA

            RTS

;
; CMDLOAD
;
; Implements the menu option to load a binary file over the UART connection.
;
CMDLOAD     JSR SHOWSCRN        ; Clear screen

            JSR UARTON          ; Receive the binary file
            JSR LOADBIN
            JSR UARTOFF
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Routines for the menu commands.

The  LOADBIN routine  is  very  similar  to  the  SID  player's
LOADDATA routine. It starts at the beginning of the memory
buffer and waits for input data. Once a byte has been received,
it enters a loop and continues to read bytes until a timeout is
exceeded. Under normal operations the timeout would indicate
the end of the incoming file.

            JSR SHOWSCRN        ; Redraw screen with file length

            JSR UARTON          ; Verify the binary file
            JSR VERIBIN
            JSR UARTOFF

            RTS                 ; All done

;
; CMDPROG
;
; Implements the menu option to program the SPI EEPROM on the cartridge.
;
CMDPROG     JSR SHOWSCRN        ; Clear screen

            JSR PROGCART        ; Program the cartridge

            JSR VERICART        ; Verify the cartridge contents

            RTS                 ; All done

;
; LOADBIN
;
; Loads a binary file into memory.
;
LOADBIN   LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_WAITBINA     ; Display message about waiting for data
          JSR SHOWSTAT

_READ1    JSR UARTGET           ; Read the first byte
          BCC _READ1

          JSR _SAVE             ; Save it to memory

          LDX #MSG_RECVDATA     ; Display message about receiving data
          JSR SHOWSTAT

          LDX #$FF              ; Timeout counter

_READ2    DEX                   ; Wait for byte with timeout
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LOADBIN loads a binary file over the UART.

Similar  to  LOADBIN is  the  VERIBIN routine.  This  routine
verifies the content in the memory buffer is the same as the
content coming in over the UART. In this situation, instead of
storing each byte,  we compare it  with the matching byte we
already have to make sure they're equal. Once we've come to
the end of the file, we also have to make sure we read the same
number of bytes both times.

          BEQ _DONE

          JSR UARTGET
          BCC _READ2

          JSR _SAVE             ; Save data

          LDX #$FF              ; Reset counter
          BRA _READ2

_DONE     SEC                   ; Calculate program length

          LDA PRGPTR+0
          SBC #<PRGMEM
          STA PRGLEN+0

          LDA PRGPTR+1
          SBC #>PRGMEM
          STA PRGLEN+1

          LDA PRGPTR+0          ; Update end of program
          STA PRGTOP+0

          LDA PRGPTR+1
          STA PRGTOP+1

          RTS

_SAVE     STA (PRGPTR)          ; Store data

          INC PRGPTR+0          ; Increment address
          BNE _NEXT
          INC PRGPTR+1

_NEXT     RTS

;
; VERIBIN
;
; Verifies the binary file in memory.
;
VERIBIN   LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
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The VERIBIN routine verifies the program in memory.

Once the program has been loaded the remaining task is to
write the program into the EEPROM. The  PROGCART routine

          STA PRGPTR+1

          LDX #MSG_WAITREPE   ; Display message about waiting for data
          JSR SHOWSTAT

_READ1    JSR UARTGET           ; Read the first byte
          BCC _READ1

          JSR _VERIFY           ; Check the byte against the memory
          BNE _FAILED

          LDX #MSG_VERIDATA     ; Display message about verifying data
          JSR SHOWSTAT

          LDX #$FF              ; Timeout counter

_READ2    DEX                   ; Wait for byte with timeout
          BEQ _DONE
          JSR UARTGET
          BCC _READ2

          LDX #$FF              ; Reset counter

          JSR _VERIFY           ; Check the byte
          BNE _FAILED

          BRA _READ2

_DONE     LDA PRGPTR+0          ; Verify program length was the same
          CMP PRGTOP+0
          BNE _FAILED

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _FAILED

          LDX #MSG_VERIFYOK     ; Update status message
          JSR SHOWSTAT

          RTS

_VERIFY   CMP (PRGPTR)          ; Compare bytes
          PHP

          INC PRGPTR+0          ; Increment address
          BNE _NEXT
          INC PRGPTR+1

_NEXT     PLP                   ; Restore flags and return
          RTS

_FAILED   STZ PRGLEN+0          ; Clear program length (bad file?)
          STZ PRGLEN+1

          LDX #MSG_VERIFYBAD    ; Update status message
          JSR SHOWSTAT

          RTS                   ; All done

502



takes care of this,  and it's  actually somewhat complicated.  It
has to send the instructions to enable writing to the EEPROM,
then begin a second SPI transaction with the actual data and its
start address in the EEPROM.

There are some complications here.  One is that cartridges
can either  be  small  (64 kilobytes  or  less)  or  large (greater
than 64 kilobytes). Small cartridges only need two bytes for
an address but large cartridges use three bytes. We check the
size pin on the expansion port to see what kind of cartridge the
programmer is set up for.

Another  complication  comes  from  a  limitation  in  the  SPI
EEPROM's writing protocol. Because of the EEPROM's design,
we  have  to  start  a  new write  transaction  on  each  256-byte
page. Because our memory buffer is page-aligned, every time
we  wrap  to  another  page,  we  also  close  the  current  write
transaction and begin a new one. Between them we must wait
for  the  EEPROM  to  finish  writing  our  data,  so  we  poll  the
EEPROM's status register in between.

;
; PROGCART
;
; Writes the program in memory to the SPI EEPROM on the cartridge.
;
PROGCART  LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_PROGDATA     ; Display message about programming data
          JSR SHOWSTAT

          JSR _BEGIN            ; Begin initial SPI transaction

_LOOP     LDA PRGPTR+0          ; Ensure we're not at the top of the data
          CMP PRGTOP+0
          BNE _CONT

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _CONT
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PROGCART handles SPI EEPROM programming at a high level.

          JSR _END              ; Done programming

          LDX #MSG_CLEAR        ; Clear status message
          JSR SHOWSTAT

          RTS

_CONT     LDA (PRGPTR)          ; Send the next byte to the cartridge
          JSR CARTXFER

          INC PRGPTR+0          ; Increment address
          BNE _LOOP
          INC PRGPTR+1

          JSR _END              ; New page, need to start new transaction
          JSR _BEGIN

          BRA _LOOP

_BEGIN    JSR CARTON            ; Begin SPI transaction for write enable

          LDA #6                ; Write enable command
          JSR CARTXFER

          JSR CARTOFF           ; End SPI transction for write enable

          JSR CARTON            ; Begin SPI transaction for writing data

          LDA #2                ; Write starting address command
          JSR CARTXFER

          JSR CARTSIZE          ; Check cartridge size
          BEQ _ADDR

          LDA #0                ; Write address highest byte, greater than 64K only
          JSR CARTXFER

_ADDR     SEC                   ; Write address high byte
          LDA PRGPTR+1
          SBC #>PRGMEM
          JSR CARTXFER

          LDA #0                ; Write address low byte
          JSR CARTXFER

          RTS

_END      JSR CARTOFF           ; End previous transaction

          JSR CARTON            ; New transaction to read status register

_WAIT     LDA #5                ; Read status register command
          JSR CARTXFER

          LDA #0                ; Read the status register
          JSR CARTXFER

          AND #$01              ; Wait until previous write is completed
          BNE _WAIT

          JSR CARTOFF           ; End transaction and return

          RTS
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We also want to make sure there weren't any glitches when
we  wrote  to  the  EEPROM,  so  when  we're  done,  we  use  the
VERICART routine  to  check  it.  A  simpler  form  of  the
PROGCART routine, it reads the data back from the EEPROM
and compares each byte to the contents in the memory buffer.

;
; VERICART
;
; Reads the SPI EEPROM and compares it to the program in memory.
;
VERICART  LDA #<PRGMEM          ; Move to beginning of memory
          STA PRGPTR+0

          LDA #>PRGMEM
          STA PRGPTR+1

          LDX #MSG_VERIDATA     ; Display message about verifying data
          JSR SHOWSTAT

          JSR CARTON            ; Begin initial SPI transaction

          LDA #3                ; Read command
          JSR CARTXFER

          JSR CARTSIZE          ; Check cartridge size
          BEQ _ADDR

          LDA #0                ; Read address highest byte, greater than 64K only
          JSR CARTXFER

_ADDR     LDA #0                ; Read address high byte
          JSR CARTXFER

          LDA #0                ; Write address low byte
          JSR CARTXFER

_LOOP     LDA PRGPTR+0          ; Ensure we're not at the top of the data
          CMP PRGTOP+0
          BNE _CONT

          LDA PRGPTR+1
          CMP PRGTOP+1
          BNE _CONT

          JSR CARTOFF           ; Done reading

          LDX #MSG_VERIFYOK     ; Verify passed
          JSR SHOWSTAT

          RTS

_CONT     LDA #0                ; Read the next byte from the cartridge
          JSR CARTXFER

          CMP (PRGPTR)          ; Compare the bytes to verify
          BNE _FAILED

          INC PRGPTR+0          ; Increment address
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The  VERICART routine  checks  the  program contents  against
the EEPROM.

While loading data or programming cartridges, we want to
update  the  current  status  message  on  the  screen.  The
SHOWSTAT routine lets us redraw just that part of the screen
without affecting anything else.

A simple routine to display a status message by number.

A larger routine,  SHOWSCRN clears the entire screen and
draws the menu. This is performed far less frequently, only at
startup and at particular stopping points in the program.

          BNE _LOOP
          INC PRGPTR+1
          BRA _LOOP

_FAILED   JSR CARTOFF           ; Turn off SPI

          LDX #MSG_VERIFYBAD    ; Display verification failed message
          JSR SHOWSTAT

          RTS

;
; SHOWSTAT
;
; Shows a message in the status bar at the bottom of the screen.
; The message number should be in the X register.
;
SHOWSTAT  PHX                     ; Preserve message number

          LDX #0                  ; Clear status bar
          LDY #11
          JSR MOVESCRN

          LDX #MSG_CLEAR
          JSR PUTMSG

          LDX #0                  ; Print message
          LDY #11
          JSR MOVESCRN

          PLX
          JSR PUTMSG

          RTS

;
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A rather long SHOWSCRN draws most of the user interface.

; SHOWSCRN
;
; Shows the main screen.
;
SHOWSCRN  JSR CLRSCRN

          LDX #0
          LDY #0
          JSR MOVESCRN

          LDX #MSG_CODYPROG
          JSR PUTMSG

          LDX #0
          LDY #1
          JSR MOVESCRN

          LDX #MSG_SUBTITLE
          JSR PUTMSG

          LDX #0
          LDY #3
          JSR MOVESCRN

          LDX #MSG_LENGTH
          JSR PUTMSG

          LDX #9
          LDY #3
          JSR MOVESCRN

          LDA PRGLEN+1
          JSR PUTHEX

          LDX #11
          LDY #3
          JSR MOVESCRN

          LDA PRGLEN+0
          JSR PUTHEX

          LDX #0
          LDY #5
          JSR MOVESCRN

          LDX #MSG_LOADMENU
          JSR PUTMSG

          LDX #0
          LDY #6
          JSR MOVESCRN

          LDX #MSG_PROGMENU
          JSR PUTMSG

          LDX #0
          LDY #7
          JSR MOVESCRN

          LDX #MSG_QUITMENU
          JSR PUTMSG

          RTS
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The underyling UART routines for loading binary files are
identical to those in the SID player example in the previous
chapter.  The  UARTON routine  is  called  before  beginning  a
UART operation.

UARTON turns on UART 1.

Its companion routine,  UARTOFF, turns off the UART at the
end of a read operation.

;
; UARTON
;
; Turns on UART 1.
;
UARTON    PHA
          PHY

_INIT     STZ UART1_RXTL          ; Clear out buffer registers
          STZ UART1_TXHD

          LDA #$0F                ; Set baud rate to 19200
          STA UART1_CNTL

          LDA #01                 ; Enable UART
          STA UART1_CMND

_WAIT     LDA UART1_STAT          ; Wait for UART to start up
          AND #$40
          BEQ _WAIT

          PLY
          PLA

          RTS                     ; All done

;
; UARTOFF
;
; Turns off UART 1.
;
UARTOFF   PHA

          STZ UART1_CMND          ; Clear bit to stop UART

_WAIT     LDA UART1_STAT          ; Wait for UART to stop
          AND #$40
          BNE _WAIT

          PLA
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UARTOFF shuts off UART 1.

Reading from the UART is handled by the UARTGET routine.
It checks to see if a byte is in the receive buffer. If not, it fails
fast,  but  if  there  is,  it  reads  the  byte  and  returns  it  in  the
accumulator.  The carry flag is used to indicate if a byte was
read.

UARTGET polls the UART and returns a byte if available.

SPI routines are contained in the various CART routines that
talk  to  the  cartridge  on  the  expansion  port.  Because  of  the

          RTS

;
; UARTGET
;
; Attempts to read a byte from the UART 1 buffer.
;
UARTGET   PHY

          LDA UART1_STAT          ; Test no error bits set in the status register
          BIT #$06
          BNE _ERR

          LDA UART1_RXTL          ; Compare current tail to current head position
          CMP UART1_RXHD
          BEQ _EMPTY

          TAY                     ; Read the next character from the buffer
          LDA UART1_RXBF,Y

          PHA                     ; Increment the receiver tail position
          INY
          TYA
          AND #$07
          STA UART1_RXTL
          PLA

          PLY
          SEC                     ; Set carry to indicate a character was read
          RTS

_EMPTY    PLY
          CLC                     ; Clear carry to indicate no character read
          RTS

_ERR      LDX #MSG_ERROR          ; UART error, display error status message
          JSR SHOWSTAT

_DONE     JMP _DONE
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simple nature of the SPI protocol, these routines are the same
as those used to read a cartridge in Cody BASIC. We just use
them differently.

The  only  new  routine  is  the  CARTSIZE routine  that  tests
whether the cartridge is small or large. It does so by examining
the value of the matching I/O pin.

A simple routine to check a cartridge's size before writing.

The  CARTON routine begins an SPI  transaction by setting
the appropriate pins on the expansion port. Most importantly,
it brings the SPI chip select pin from high to low to initiate the
transaction itself.

;
; CARTSIZE
;
; Checks the cartridge size as small (64K or less) or large (greater than 64K).
; Cartridges greater than 64K require an additional address byte.
;
CARTSIZE  LDA VIA_IORB
          AND #CART_SIZE

          RTS

;
; CARTON
;
; Starts an SPI transation on the cartridge pins for the expansion port. The proper
; directions for 65C22 port B are set, outputs are set, and then the chip select is
; brought low.
;
; Calls to CARTON should be matched by a call to CARTOFF. The presence of a cartridge
; should be verified by a prior call to CARTCHECK.
;
CARTON    LDA #(CART_CLK | CART_MOSI | CART_CS)    ; Set port B directions
          STA VIA_DDRB

          LDA #CART_CS        ; Start with SPI select high
          STA VIA_IORB

          LDA #0              ; Bring select low to begin a cycle
          STA VIA_IORB
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CARTON begins an SPI transaction.

CARTOFF brings the SPI chip select high to end the current
transaction.

CARTOFF ends the current SPI transaction.

The CARTXFER routine is more complicated and handles the
actual exchange of data. A byte is shifted out over the SPI pins
while another byte is shifted in at the same time. Rather than
use the 65C22 VIA's shift  register  (which has complications
that we won't cover here),  we bit-bang the port directly.  SPI
data is sent with the highest bit first, so we shift ot the left and
look at our carry bits.

          RTS

;
; CARTOFF
;
; Brings the chip select high at the end of an SPI transaction with a cartridge.
;
CARTOFF   LDA #CART_CS        ; Bring select high to end the transaction
          STA VIA_IORB

          RTS

;
; CARTXFER
;
; Transfers a single byte during an SPI transaction with a cartridge. The value
; to send should be stored in the accumulator, and it will be replaced by the
; value received.
;
CARTXFER  PHX

          STA SPIOUT

          STZ SPIINP

          LDX #8              ; 8 bits to read

_LOOP     STZ VIA_IORB        ; Bring the clock low

          LDA #0              ; Start with no data

          ROL SPIOUT          ; Get output bit
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The CARTXFER sends and receives a single SPI byte.

The  other  routines  are  copied  verbatim  from  earlier
examples.  MOVESCRN moves the current screen pointer to a
particular row and column.

          BCC _SEND

          ORA #CART_MOSI      ; Output bit was a 1

_SEND     STA VIA_IORB        ; Put the bit on MOSI

          ORA #CART_CLK       ; Bring the SPI clock high
          STA VIA_IORB

          ROL SPIINP          ; Rotate SPI input for next bit

          LDA VIA_IORB        ; Read the incoming MISO
          AND #CART_MISO

          BEQ _NEXT

          LDA SPIINP
          ORA #1
          STA SPIINP

_NEXT     DEX                 ; Next loop (if any remain)
          BNE _LOOP

          PLX

          LDA SPIINP

          RTS

;
; MOVESCRN
;
; Moves the SCRPTR to the position for the column/row in the X and Y
; registers. All registers are clobbered by the routine.
;
MOVESCRN  LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          INY                     ; Increment pointer for each row
_LOOPY    CLC
          LDA SCRPTR+0
          ADC #40
          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1
          DEY
          BNE _LOOPY

          CLC                     ; Add position on column
          TXA
          ADC SCRPTR+0
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A routine to position the next output on the screen.

Another  routine  you've  seen  before,  CLRSCRN,  clears  the
entire screen by filling it with whitespace.

The screen-clearing routine.

The PUTMSG routine puts a string identified by a message
number onto the screen starting at the current location.

          STA SCRPTR+0
          LDA SCRPTR+1
          ADC #0
          STA SCRPTR+1

          RTS

;
; CLRSCRN
;
; Clear the entire screen by filling it with whitespace (ASCII 20 decimal).
;
CLRSCRN   LDA #<SCRRAM            ; Move screen pointer to beginning
          STA SCRPTR+0
          LDA #>SCRRAM
          STA SCRPTR+1

          LDA #20                 ; Clear screen by filling with whitespaces

          LDY #25                 ; Loop 25 times on Y

_LOOPY    LDX #40                 ; Loop 40 times on X for each Y

_LOOPX    STA (SCRPTR)            ; Store zero

          INC SCRPTR+0            ; Increment screen position
          BNE _NEXT
          INC SCRPTR+1

_NEXT     DEX                     ; Next X
          BNE _LOOPX

          DEY                     ; Next Y
          BNE _LOOPY

          RTS

;
; PUTMSG
;
; Puts a message string (one of the MSG_XXX constants) on the screen.
;
PUTMSG      PHA
            PHY
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PUTMSG prints a message on the screen.

The  PUTCHR routine  is  used  internally  to  copy  each
individual character in the message.

PUTCHR plots the individual characters.

The  PUTHEX routine plots the byte in the accumulator as
two hex digits. In the SID player this routine was used a lot to
show the current register values. In this program we only need
it  to display the program's length as a hex value for sanity
checking.

            LDA MSGS_L,X        ; Load the pointer for the string to print
            STA STRPTR+0
            LDA MSGS_H,X
            STA STRPTR+1

            LDY #0

_LOOP       LDA (STRPTR),Y      ; Read the next character (check for null)
            BEQ _DONE

            JSR PUTCHR          ; Copy the character and move to next
            INY

            BRA _LOOP           ; Next loop

_DONE       PLY
            PLA

            RTS

;
; PUTCHR
;
; Puts an individual ASCII character on the screen.
;
PUTCHR      STA (SCRPTR)        ; Copy the character

            INC SCRPTR+0        ; Increment screen position
            BNE _DONE
            INC SCRPTR+1

_DONE       RTS

;
; PUTHEX
;
; Puts a byte's hex value on the screen as two hex digits.
;
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PUTHEX prints a byte as two hex digits.

The  message  table  in  this  program  is  different,  so  our
constants below are different.

The constants for the messages in the string table.

The actual string contents of the messages,  of  course,  are
also different. The text relates to the menu options and status

PUTHEX      PHA
            PHX
            TAX
            JSR HEXTOASCII
            PHA
            TXA
            LSR A
            LSR A
            LSR A
            LSR A
            JSR HEXTOASCII
            PHA
            PLA
            JSR PUTCHR
            PLA
            JSR PUTCHR
            PLX
            PLA
            RTS
HEXTOASCII  AND #$F
            CLC
            ADC #48
            CMP #58
            BCC _DONE
            ADC #6
_DONE       RTS

;
; IDs for the message strings that can be displayed in the program.
;
MSG_CODYPROG  = 0
MSG_SUBTITLE  = 1
MSG_LOADMENU  = 2
MSG_PROGMENU  = 3
MSG_QUITMENU  = 4
MSG_WAITBINA  = 5
MSG_WAITREPE  = 6
MSG_RECVDATA  = 7
MSG_PROGDATA  = 8
MSG_VERIDATA  = 9
MSG_VERIFYOK  = 10
MSG_VERIFYBAD = 11
MSG_LENGTH    = 12
MSG_CLEAR     = 13
MSG_ERROR     = 14
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updates  involved  in  programming  the  SPI  EEPROM  in  the
cartridge.

The string literals for the program's messages.

The message table consists of the string addresses split into
low and high bytes.  As in the other programs,  this  allows a
quick lookup of the string using an index.

;
; The strings displayed by the program.
;
STR_CODYPROG  .NULL "CodyProg"
STR_SUBTITLE  .NULL "The Cody Cartridge Programmer"
STR_LOADMENU  .NULL "(L)oad binary"
STR_PROGMENU  .NULL "(P)rogram cartridge"
STR_QUITMENU  .NULL "(Q)uit"
STR_WAITBINA  .NULL "Waiting for binary data..."
STR_WAITREPE  .NULL "Waiting for repeat data to verify..."
STR_RECVDATA  .NULL "Receiving data..."
STR_PROGDATA  .NULL "Programming data..."
STR_VERIDATA  .NULL "Verifying data..."
STR_VERIFYOK  .NULL "Verify OK."
STR_VERIFYBAD .NULL "Verify FAILED."
STR_LENGTH    .NULL "Length: $"
STR_CLEAR     .NULL "                                    "
STR_ERROR     .NULL "ERROR"

;
; Low bytes of the string table addresses.
;
MSGS_L
  .BYTE <STR_CODYPROG
  .BYTE <STR_SUBTITLE
  .BYTE <STR_LOADMENU
  .BYTE <STR_PROGMENU
  .BYTE <STR_QUITMENU
  .BYTE <STR_WAITBINA
  .BYTE <STR_WAITREPE
  .BYTE <STR_RECVDATA
  .BYTE <STR_PROGDATA
  .BYTE <STR_VERIDATA
  .BYTE <STR_VERIFYOK
  .BYTE <STR_VERIFYBAD
  .BYTE <STR_LENGTH
  .BYTE <STR_CLEAR
  .BYTE <STR_ERROR

;
; High bytes of the string table addresses.
;
MSGS_H
  .BYTE >STR_CODYPROG
  .BYTE >STR_SUBTITLE
  .BYTE >STR_LOADMENU
  .BYTE >STR_PROGMENU
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The low and high portions of the strings' addresses.

The program ends with the same boilerplate as the others.

The end of the program.

USING THE PROGRAMMER

Build the programmer utility by running it through  64tass
assembler on your PC. Just run 64tass --mw65c02 --nostart -
o codyprog.bin codyprog.asm. These are the same steps as in
the previous chapter for assembly language programs.

Once  you've  done  that,  turn  off  the  Cody  Computer  and
plug the cartridge programmer into the expansion slot.  Turn
the Cody Computer back on and load the programmer utility
using  the  LOAD  1,1 command.  Remember  that  the  second
argument is also a 1 because the program is a binary and not a
BASIC program.

Once loaded we can begin programming a cartridge. Press
the L key to load a binary to the programmer, then send the
codybros.bin binary file you built in the previous chapter. You

  .BYTE >STR_QUITMENU
  .BYTE >STR_WAITBINA
  .BYTE >STR_WAITREPE
  .BYTE >STR_RECVDATA
  .BYTE >STR_PROGDATA
  .BYTE >STR_VERIDATA
  .BYTE >STR_VERIFYOK
  .BYTE >STR_VERIFYBAD
  .BYTE >STR_LENGTH
  .BYTE >STR_CLEAR
  .BYTE >STR_ERROR

LAST                              ; End of the entire program

.ENDLOGICAL
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will actually be prompted for the file twice, first for the load
and the second time to verify the contents are identical.

The programmer  program running and waiting  for  a  binary
file.

Once the binary is verified, press the P key to program the
cartridge. This will begin the programming of the SPI EEPROM
inserted into the DIP socket on the programmer board. It will
take a few moments and then read the contents back to verify
that no errors occurred while programming.

Once done you can test out the cartridge. Turn off the Cody
Computer  and  reconnect  JP2,  the  cartridge  detect,  on  the
cartridge programmer board. Turn the Cody Computer back on
and watch the program load from the cartridge.
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The  Cody  Bros  example  from  the  previous  chapter  now
running as a cartridge.

CARTRIDGE CASE ASSEMBLY

Cartridges,  particularly  the  more  permanent  kind,  can  be
built into a case. STL files are provided for a case that will fit
the cartridge PCB. Assembly is relatively straightforward.

When building a cartridge PCB for use as an actual cartridge
rather than as a programmer, it's better if you solder actual
jumpers  on  the  board  rather  than  using  header  pins  and
blocks.  You  would  make  the  same  connections  the  jumper
blocks would when the programmer is used in cartridge mode
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(including the JP2 cartridge-detect), but make them in a more
permanent  fashion.  However,  even  the  PCB  built  as  a
programmer will (barely) fit into the provided cartridge case
design.

For this step you'll need the following:

1 completed cartridge PCB (see above notes)
1 cartridge top (CartridgeTop.stl)
1 cartridge bottom (CartridgeBottom.stl)
1 4 M3 x 10mm self-tapping screw, round/pan head (US
#4 x 3/8")
Screwdriver

The  cartridge  halves  are  intended  to  be  printed  with  the
outside  parts  against  the  print  bed.  For  the  top  half  of  the
cartridge, it will require some supports for the recessed label
area. Removing these supports shouldn't be too difficult, and
with  some  care,  any  damage  from  the  removal  should  be
hidden under the label area.

To begin ensure that the finished PCB fits into the cartridge
bottom. The PCB should fit regardless of whether it was built
as a cartridge or a programmer. Sanding may be required.

• 
• 
• 
• 

• 
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The  cartridge  case  parts  with  board  inserted.  For  a  true
"cartridge"  the  PCB  should  be  built  as  an  actual  cartridge
rather than a programmer, but it should fit mechanically either
way.

With the board in place, pop the top and bottom halves of
the cartridge together. Some sanding may again be required to
ensure  a  snug  fit.  Take  the  M3  screw  and  screw  it  into  the
cartridge through the back. 
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Inserting the M3 screw that holds the cartridge together.

This should affix the two halves together as well as secure
the  board.  A  recessed  area  on  the  cartridge  is  suitable  for
affixing  a  permanent  label.  Additional  sanding  or  post-
processing may be required to ensure a smooth surface for
affixing the label.
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The finished cartridge waiting for a label.
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ONE GOOD LITTLE DUDE

He wasn't much of a dog, but he was a great little kid. A few
memories of the real Cody as we knew him.

This Used to Be the Future. Cody gazing at relics of the space
shuttle program. Pima Air and Space Museum, Tucson, Arizona.
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Model Behavior. Studying a wooden model of the ESA's Jules
Verne as docked with Zvezda. Ripley's Believe-It-or-Not, Saint
Augustine, Florida.
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Star  Trekkin'.  Science  Officer  Cody  conducting  a  routine
planetary survey near  Kodachrome Basin  State  Park.  Devil's
Garden, Utah.
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Digitize Me, Daddy! Cody retracing the steps of Galaxy Quest.
Goblin Valley State Park, Utah.
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Preparing for Launch. Cody watching as I fumble around in a
bag  for  a  model  rocket  engine  and  igniter.  Bonneville  Salt
Flats, Utah.
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Artiste.  Cody  and  his  mom  taking  a  break  from  the
Commodore Amiga's Personal Paint. Folkston, Georgia.
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Just a Wee Calculator. Cody with an early version of the circuit
that would grow into the Cody Computer. Folkston, Georgia.
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Design Review. Cody posing with a late revision of the Cody
Computer on a breadboard (literally). Mesa, Arizona.
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Shopping Trip. Cody and his mom in the semiconductor aisle of
a now-defunct Fry's Electronics. Phoenix, Arizona.
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Duplication. Cody watching our new Creality Ender 3 Pro print
a tiny little dog for a test print. Mesa, Arizona.
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APPENDIX A: MEMORY MAP

The  Cody  Computer's  64  kilobytes  of  memory  contains
different RAM and ROM regions as well as several memory-
mapped  peripherals.  This  memory  map will  help  you  when
designing  the  layout  of  your  own  programs,  particularly  in
assembly language. You will need to know the addresses of the
various peripherals whether programming in Cody BASIC or in
assembly language.

Address Description

$0000 65C02 zero page variables

$0100 65C02 stack page

$9F00 65C22 Versatile Interface Adapter (VIA) registers

$A000 Beginning of Propeller shared memory

$D000 Video Interface Device (VID) registers

$D040 Video Interface Device (VID) control bank

$D060 Video Interface Device (VID) data bank

$D080 Video Interface Device (VID) sprite banks

$D400 Sound Interface Device (SID) registers

$D480 UART 1 registers

$D4A0 UART 2 registers

$E000 Cody BASIC ROM (character set)

$E800 Cody BASIC ROM (BASIC interpreter)

$FFFF End of memory
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65C02 ZERO PAGE VARIABLES

In Cody BASIC most of the 65C02 zero page is used by the
interpreter.  Several  of  these memory locations are  intended
for use by Cody BASIC programs through the PEEK and POKE
operations.

The  ISRPTR address  is  relevant  to  assembly  language
programs  that  wish  to  register  an  interrupt  handler.  Cody
BASIC already registers an interrupt handler at this address on
startup.

Address Description

$0000 SYS call A register (Cody BASIC)

$0001 SYS call X register (Cody BASIC)

$0002 SYS call Y register (Cody BASIC)

$0008 ISRPTR (2 bytes, assembly)

$000E INPUT prompt character code (Cody BASIC)

$0010 Keyboard row 0 state (Cody BASIC)

$0011 Keyboard row 1 state (Cody BASIC)

$0012 Keyboard row 2 state (Cody BASIC)

$0013 Keyboard row 3 state (Cody BASIC)

$0014 Keyboard row 4 state (Cody BASIC)

$0015 Keyboard row 5 state (Cody BASIC)

$0016 Joystick 1 state (Cody BASIC)

$0017 Joystick 2 state (Cody BASIC)
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65C22 VERSATILE INTERFACE ADAPTER (VIA)
REGISTERS

The  65C22  is  a  6502-family  I/O  chip  currently  in
production  by  the  Western  Design  Center.  Aside  from  the
UARTs  implemented  by  the  Propeller,  all  of  the  Cody
Computer's input and output is handled by this chip. It's the
modern version of the classic 6522 VIA used in many vintage
computers.

The below table lists the VIA registers as they exist within
the Cody Computer's memory map. Port A is used internally
for keyboard and joystick scanning while port B is open for use
on the expansion port.

For detailed documentation on the chip's functions, refer to
WDC's data sheet.

Address Description

$9F00 Input/output register B

$9F01 Input/output register A

$9F02 Data direction register B

$9F03 Data direction register A

$9F04 Timer 1 latch/counter (low byte)

$9F05 Timer 2 counter (high byte)

$9F06 Timer 1 latch (low byte)

$9F07 Timer 1 latch (high byte)

$9F08 Timer 2 latch/counter (low byte)

$9F09 Timer 2 counter (high byte)
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Address Description

$9F0A Shift register

$9F0B Auxiliary control register

$9F0C Peripheral control register

$9F0D Interrupt flag register

$9F0E Interrupt enable registr

$9F0F Input/output register A (no handshake)

VIDEO INTERFACE DEVICE (VID) REGISTERS

The Cody VID is a software-implemented video device built
using the Propeller.  It  is  inspired by,  but different from, the
VIC-II and its multicolor graphics mode.

Address Description

$D000 Blanking register (nonzero during blanking
interval)

$D001 Control register

Bit 0 disables screen output.
Bit 1 enables vertical scrolling (24 rows).
Bit 2 enables horizontal scrolling (38 columns).
Bit 3 enables row effects.
Bit 4 enables bitmap mode.

$D002 Color register

Bits 0-3 contain border color.

• 
• 
• 
• 
• 

• 
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Address Description

Bits 4-7 contain color memory location.

$D003 Base register

Bits 0-3 contain character memory location.
Bits 4-7 contain screen memory location.

$D004 Scroll register

Bits 0-3 contain vertical scroll (0-7).
Bits 4-7 contain horizontal scroll (0-3).

$D005 Screen colors register

Bits 0-3 contain character color 2.
Bits 4-7 contain character color 3.

$D006 Sprite register

Bits 0-3 contain common sprite color.
Bits 4-7 contain current sprite bank.

The Video Interface Device also has two banks responsible
for implementing row effects. A row effect changes part of the
screen for one of the 25 character rows and replaces the the
raster interrupt effects used on the Commodore 64. One bank

• 

• 
• 

• 
• 

• 
• 

• 
• 
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controls the effect to apply while the other bank contains the
replacement value.

Address Description

$D040 Row effect control bank (32 bytes)

Bits 0-4 contain row number.
Bits 5-6 contain destination (see below).
Bit 7 enables the effect.

Destinations can be the following: 

00 overrides the base register.
01 overrides the scroll register.
10 overrides the screen register.
11 overrides the sprite register.

$D060 Row effect data bank (32 bytes)

The  VID  has  four  different  sprite  banks  that  take  up  the
remainder of the page:

Address Description

$D080 Sprite bank 0

$D0A0 Sprite bank 1

$D0C0 Sprite bank 2

$D0E0 Sprite bank 3

• 
• 
• 

• 
• 
• 
• 
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Each entry in a sprite bank is  a  contiguous group of  four
bytes. A single sprite bank has eight sprites, all of which are
set up exactly like the below table.

Offset Description

+0 Sprite x-coordinate (0 to 184)

+1 Sprite y-coordinate (0 to 242)

+2 Sprite colors

Bits 0-3 contain color 1.
Bits 4-7 contain color 2.

+3 Sprite location.

SOUND INTERFACE DEVICE (SID) REGISTERS

The Cody Computer has a sound interface device based on
the  Commodore/MOS  6581.  It  is  implemented  within  the
Propeller chip as a software emulation. Not all SID features are
supported  and  the  implementation  is  not  an  exact  SID
replacement.  Filters  and  combined  waveforms,  among  other
features, are not implemented at all.

Refer to Chapter 8, Sound and Music Programming, for an
explanation of the frequency and ADSR values.

Address Description

$D400 Voice 1 frequency value (low byte)

$D401 Voice 1 frequency value (high byte)

$D402 Voice 1 pulse duty cycle (low byte)

• 
• 
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Address Description

$D403 Voice 1 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D404 Voice 1 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 3 oscillator.
Bit 2 enables ring modulation with voice 3.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D405 Voice 1 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D406 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D407 Voice 2 frequency value (low byte)

$D408 Voice 2 frequency value (high byte)

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
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Address Description

$D409 Voice 2 pulse duty cycle (low byte)

$D40A Voice 2 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D40B Voice 2 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 1 oscillator.
Bit 2 enables ring modulation with voice 1.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D40C Voice 2 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D40D Voice 2 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

$D40E Voice 3 frequency value (low byte)

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
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Address Description

$D40F Voice 3 frequency value (high byte)

$D410 Voice 3 pulse duty cycle (low byte)

$D411 Voice 3 pulse duty cycle (high byte)

Bits 0-3 contain the high nibble.
Bits 4-7 are unused.

$D412 Voice 3 control register

Bit 0 ("gate") plays/ends the sound.
Bit 1 syncs with voice 2 oscillator.
Bit 2 enables ring modulation with voice 2.
Bit 3 resets the voice internally.
Bit 4 selects a triangle wave.
Bit 5 selects a sawtooth wave.
Bit 6 selects a pulse wave.
Bit 7 selects a random noise output.

$D413 Voice 3 attack and decay register

Bits 0-3 contain the decay value.
Bits 4-7 contain the attack value.

$D414 Voice 1 sustain and release register

Bits 0-3 contain the release value.
Bits 4-7 contain the sustain value.

• 
• 

• 
• 
• 
• 
• 
• 
• 
• 

• 
• 

• 
• 
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Address Description

$D415 Reserved

$D416 Reserved

$D417 Reserved

$D418 Volume control

Bits 0-3 contain the global volume.

$D419 Reserved

$D41A Reserved

$D41B Voice 3 oscillator (read)

$D41C Voice 3 envelope (read)

UART 1 REGISTERS

Cody Computer UART 1 is connected to the Prop Plug port
on the back  of  the computer.  As  with  most  Cody Computer
peripherals, it is implemented using the Propeller. This device
is generally used for serial communications with your PC or
for transferring files. Bit rate options are copied from the 6551
ACIA:

$0 is not supported.
$1 for 50 BPS.
$2 for 75 BPS.
$3 for 110 BPS.
$4 for 135 BPS.
$5 for 150 BPS.

• 

• 
• 
• 
• 
• 
• 
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$6 for 300 BPS.
$7 for 600 BPS.
$8 for 1200 BPS.
$9 for 1800 BPS.
$A for 2400 BPS.
$B for 3600 BPS.
$C for 4800 BPS.
$D for 7200 BPS.
$E for 9600 BPS.
$F for 19200 BPS.

Address Description

$D480 Control register

Bits 0-3 contain the bit rate.

$D481 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes. 

$D482 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

• 
• 
• 
• 
• 
• 
• 
• 
• 
• 

• 

• 

• 
• 
• 
• 
• 

547



Address Description

$D483 Reserved

$D484 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D485 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D486 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D487 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D488 Receive ring buffer (8 bytes)

$D490 Transmit ring buffer (8 bytes)

UART 2 REGISTERS

Cody Computer UART 2 is identical in function to UART 1.
However, UART 2 is connected to the expansion port.

Address Description

$D4A0 Control register

• 

• 

• 

• 
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Address Description

Bits 0-3 contain the bit rate.

$D4A1 Command register

Bit 0 enables or disables the UART.

Wait for status register bit 6 after changes. 

$D4A2 Status register

Bit 1 indicates a framing error.
Bit 2 indicates an overrun error.
Bit 3 indicates receive in progress.
Bit 4 indicates transmit in progress.
Bit 6 indicates on (1) or off (0).

$D4A3 Reserved

$D4A4 Receive ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A5 Receive ring buffer tail register

Bits 0-2 contain the position in the buffer.

$D4A6 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

• 

• 

• 
• 
• 
• 
• 

• 

• 

• 
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Address Description

$D4A7 Transmit ring buffer head register

Bits 0-2 contain the position in the buffer.

$D4A8 Receive ring buffer (8 bytes)

$D4B0 Transmit ring buffer (8 bytes)

• 
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APPENDIX B: COLOR CODES

The  color  codes  used  by  the  Cody  Computer's  Video
Interface Device are the same as those from the Commodore
VIC-II chip. The actual colors used are from the Propeller NTSC
palette.

Code (dec) Code (hex) Color

0 $0 Black

1 $1 White

2 $2 Red

3 $3 Cyan

4 $4 Purple

5 $5 Green

6 $6 Blue

7 $7 Yellow

8 $8 Orange

9 $9 Brown

10 $A Light red

11 $B Dark gray

12 $C Gray

13 $D Light green

14 $E Light blue

15 $F Light gray
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APPENDIX C: CODY BASIC REFERENCE

This appendix contains a brief reference for Cody BASIC. For
more  information  and  examples  refer  to  Chapter  5:  Using
Cody BASIC and Chapter 6: Advanced Cody BASIC.

LINE NUMBERS

All Cody BASIC statements in a program must have a line
number.  A  handful  of  statements  and  commands  can  be
evaluated immediately at  the BASIC prompt,  but  this  is  the
exception and not the rule.

COMMENTS

Lines  beginning with  the  REM (remark)  statement  will  be
ignored. Each line incurs a small performance penalty as the
statement's token must be processed and the rest of the line
skipped over.

VARIABLES

Numeric variables are the letters A through Z. Each variable
can  store  a  16-bit  signed  integer  from  -32768  to  32767
inclusive.  When  used  in  certain  situations,  such  as  POKE
statements,  numbers  are  interpreted  as  their  unsigned
equivalents to address the entire Cody Computer memory.

A numeric variable is actually the first element in a numeric
array  of  128  values.  A  specific  element  can  be  accessed  by

552



indexing with a number or numeric expression, such as A(10).
Arrays are declared by default in Cody BASIC.

String  variables  are  the  letters  A$ through  Z$ (note  the
trailing dollar sign character). Each string can store up to 255
possible characters and a terminating null  character.  Strings
are declared by default.

Assignment is made using the = operator. Each assignment
must be on its own line and the type of the expression must
match the type of the variable. A numeric variable must have a
numeric expression on the right side, while a string variable
must have a string expression on the right side instead.

NUMERIC EXPRESSIONS

Supported  numeric  operators  are  + (addition),  -
(subtraction),  * (multiplication)  and  / (division).  Order  of
operations  is  obeyed,  with  mulitplication  and  division
occurring before addition and subtraction.

Expressions can be grouped using ( (left parenthesis) and )
(right parenthesis). A leading - (unary minus) can be used to
obtain the negative of a number or expression.

STRING EXPRESSIONS

The only supported operator for strings is + (concatenation).
This operator is only supported in very limited circumstances
involving explicit  string expressions (assignment,  PRINT,  and
the right side of expressions in IF statements).
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RELATIONAL EXPRESSIONS

Relational  expressions  are  only  used  in  IF statements.
Supported relational  operators are  < (less than),  > (greater
than),  <= (less than or equal),  >= (greater than or equal),  =
(equal), and <> (not equal).

For numbers a relational expression consists of two numeric
expressions with a relational operator. For strings a relational
expression consists of a string variable on the left side and a
string expression on the right side.

MATHEMATICAL FUNCTIONS

Several mathematical functions are present in Cody BASIC.

ABS(n) returns the absolute value of a number.
MOD(m, n) returns the result of m modulo n.
SQR(n) returns the integer square root of a number.
RND() returns a pseudorandom number.
RND(n) seeds the pseudorandom generator with a new
value.

BITWISE FUNCTIONS

The  typical  bitwise  operations  are  implemented  as  Cody
BASIC functions.

AND(m, n) returns the bitwise-and of two numbers.
OR(m, n) returns the bitwise-or of two numbers.

• 
• 
• 
• 
• 

• 
• 
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XOR(m, n) returns the bitwise exclusive-or of two
numbers.
NOT(n) returns the bitwise negation of a number.

STRING FUNCTIONS RETURNING NUMBERS

Some  functions  that  take  a  string  variable  argument  are
used in numeric expressions.

ASC(s$) returns the number of the first character in a
string variable.
VAL(s$) parses a number from the start of a string
variable.
LEN(s$) returns the number of characters in a string
variable.

STRING FUNCTIONS RETURNING STRINGS

Other string functions return strings and are used in string
expressions.

CHR$(n,...,n) converts one or more numbers to string
characters.
STR$(n) converts a number to its string representation.
SUB$(s$,m,n) returns a substring of length n starting at 
m.

• 

• 

• 

• 

• 

• 

• 
• 
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FORMATTING FUNCTIONS

Two  functions  can  only  be  used  to  control  formatting  in
PRINT statements.

AT(x,y) moves the output to the specified coordinates.
TAB(n) moves the output to a particular tab column on
screen.

OTHER FUNCTIONS

A couple of functions don't fit into a specific category.

PEEK(n) returns the byte at a specific memory address.
TI returns the current time count in jiffies (1/60th of a
second).

COMMANDS

Several  commands  are  used  to  interact  with  rudimentary
Cody BASIC facilities.

NEW clears the program memory and starts a new
program.
LOAD m,n saves the current program on UART m and
mode n. Use 0 for BASIC programs and 1 for binary
programs.
SAVE n saves the current program on UART n.
RUN runs the current BASIC program starting at the first
line.

• 
• 

• 
• 

• 

• 

• 
• 
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LIST lists the program.
LIST m lists the program starting with a particular line.
LIST m,n lists the program between two line numbers.

CONTROL STATEMENTS

Control statements manage the flow through a Cody BASIC
program.

IF r THEN s evaluates statement s if relational expression 
r is true.
GOTO n jumps to a particular line in the program.
GOSUB n calls a particular line with the intention of 
RETURNing.
RETURN returns to the line after the last GOSUB.
FOR i=m TO n loops i from m to n with a matching NEXT.
NEXT starts the next loop with the matching FOR.
STOP exits the current program.

INPUT AND OUTPUT STATEMENTS

Cody BASIC has several statements for structured input and
output.

INPUT v,...,v reads one-per-line numeric or string values
into one or more variables v.
PRINT prints a blank line.
PRINT e,...,e prints one or more numeric or string
expressions. The statement will move on to the next line
unless ; (semicolon) is at the end.

• 
• 
• 

• 

• 
• 

• 
• 
• 
• 

• 

• 
• 
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OPEN m,n redirects future INPUT and PRINT statements
to UART m with bit rate specifier n.
CLOSE closes a UART and directs back to the keyboard
and screen.

The  most  recent  keyboard  and  joystick  matrix  scans
performed by  the  BASIC  interpreter  can  be  read  from zero
page addresses 16 through 23. The input prompt character can
be changed by changing zero page address 14.

DATA STATEMENTS

Cody BASIC supports a limited form of DATA statements for
literals. Data will be read from each statement in the program
starting at the beginning and going to the end.

DATA n,..,n declares one or more numeric literals
separated by commas.
READ v,..,v reads one or more literals from DATA into
number variables.
RESTORE moves the data location back to the beginning
of the program.

OTHER STATEMENTS

Some statements don't easily fit into a specific category.

POKE m,n pokes byte n into memory address m.

• 

• 

• 

• 

• 

• 
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SYS n calls address n in assembly language. Values for
registers A, X, and Y can be passed in the first three zero
page variables.

ERRORS

Cody  BASIC  has  limited  error  handling  inspired  by  Tiny
BASIC.

LOGIC errors occur when a statement was syntactically
valid but wrong in context.
SYNTAX errors occur when a statement could not be
correctly parsed.
SYSTEM errors occur when a statement fails because of
low-level problems.

• 

• 

• 

• 
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Image

APPENDIX D: CODSCII TABLE

The CODSCII character set is the default character set used
by the Cody Computer and Cody BASIC. It's an extended ASCII
character  set  with  the  top  128  values  used  for  Commodore
PETSCII  characters  and  custom  control  codes  for  colors  and
terminal operations.

Dec Hex Description

0 $00 Null

1 $01 Start of heading

2 $02 Start of text

3 $03 End of text

4 $04 End of transmission

5 $05 Enquiry

6 $06 Acknowledge

7 $07 Bell

8 $08 Backspace

9 $09 Horizontal tab

10 $0A Line feed

11 $0B Vertical tab

12 $0C Form feed

13 $0D Carriage return

560



14 $0E Shift out

15 $0F Shift in

16 $10 Data link escape

17 $11 Device control 1 (XON)

18 $12 Device control 2

19 $13 Device control 3 (XOFF)

20 $14 Device control 4

21 $15 Negative acknowledge

22 $16 Synchronous idle

23 $17 End of transmission block

24 $18 Cancel

25 $19 End of medium

26 $1A Substitute

27 $1B Escape

28 $1C File separator

29 $1D Group separator

30 $1E Record separator

31 $1F Unit separator

32 $20 Whitespace

33 $21 Exclamation mark

34 $22 Double quotes

35 $23 Hash symbol
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36 $24 Dollar sign

37 $25 Percent

38 $26 Ampersand

39 $27 Single quote

40 $28 Left parenthesis

41 $29 Right parenthesis

42 $2A Asterisk

43 $2B Plus

44 $2C Comma

45 $2D Minus

46 $2E Period

47 $2F Slash

48 $30 Zero

49 $31 One

50 $32 Two

51 $33 Three

52 $34 Four

53 $35 Five

54 $36 Six

55 $37 Seven

56 $38 Eight

57 $39 Nine
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58 $3A Colon

59 $3B Semicolon

60 $3C Less than

61 $3D Equal

62 $3E Greater than

63 $3F Question mark

64 $40 At symbol

65 $41 Uppercase A

66 $42 Uppercase B

67 $43 Uppercase C

68 $44 Uppercase D

69 $45 Uppercase E

70 $46 Uppercase F

71 $47 Uppercase G

72 $48 Uppercase H

73 $49 Uppercase I

74 $4A Uppercase J

75 $4B Uppercase K

76 $4C Uppercase L

77 $4D Uppercase M

78 $4E Uppercase N

79 $4F Uppercase O
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80 $50 Uppercase P

81 $51 Uppercase Q

82 $52 Uppercase R

83 $53 Uppercase S

84 $54 Uppercase T

85 $55 Uppercase U

86 $56 Uppercase V

87 $57 Uppercase W

88 $58 Uppercase X

89 $59 Uppercase Y

90 $5A Uppercase Z

91 $5B Left bracket

92 $5C Backslash

93 $5D Right bracket

94 $5E Caret

95 $5F Underscore

96 $60 Backquote

97 $61 Lowercase a

98 $62 Lowercase b

99 $63 Lowercase c

100 $64 Lowercase d

101 $65 Lowercase e
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102 $66 Lowercase f

103 $67 Lowercase g

104 $68 Lowercase h

105 $69 Lowercase i

106 $6A Lowercase j

107 $6B Lowercase k

108 $6C Lowercase l

109 $6D Lowercase m

110 $6E Lowercase n

111 $6F Lowercase o

112 $70 Lowercase p

113 $71 Lowercase q

114 $72 Lowercase r

115 $73 Lowercase s

116 $74 Lowercase t

117 $75 Lowercase u

118 $76 Lowercase v

119 $77 Lowercase w

120 $78 Lowercase x

121 $79 Lowercase y

122 $7A Lowercase z

123 $7B Left brace
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124 $7C Pipe

125 $7D Right brace

126 $7E Tilde

127 $7F Unused/Reserved

128 $80 Pound sign

129 $81 Up arrow

130 $82 Left arrow

131 $83 Horizontal line

132 $84 Spade

133 $85 Vertical line

134 $86 Horizontal line

135 $87 Horizontal line up 1

136 $88 Horizontal line up 2

137 $89 Horizontal line down 1

138 $8A Vertical line left 1

139 $8B Vertical line duplicate

140 $8C Quarter circle bottom left

141 $8D Quarter circle top right

142 $8E Quarter circle top left

143 $8F Box bottom left corner

144 $90 Diagonal down

145 $91 Diagonal up
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146 $92 Box top left corner

147 $93 Box top right corner

148 $94 Dot

149 $95 Horizontal line down 2

150 $96 Heart

151 $97 Vertical line left 1 duplicate

152 $98 Quarter circle bottom right

153 $99 X

154 $9A Dot with hole

155 $9B Club

156 $9C Vertical line duplicate

157 $9D Diamond

158 $9E Cross

159 $9F Dotted left

160 $A0 Vertical line duplicate

161 $A1 Pi

162 $A2 Filled diagonal top right

163 $A3 Blank

164 $A4 Filled box left

165 $A5 Filled box bottom

166 $A6 Horizontal line top

167 $A7 Horizontal line bottom

567



168 $A8 Vertical line left

169 $A9 Dotted square

170 $AA Vertical line right

171 $AB Dotted bottom

172 $AC Diagonal filled top left

173 $AD Vertical line right duplicate

174 $AE T right

175 $AF Filled quarter box bottom right

176 $B0 Box top right

177 $B1 Box bottom left

178 $B2 Horizontal line bottom duplicate

179 $B3 Box bottom right

180 $B4 T up

181 $B5 T down

182 $B6 T left

183 $B7 Vertical line left duplicate

184 $B8 Filled left half duplicate

185 $B9 Filled right half duplicate

186 $BA Horizontal line top

187 $BB Horizontal partial fill top

188 $BC Horizontal partial fill bottom

189 $BD Box bottom right corner
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190 $BE Filled box lower left

191 $BF Filled box top right

192 $C0 Box top left

193 $C1 Filled box top left

194 $C2 Checkered square

195 $C3 Unused/Reserved

196 $C4 Unused/Reserved

197 $C5 Unused/Reserved

198 $C6 Unused/Reserved

199 $C7 Unused/Reserved

200 $C8 Unused/Reserved

201 $C9 Unused/Reserved

202 $CA Unused/Reserved

203 $CB Unused/Reserved

204 $CC Unused/Reserved

205 $CD Unused/Reserved

206 $CE Unused/Reserved

207 $CF Unused/Reserved

208 $D0 Unused/Reserved

209 $D1 Unused/Reserved

210 $D2 Unused/Reserved

211 $D3 Unused/Reserved
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212 $D4 Unused/Reserved

213 $D5 Unused/Reserved

214 $D6 Unused/Reserved

215 $D7 Unused/Reserved

216 $D8 Unused/Reserved

217 $D9 Unused/Reserved

218 $DA Unused/Reserved

219 $DB Unused/Reserved

220 $DC Unused/Reserved

221 $DD Unused/Reserved

222 $DE Clear screen

223 $DF Reverse field

224 $E0 Background black

225 $E1 Background white

226 $E2 Background red

227 $E3 Background cyan

228 $E4 Background purple

229 $E5 Background green

230 $E6 Background blue

231 $E7 Background yellow

232 $E8 Background orange

233 $E9 Background brown
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234 $EA Background light red

235 $EB Background dark gray

236 $EC Background gray

237 $ED Background light green

238 $EE Background light blue

239 $EF Background light gray

240 $F0 Foreground black

241 $F1 Foreground white

242 $F2 Foreground red

243 $F3 Foreground cyan

244 $F4 Foreground purple

245 $F5 Foreground green

246 $F6 Foreground blue

247 $F7 Foreground yellow

248 $F8 Foreground orange

249 $F9 Foreground brown

250 $FA Foreground light red

251 $FB Foreground dark gray

252 $FC Foreground gray

253 $FD Foreground light green

254 $FE Foreground light blue

255 $FF Foreground light gray
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